glibc/linuxthreads/manager.c
Ulrich Drepper 9aae19cd9a Update.
2000-05-05  H.J. Lu  <hjl@gnu.org>

	* sysdeps/ia64/pt-machine.h (__compare_and_swap): Change it to
	have acquire semantics.
	(__compare_and_swap_with_release_semantics): New inline
	function.
	(HAS_COMPARE_AND_SWAP_WITH_RELEASE_SEMANTICS): New macro.

2000-01-28  Hans Boehm  <hboehm@exch.hpl.hp.com>

	* manager.c: Fix the problem with signals at startup.
	Change the way that thread stacks are allocated on IA64.
	Clean up some of the guard page allocation stuff.

1999-12-19  H.J. Lu  <hjl@gnu.org>

	* internals.h (page_roundup): New.
	* attr.c (__pthread_attr_setguardsize); Use page_roundup
	instead of roundup.
	* manager.c (pthread_allocate_stack): Make sure guardaddr is
	page aligned with page_roundup if NEED_SEPARATE_REGISTER_STACK
	is define.

1999-12-17  Hans Boehm  <hboehm@exch.hpl.hp.com>

	* manager.c (pthread_allocate_stack): Unmap the stack top
	if failed to map the stack bottom.
	Fix the guard page.
	(pthread_free): Fix the guard page.

	* pthread.c (pthread_initialize): Set rlimit correctly for
	NEED_SEPARATE_REGISTER_STACK.

1999-12-16  H.J. Lu  <hjl@gnu.org>

	* pthread.c (__pthread_initialize_manager): Pass
	__pthread_manager_thread_bos instead of
	__pthread_manager_thread_tos to __clone2.

1999-12-16  H.J. Lu  <hjl@gnu.org>

	* manager.c (pthread_allocate_stack): Correct the calculation
	of "new_thread_bottom". Remove MAP_GROWSDOWN from mmap for
	stack bottom.

1999-12-13  H.J. Lu  <hjl@gnu.org>

	* sysdeps/ia64/pt-machine.h (__compare_and_swap): Added a stop
	bit after setting ar.ccv.

1999-12-12  H.J. Lu  <hjl@gnu.org>

	* manager.c (pthread_allocate_stack): Make the starting
	address of the stack bottom page aligned. FIXME: it may
	need changes in other places.
	(pthread_handle_create): Likewise.

1999-12-11  Hans Boehm  <hboehm@exch.hpl.hp.com>

	* manager.c (pthread_allocate_stack): Handle
	NEED_SEPARATE_REGISTER_STACK.
	(pthread_handle_create): Likewise.
	* pthread.c (__pthread_initialize_manager): Likewise.

	* sysdeps/ia64/pt-machine.h: Use r13 for thread pointer.

