glibc/sysdeps/ieee754/ldbl-128ibm/s_expm1l.c
Alan Modra 765714cafc PowerPC floating point little-endian [3 of 15]
http://sourceware.org/ml/libc-alpha/2013-08/msg00083.html

Further replacement of ieee854 macros and unions.  These files also
have some optimisations for comparison against 0.0L, infinity and nan.
Since the ABI specifies that the high double of an IBM long double
pair is the value rounded to double, a high double of 0.0 means the
low double must also be 0.0.  The ABI also says that infinity and
nan are encoded in the high double, with the low double unspecified.
This means that tests for 0.0L, +/-Infinity and +/-NaN need only check
the high double.

	* sysdeps/ieee754/ldbl-128ibm/e_atan2l.c (__ieee754_atan2l): Rewrite
	all uses of ieee854 long double macros and unions.  Simplify tests
	for long doubles that are fully specified by the high double.
	* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (__ieee754_gammal_r):
	Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_ilogbl.c (__ieee754_ilogbl): Likewise.
	Remove dead code too.
	* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
	(__ieee754_ynl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_log10l.c (__ieee754_log10l): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_logl.c (__ieee754_logl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Likewise.
	Remove dead code too.
	* sysdeps/ieee754/ldbl-128ibm/k_tanl.c (__kernel_tanl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_expm1l.c (__expm1l): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_frexpl.c (__frexpl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_isinf_nsl.c (__isinf_nsl): Likewise.
	Simplify.
	* sysdeps/ieee754/ldbl-128ibm/s_isinfl.c (___isinfl): Likewise.
	Simplify.
	* sysdeps/ieee754/ldbl-128ibm/s_log1pl.c (__log1pl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_modfl.c (__modfl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c (__nextafterl): Likewise.
	Comment on variable precision.
	* sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c (__nexttoward): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c (__nexttowardf):
	Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_remquol.c (__remquol): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_scalblnl.c (__scalblnl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_scalbnl.c (__scalbnl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_tanhl.c (__tanhl): Likewise.
	* sysdeps/powerpc/fpu/libm-test-ulps: Adjust tan_towardzero ulps.
2013-10-04 10:32:36 +09:30

165 lines
4.3 KiB
C

/* expm1l.c
*
* Exponential function, minus 1
* 128-bit long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, expm1l();
*
* y = expm1l( x );
*
*
*
* DESCRIPTION:
*
* Returns e (2.71828...) raised to the x power, minus one.
*
* Range reduction is accomplished by separating the argument
* into an integer k and fraction f such that
*
* x k f
* e = 2 e.
*
* An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
* in the basic range [-0.5 ln 2, 0.5 ln 2].
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE -79,+MAXLOG 100,000 1.7e-34 4.5e-35
*
*/
/* Copyright 2001 by Stephen L. Moshier
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/>. */
#include <errno.h>
#include <math.h>
#include <math_private.h>
#include <math_ldbl_opt.h>
/* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
-.5 ln 2 < x < .5 ln 2
Theoretical peak relative error = 8.1e-36 */
static const long double
P0 = 2.943520915569954073888921213330863757240E8L,
P1 = -5.722847283900608941516165725053359168840E7L,
P2 = 8.944630806357575461578107295909719817253E6L,
P3 = -7.212432713558031519943281748462837065308E5L,
P4 = 4.578962475841642634225390068461943438441E4L,
P5 = -1.716772506388927649032068540558788106762E3L,
P6 = 4.401308817383362136048032038528753151144E1L,
P7 = -4.888737542888633647784737721812546636240E-1L,
Q0 = 1.766112549341972444333352727998584753865E9L,
Q1 = -7.848989743695296475743081255027098295771E8L,
Q2 = 1.615869009634292424463780387327037251069E8L,
Q3 = -2.019684072836541751428967854947019415698E7L,
Q4 = 1.682912729190313538934190635536631941751E6L,
Q5 = -9.615511549171441430850103489315371768998E4L,
Q6 = 3.697714952261803935521187272204485251835E3L,
Q7 = -8.802340681794263968892934703309274564037E1L,
/* Q8 = 1.000000000000000000000000000000000000000E0 */
/* C1 + C2 = ln 2 */
C1 = 6.93145751953125E-1L,
C2 = 1.428606820309417232121458176568075500134E-6L,
/* ln (2^16384 * (1 - 2^-113)) */
maxlog = 1.1356523406294143949491931077970764891253E4L,
/* ln 2^-114 */
minarg = -7.9018778583833765273564461846232128760607E1L, big = 1e290L;
long double
__expm1l (long double x)
{
long double px, qx, xx;
int32_t ix, lx, sign;
int k;
double xhi;
/* Detect infinity and NaN. */
xhi = ldbl_high (x);
EXTRACT_WORDS (ix, lx, xhi);
sign = ix & 0x80000000;
ix &= 0x7fffffff;
if (ix >= 0x7ff00000)
{
/* Infinity. */
if (((ix - 0x7ff00000) | lx) == 0)
{
if (sign)
return -1.0L;
else
return x;
}
/* NaN. No invalid exception. */
return x;
}
/* expm1(+- 0) = +- 0. */