1999-12-02  H.J. Lu  <hjl@gnu.org>

	* sysdeps/ia64/pt-machine.h: New.
2000-07-15 19:02:47 +00:00

859 lines
31 KiB
C

/* Linuxthreads - a simple clone()-based implementation of Posix */
/* threads for Linux. */
/* Copyright (C) 1996 Xavier Leroy (Xavier.Leroy@inria.fr) */
/* */
/* This program is free software; you can redistribute it and/or */
/* modify it under the terms of the GNU Library General Public License */
/* as published by the Free Software Foundation; either version 2 */
/* of the License, or (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU Library General Public License for more details. */
/* The "thread manager" thread: manages creation and termination of threads */
#include <errno.h>
#include <sched.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/poll.h> /* for poll */
#include <sys/mman.h> /* for mmap */
#include <sys/param.h>
#include <sys/time.h>
#include <sys/wait.h> /* for waitpid macros */
#include "pthread.h"
#include "internals.h"
#include "spinlock.h"
#include "restart.h"
#include "semaphore.h"
/* Array of active threads. Entry 0 is reserved for the initial thread. */
struct pthread_handle_struct __pthread_handles[PTHREAD_THREADS_MAX] =
{ { LOCK_INITIALIZER, &__pthread_initial_thread, 0},
{ LOCK_INITIALIZER, &__pthread_manager_thread, 0}, /* All NULLs */ };
/* For debugging purposes put the maximum number of threads in a variable. */
const int __linuxthreads_pthread_threads_max = PTHREAD_THREADS_MAX;
/* Indicate whether at least one thread has a user-defined stack (if 1),
or if all threads have stacks supplied by LinuxThreads (if 0). */
int __pthread_nonstandard_stacks;
/* Number of active entries in __pthread_handles (used by gdb) */
volatile int __pthread_handles_num = 2;
/* Whether to use debugger additional actions for thread creation
(set to 1 by gdb) */
volatile int __pthread_threads_debug;
/* Globally enabled events. */
volatile td_thr_events_t __pthread_threads_events;
/* Pointer to thread descriptor with last event. */
volatile pthread_descr __pthread_last_event;
/* Mapping from stack segment to thread descriptor. */
/* Stack segment numbers are also indices into the __pthread_handles array. */
/* Stack segment number 0 is reserved for the initial thread. */
static inline pthread_descr thread_segment(int seg)
{
return (pthread_descr)(THREAD_STACK_START_ADDRESS - (seg - 1) * STACK_SIZE)
- 1;
}
/* Flag set in signal handler to record child termination */
static volatile int terminated_children = 0;
/* Flag set when the initial thread is blocked on pthread_exit waiting
for all other threads to terminate */
static int main_thread_exiting = 0;
/* Counter used to generate unique thread identifier.
Thread identifier is pthread_threads_counter + segment. */
static pthread_t pthread_threads_counter = 0;
#ifdef NEED_SEPARATE_REGISTER_STACK
/* Signal masks for the manager. These have to be global only when clone2
is used since it's currently borken wrt signals in the child. */
static sigset_t manager_mask; /* Manager normal signal mask */
static sigset_t manager_mask_all; /* All bits set. */
#endif
/* Forward declarations */
static int pthread_handle_create(pthread_t *thread, const pthread_attr_t *attr,
void * (*start_routine)(void *), void *arg,
sigset_t *mask, int father_pid,
int report_events,
td_thr_events_t *event_maskp);
static void pthread_handle_free(pthread_t th_id);
static void pthread_handle_exit(pthread_descr issuing_thread, int exitcode);
static void pthread_reap_children(void);
static void pthread_kill_all_threads(int sig, int main_thread_also);
/* The server thread managing requests for thread creation and termination */
int __pthread_manager(void *arg)
{
int reqfd = (int) (long int) arg;
struct pollfd ufd;
#ifndef NEED_SEPARATE_REGISTER_STACK
sigset_t manager_mask;
#endif
int n;
struct pthread_request request;
/* If we have special thread_self processing, initialize it. */
#ifdef INIT_THREAD_SELF
INIT_THREAD_SELF(&__pthread_manager_thread, 1);
#endif
/* Set the error variable. */
__pthread_manager_thread.p_errnop = &__pthread_manager_thread.p_errno;
__pthread_manager_thread.p_h_errnop = &__pthread_manager_thread.p_h_errno;
/* Block all signals except __pthread_sig_cancel and SIGTRAP */
sigfillset(&manager_mask);
sigdelset(&manager_mask, __pthread_sig_cancel); /* for thread termination */
sigdelset(&manager_mask, SIGTRAP); /* for debugging purposes */
if (__pthread_threads_debug && __pthread_sig_debug > 0)
sigdelset(&manager_mask, __pthread_sig_debug);
sigprocmask(SIG_SETMASK, &manager_mask, NULL);
#ifdef NEED_SEPARATE_REGISTER_STACK
sigfillset(&manager_mask_all);
#endif
/* Raise our priority to match that of main thread */
__pthread_manager_adjust_prio(__pthread_main_thread->p_priority);
/* Synchronize debugging of the thread manager */
n = __libc_read(reqfd, (char *)&request, sizeof(request));
ASSERT(n == sizeof(request) && request.req_kind == REQ_DEBUG);
ufd.fd = reqfd;
ufd.events = POLLIN;
/* Enter server loop */
while(1) {
n = __poll(&ufd, 1, 2000);
/* Check for termination of the main thread */
if (getppid() == 1) {
pthread_kill_all_threads(SIGKILL, 0);
_exit(0);
}
/* Check for dead children */
if (terminated_children) {
terminated_children = 0;
pthread_reap_children();
}
/* Read and execute request */
if (n == 1 && (ufd.revents & POLLIN)) {
n = __libc_read(reqfd, (char *)&request, sizeof(request));
ASSERT(n == sizeof(request));
switch(request.req_kind) {
case REQ_CREATE:
request.req_thread->p_retcode =
pthread_handle_create((pthread_t *) &request.req_thread->p_retval,
request.req_args.create.attr,
request.req_args.create.fn,
request.req_args.create.arg,
&request.req_args.create.mask,
request.req_thread->p_pid,
request.req_thread->p_report_events,
&request.req_thread->p_eventbuf.eventmask);
restart(request.req_thread);
break;
case REQ_FREE:
pthread_handle_free(request.req_args.free.thread_id);
break;
case REQ_PROCESS_EXIT:
pthread_handle_exit(request.req_thread,
request.req_args.exit.code);
/* NOTREACHED */
break;
case REQ_MAIN_THREAD_EXIT:
main_thread_exiting = 1;
/* Reap children in case all other threads died and the signal handler
went off before we set main_thread_exiting to 1, and therefore did
not do REQ_KICK. */
pthread_reap_children();
if (__pthread_main_thread->p_nextlive == __pthread_main_thread) {
restart(__pthread_main_thread);
/* The main thread will now call exit() which will trigger an
__on_exit handler, which in turn will send REQ_PROCESS_EXIT
to the thread manager. In case you are wondering how the
manager terminates from its loop here. */
}
break;
case REQ_POST:
__new_sem_post(request.req_args.post);
break;
case REQ_DEBUG:
/* Make gdb aware of new thread and gdb will restart the
new thread when it is ready to handle the new thread. */
if (__pthread_threads_debug && __pthread_sig_debug > 0)
raise(__pthread_sig_debug);
break;
case REQ_KICK:
/* This is just a prod to get the manager to reap some
threads right away, avoiding a potential delay at shutdown. */
break;
}
}
}
}
int __pthread_manager_event(void *arg)
{
/* If we have special thread_self processing, initialize it. */
#ifdef INIT_THREAD_SELF
INIT_THREAD_SELF(&__pthread_manager_thread, 1);
#endif
/* Get the lock the manager will free once all is correctly set up. */
__pthread_lock (THREAD_GETMEM((&__pthread_manager_thread), p_lock), NULL);
/* Free it immediately. */
__pthread_unlock (THREAD_GETMEM((&__pthread_manager_thread), p_lock));
return __pthread_manager(arg);
}
/* Process creation */
static int pthread_start_thread(void *arg)
{
pthread_descr self = (pthread_descr) arg;
struct pthread_request request;
void * outcome;
/* Initialize special thread_self processing, if any. */
#ifdef INIT_THREAD_SELF
INIT_THREAD_SELF(self, self->p_nr);
#endif
/* Make sure our pid field is initialized, just in case we get there
before our father has initialized it. */
THREAD_SETMEM(self, p_pid, __getpid());
/* Initial signal mask is that of the creating thread. (Otherwise,
we'd just inherit the mask of the thread manager.) */
sigprocmask(SIG_SETMASK, &self->p_start_args.mask, NULL);
/* Set the scheduling policy and priority for the new thread, if needed */
if (THREAD_GETMEM(self, p_start_args.schedpolicy) >= 0)
/* Explicit scheduling attributes were provided: apply them */
__sched_setscheduler(THREAD_GETMEM(self, p_pid),
THREAD_GETMEM(self, p_start_args.schedpolicy),
&self->p_start_args.schedparam);
else if (__pthread_manager_thread.p_priority > 0)
/* Default scheduling required, but thread manager runs in realtime
scheduling: switch new thread to SCHED_OTHER policy */
{
struct sched_param default_params;
default_params.sched_priority = 0;
__sched_setscheduler(THREAD_GETMEM(self, p_pid),
SCHED_OTHER, &default_params);
}
/* Make gdb aware of new thread */
if (__pthread_threads_debug && __pthread_sig_debug > 0) {
request.req_thread = self;
request.req_kind = REQ_DEBUG;
__libc_write(__pthread_manager_request,
(char *) &request, sizeof(request));
suspend(self);
}
/* Run the thread code */
outcome = self->p_start_args.start_routine(THREAD_GETMEM(self,
p_start_args.arg));
/* Exit with the given return value */
pthread_exit(outcome);
return 0;
}
static int pthread_start_thread_event(void *arg)
{
pthread_descr self = (pthread_descr) arg;
#ifdef INIT_THREAD_SELF
INIT_THREAD_SELF(self, self->p_nr);
#endif
/* Make sure our pid field is initialized, just in case we get there
before our father has initialized it. */
THREAD_SETMEM(self, p_pid, __getpid());
/* Get the lock the manager will free once all is correctly set up. */
__pthread_lock (THREAD_GETMEM(self, p_lock), NULL);
/* Free it immediately. */
__pthread_unlock (THREAD_GETMEM(self, p_lock));
/* Continue with the real function. */
return pthread_start_thread (arg);
}
static int pthread_allocate_stack(const pthread_attr_t *attr,
pthread_descr default_new_thread,
int pagesize,
pthread_descr * out_new_thread,
char ** out_new_thread_bottom,
char ** out_guardaddr,
size_t * out_guardsize)
{
pthread_descr new_thread;
char * new_thread_bottom;
char * guardaddr;
size_t stacksize, guardsize;
if (attr != NULL && attr->__stackaddr_set)
{
/* The user provided a stack. For now we interpret the supplied
address as 1 + the highest addr. in the stack segment. If a
separate register stack is needed, we place it at the low end
of the segment, relying on the associated stacksize to
determine the low end of the segment. This differs from many
(but not all) other pthreads implementations. The intent is
that on machines with a single stack growing toward higher
addresses, stackaddr would be the lowest address in the stack
segment, so that it is consistently close to the initial sp
value. */
new_thread =
(pthread_descr) ((long)(attr->__stackaddr) & -sizeof(void *)) - 1;
new_thread_bottom = (char *) attr->__stackaddr - attr->__stacksize;
guardaddr = NULL;
guardsize = 0;
__pthread_nonstandard_stacks = 1;
}
else
{
#ifdef NEED_SEPARATE_REGISTER_STACK
size_t granularity = 2 * pagesize;
/* Try to make stacksize/2 a multiple of pagesize */
#else
size_t granularity = pagesize;
#endif
/* Allocate space for stack and thread descriptor at default address */
if (attr != NULL)
{
guardsize = page_roundup (attr->__guardsize, granularity);
stacksize = STACK_SIZE - guardsize;
stacksize = MIN (stacksize,
page_roundup (attr->__stacksize, granularity));
}
else
{
guardsize = granularity;
stacksize = STACK_SIZE - granularity;
}
new_thread = default_new_thread;
#ifdef NEED_SEPARATE_REGISTER_STACK
new_thread_bottom = (char *) (new_thread + 1) - stacksize - guardsize;
/* Includes guard area, unlike the normal case. Use the bottom
end of the segment as backing store for the register stack.
Needed on IA64. In this case, we also map the entire stack at
once. According to David Mosberger, that's cheaper. It also
avoids the risk of intermittent failures due to other mappings
in the same region. The cost is that we might be able to map
slightly fewer stacks. */
/* First the main stack: */
if (mmap((caddr_t)((char *)(new_thread + 1) - stacksize / 2),
stacksize / 2, PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0)
== MAP_FAILED)
/* Bad luck, this segment is already mapped. */
return -1;
/* Then the register stack: */
if (mmap((caddr_t)new_thread_bottom, stacksize/2,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0)
== MAP_FAILED)
{
munmap((caddr_t)((char *)(new_thread + 1) - stacksize/2),
stacksize/2);
return -1;
}
guardaddr = new_thread_bottom + stacksize/2;
/* We leave the guard area in the middle unmapped. */
#else /* !NEED_SEPARATE_REGISTER_STACK */
new_thread_bottom = (char *) (new_thread + 1) - stacksize;
if (mmap((caddr_t)((char *)(new_thread + 1) - INITIAL_STACK_SIZE),
INITIAL_STACK_SIZE, PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED | MAP_GROWSDOWN,
-1, 0) == MAP_FAILED)
/* Bad luck, this segment is already mapped. */
return -1;
/* We manage to get a stack. Now see whether we need a guard
and allocate it if necessary. Notice that the default
attributes (stack_size = STACK_SIZE - pagesize and guardsize
= pagesize) do not need a guard page, since the RLIMIT_STACK
soft limit prevents stacks from running into one another. */
if (stacksize == STACK_SIZE - pagesize)
{
/* We don't need a guard page. */
guardaddr = NULL;
guardsize = 0;
}
else
{
/* Put a bad page at the bottom of the stack */
guardaddr = (void *)new_thread_bottom - guardsize;
if (mmap ((caddr_t) guardaddr, guardsize, 0, MAP_FIXED, -1, 0)
== MAP_FAILED)
{
/* We don't make this an error. */
guardaddr = NULL;
guardsize = 0;
}
}
#endif /* !NEED_SEPARATE_REGISTER_STACK */
}
/* Clear the thread data structure. */
memset (new_thread, '\0', sizeof (*new_thread));
*out_new_thread = new_thread;
*out_new_thread_bottom = new_thread_bottom;
*out_guardaddr = guardaddr;
*out_guardsize = guardsize;
return 0;
}
static int pthread_handle_create(pthread_t *thread, const pthread_attr_t *attr,
void * (*start_routine)(void *), void *arg,
sigset_t * mask, int father_pid,
int report_events,
td_thr_events_t *event_maskp)
{
size_t sseg;
int pid;
pthread_descr new_thread;
char * new_thread_bottom;
pthread_t new_thread_id;
char *guardaddr = NULL;
size_t guardsize = 0;
int pagesize = __getpagesize();
/* First check whether we have to change the policy and if yes, whether
we can do this. Normally this should be done by examining the
return value of the __sched_setscheduler call in pthread_start_thread
but this is hard to implement. FIXME */
if (attr != NULL && attr->__schedpolicy != SCHED_OTHER && geteuid () != 0)
return EPERM;
/* Find a free segment for the thread, and allocate a stack if needed */
for (sseg = 2; ; sseg++)
{
if (sseg >= PTHREAD_THREADS_MAX)
return EAGAIN;
if (__pthread_handles[sseg].h_descr != NULL)
continue;
if (pthread_allocate_stack(attr, thread_segment(sseg), pagesize,
&new_thread, &new_thread_bottom,
&guardaddr, &guardsize) == 0)
break;
}
__pthread_handles_num++;
/* Allocate new thread identifier */
pthread_threads_counter += PTHREAD_THREADS_MAX;
new_thread_id = sseg + pthread_threads_counter;
/* Initialize the thread descriptor. Elements which have to be
initialized to zero already have this value. */
new_thread->p_tid = new_thread_id;
new_thread->p_lock = &(__pthread_handles[sseg].h_lock);
new_thread->p_cancelstate = PTHREAD_CANCEL_ENABLE;
new_thread->p_canceltype = PTHREAD_CANCEL_DEFERRED;
new_thread->p_errnop = &new_thread->p_errno;
new_thread->p_h_errnop = &new_thread->p_h_errno;
new_thread->p_res._sock = -1;
new_thread->p_resp = &new_thread->p_res;
new_thread->p_guardaddr = guardaddr;
new_thread->p_guardsize = guardsize;
new_thread->p_header.data.self = new_thread;
new_thread->p_nr = sseg;
/* Initialize the thread handle */
__pthread_init_lock(&__pthread_handles[sseg].h_lock);
__pthread_handles[sseg].h_descr = new_thread;
__pthread_handles[sseg].h_bottom = new_thread_bottom;
/* Determine scheduling parameters for the thread */
new_thread->p_start_args.schedpolicy = -1;
if (attr != NULL) {
new_thread->p_detached = attr->__detachstate;
new_thread->p_userstack = attr->__stackaddr_set;
switch(attr->__inheritsched) {
case PTHREAD_EXPLICIT_SCHED:
new_thread->p_start_args.schedpolicy = attr->__schedpolicy;
memcpy (&new_thread->p_start_args.schedparam, &attr->__schedparam,
sizeof (struct sched_param));
break;
case PTHREAD_INHERIT_SCHED:
new_thread->p_start_args.schedpolicy = __sched_getscheduler(father_pid);
__sched_getparam(father_pid, &new_thread->p_start_args.schedparam);
break;
}
new_thread->p_priority =
new_thread->p_start_args.schedparam.sched_priority;
}
/* Finish setting up arguments to pthread_start_thread */
new_thread->p_start_args.start_routine = start_routine;
new_thread->p_start_args.arg = arg;
new_thread->p_start_args.mask = *mask;
/* Make the new thread ID available already now. If any of the later
functions fail we return an error value and the caller must not use
the stored thread ID. */
*thread = new_thread_id;
/* Raise priority of thread manager if needed */
__pthread_manager_adjust_prio(new_thread->p_priority);
/* Do the cloning. We have to use two different functions depending
on whether we are debugging or not. */
pid = 0; /* Note that the thread never can have PID zero. */
if (report_events)
{
/* See whether the TD_CREATE event bit is set in any of the
masks. */
int idx = __td_eventword (TD_CREATE);
uint32_t mask = __td_eventmask (TD_CREATE);
if ((mask & (__pthread_threads_events.event_bits[idx]
| event_maskp->event_bits[idx])) != 0)
{
/* Lock the mutex the child will use now so that it will stop. */
__pthread_lock(new_thread->p_lock, NULL);
/* We have to report this event. */
#ifdef NEED_SEPARATE_REGISTER_STACK
/* Perhaps this version should be used on all platforms. But
this requires that __clone2 be uniformly supported
everywhere.
And there is some argument for changing the __clone2
interface to pass sp and bsp instead, making it more IA64
specific, but allowing stacks to grow outward from each
other, to get less paging and fewer mmaps. Clone2
currently can't take signals in the child right after
process creation. Mask them in the child. It resets the
mask once it starts up. */
sigprocmask(SIG_SETMASK, &manager_mask_all, NULL);
pid = __clone2(pthread_start_thread_event,
(void **)new_thread_bottom,
(char *)new_thread - new_thread_bottom,
CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND |
__pthread_sig_cancel, new_thread);
sigprocmask(SIG_SETMASK, &manager_mask, NULL);
#else
pid = __clone(pthread_start_thread_event, (void **) new_thread,
CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND |
__pthread_sig_cancel, new_thread);
#endif
if (pid != -1)
{
/* Now fill in the information about the new thread in
the newly created thread's data structure. We cannot let
the new thread do this since we don't know whether it was
already scheduled when we send the event. */
new_thread->p_eventbuf.eventdata = new_thread;
new_thread->p_eventbuf.eventnum = TD_CREATE;
__pthread_last_event = new_thread;
/* We have to set the PID here since the callback function
in the debug library will need it and we cannot guarantee
the child got scheduled before the debugger. */
new_thread->p_pid = pid;
/* Now call the function which signals the event. */
__linuxthreads_create_event ();
/* Now restart the thread. */
__pthread_unlock(new_thread->p_lock);
}
}
}
if (pid == 0)
{
#ifdef NEED_SEPARATE_REGISTER_STACK
sigprocmask(SIG_SETMASK, &manager_mask_all, NULL);
pid = __clone2(pthread_start_thread,
(void **)new_thread_bottom,
(char *)new_thread - new_thread_bottom,
CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND |
__pthread_sig_cancel, new_thread);
sigprocmask(SIG_SETMASK, &manager_mask, NULL);
#else
pid = __clone(pthread_start_thread, (void **) new_thread,
CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND |
__pthread_sig_cancel, new_thread);
#endif /* !NEED_SEPARATE_REGISTER_STACK */
}
/* Check if cloning succeeded */
if (pid == -1) {
/* Free the stack if we allocated it */
if (attr == NULL || !attr->__stackaddr_set)
{
#ifdef NEED_SEPARATE_REGISTER_STACK
size_t stacksize = ((char *)(new_thread->p_guardaddr)
- new_thread_bottom);
munmap((caddr_t)new_thread_bottom, stacksize);
munmap((caddr_t)new_thread_bottom + stacksize
+ new_thread->p_guardsize, stacksize);
#else
if (new_thread->p_guardsize != 0)
munmap(new_thread->p_guardaddr, new_thread->p_guardsize);
munmap((caddr_t)((char *)(new_thread+1) - INITIAL_STACK_SIZE),
INITIAL_STACK_SIZE);
#endif
}
__pthread_handles[sseg].h_descr = NULL;
__pthread_handles[sseg].h_bottom = NULL;
__pthread_handles_num--;
return errno;
}
/* Insert new thread in doubly linked list of active threads */
new_thread->p_prevlive = __pthread_main_thread;
new_thread->p_nextlive = __pthread_main_thread->p_nextlive;
__pthread_main_thread->p_nextlive->p_prevlive = new_thread;
__pthread_main_thread->p_nextlive = new_thread;
/* Set pid field of the new thread, in case we get there before the
child starts. */
new_thread->p_pid = pid;
return 0;
}
/* Try to free the resources of a thread when requested by pthread_join
or pthread_detach on a terminated thread. */
static void pthread_free(pthread_descr th)
{
pthread_handle handle;
pthread_readlock_info *iter, *next;
ASSERT(th->p_exited);
/* Make the handle invalid */
handle = thread_handle(th->p_tid);
__pthread_lock(&handle->h_lock, NULL);
handle->h_descr = NULL;
handle->h_bottom = (char *)(-1L);
__pthread_unlock(&handle->h_lock);
#ifdef FREE_THREAD
FREE_THREAD(th, th->p_nr);
#endif
/* One fewer threads in __pthread_handles */
__pthread_handles_num--;
/* Destroy read lock list, and list of free read lock structures.
If the former is not empty, it means the thread exited while
holding read locks! */
for (iter = th->p_readlock_list; iter != NULL; iter = next)
{
next = iter->pr_next;
free(iter);
}
for (iter = th->p_readlock_free; iter != NULL; iter = next)
{
next = iter->pr_next;
free(iter);
}
/* If initial thread, nothing to free */
if (th == &__pthread_initial_thread) return;
if (!th->p_userstack)
{
size_t guardsize = th->p_guardsize;
/* Free the stack and thread descriptor area */
#ifdef NEED_SEPARATE_REGISTER_STACK
char *guardaddr = th->p_guardaddr;
/* We unmap exactly what we mapped, in case there was something
else in the same region. Guardaddr is always set, eve if
guardsize is 0. This allows us to compute everything else. */
size_t stacksize = (char *)(th+1) - guardaddr - guardsize;
/* Unmap the register stack, which is below guardaddr. */
munmap((caddr_t)(guardaddr-stacksize), stacksize);
/* Unmap the main stack. */
munmap((caddr_t)(guardaddr+guardsize), stacksize);
#else
/* The following assumes that we only allocate stacks of one
size. That's currently true but probably shouldn't be. This
looks like it fails for growing stacks if there was something
else mapped just below the stack? */
if (guardsize != 0)
munmap(th->p_guardaddr, guardsize);
munmap((caddr_t) ((char *)(th+1) - STACK_SIZE), STACK_SIZE);
#endif
}
}
/* Handle threads that have exited */
static void pthread_exited(pid_t pid)
{
pthread_descr th;
int detached;
/* Find thread with that pid */
for (th = __pthread_main_thread->p_nextlive;
th != __pthread_main_thread;
th = th->p_nextlive) {
if (th->p_pid == pid) {
/* Remove thread from list of active threads */
th->p_nextlive->p_prevlive = th->p_prevlive;
th->p_prevlive->p_nextlive = th->p_nextlive;
/* Mark thread as exited, and if detached, free its resources */
__pthread_lock(th->p_lock, NULL);
th->p_exited = 1;
/* If we have to signal this event do it now. */
if (th->p_report_events)
{
/* See whether TD_DEATH is in any of the mask. */
int idx = __td_eventword (TD_REAP);
uint32_t mask = __td_eventmask (TD_REAP);
if ((mask & (__pthread_threads_events.event_bits[idx]
| th->p_eventbuf.eventmask.event_bits[idx])) != 0)
{
/* Yep, we have to signal the death. */
th->p_eventbuf.eventnum = TD_DEATH;
th->p_eventbuf.eventdata = th;
__pthread_last_event = th;
/* Now call the function to signal the event. */
__linuxthreads_reap_event();
}
}
detached = th->p_detached;
__pthread_unlock(th->p_lock);
if (detached)
pthread_free(th);
break;
}
}
/* If all threads have exited and the main thread is pending on a
pthread_exit, wake up the main thread and terminate ourselves. */
if (main_thread_exiting &&
__pthread_main_thread->p_nextlive == __pthread_main_thread) {
restart(__pthread_main_thread);
/* Same logic as REQ_MAIN_THREAD_EXIT. */
}
}
static void pthread_reap_children(void)
{
pid_t pid;
int status;
while ((pid = __libc_waitpid(-1, &status, WNOHANG | __WCLONE)) > 0) {
pthread_exited(pid);
if (WIFSIGNALED(status)) {
/* If a thread died due to a signal, send the same signal to
all other threads, including the main thread. */
pthread_kill_all_threads(WTERMSIG(status), 1);
_exit(0);
}
}
}
/* Try to free the resources of a thread when requested by pthread_join
or pthread_detach on a terminated thread. */
static void pthread_handle_free(pthread_t th_id)
{
pthread_handle handle = thread_handle(th_id);
pthread_descr th;
__pthread_lock(&handle->h_lock, NULL);
if (nonexisting_handle(handle, th_id)) {
/* pthread_reap_children has deallocated the thread already,
nothing needs to be done */
__pthread_unlock(&handle->h_lock);
return;
}
th = handle->h_descr;
if (th->p_exited) {
__pthread_unlock(&handle->h_lock);
pthread_free(th);
} else {
/* The Unix process of the thread is still running.
Mark the thread as detached so that the thread manager will
deallocate its resources when the Unix process exits. */
th->p_detached = 1;
__pthread_unlock(&handle->h_lock);
}
}
/* Send a signal to all running threads */
static void pthread_kill_all_threads(int sig, int main_thread_also)
{
pthread_descr th;
for (th = __pthread_main_thread->p_nextlive;
th != __pthread_main_thread;
th = th->p_nextlive) {
kill(th->p_pid, sig);
}
if (main_thread_also) {
kill(__pthread_main_thread->p_pid, sig);
}
}
/* Process-wide exit() */
static void pthread_handle_exit(pthread_descr issuing_thread, int exitcode)
{
pthread_descr th;
__pthread_exit_requested = 1;
__pthread_exit_code = exitcode;
/* Send the CANCEL signal to all running threads, including the main
thread, but excluding the thread from which the exit request originated
(that thread must complete the exit, e.g. calling atexit functions
and flushing stdio buffers). */
for (th = issuing_thread->p_nextlive;
th != issuing_thread;
th = th->p_nextlive) {
kill(th->p_pid, __pthread_sig_cancel);
}
/* Now, wait for all these threads, so that they don't become zombies
and their times are properly added to the thread manager's times. */
for (th = issuing_thread->p_nextlive;
th != issuing_thread;
th = th->p_nextlive) {
waitpid(th->p_pid, NULL, __WCLONE);
}
restart(issuing_thread);
_exit(0);
}
/* Handler for __pthread_sig_cancel in thread manager thread */
void __pthread_manager_sighandler(int sig)
{
int kick_manager = terminated_children == 0 && main_thread_exiting;
terminated_children = 1;
/* If the main thread is terminating, kick the thread manager loop
each time some threads terminate. This eliminates a two second
shutdown delay caused by the thread manager sleeping in the
call to __poll(). Instead, the thread manager is kicked into
action, reaps the outstanding threads and resumes the main thread
so that it can complete the shutdown. */
if (kick_manager) {
struct pthread_request request;
request.req_thread = 0;
request.req_kind = REQ_KICK;
__libc_write(__pthread_manager_request, (char *) &request, sizeof(request));
}
}
/* Adjust priority of thread manager so that it always run at a priority
higher than all threads */
void __pthread_manager_adjust_prio(int thread_prio)
{
struct sched_param param;
if (thread_prio <= __pthread_manager_thread.p_priority) return;
param.sched_priority =
thread_prio < __sched_get_priority_max(SCHED_FIFO)
? thread_prio + 1 : thread_prio;
__sched_setscheduler(__pthread_manager_thread.p_pid, SCHED_FIFO, &param);
__pthread_manager_thread.p_priority = thread_prio;
}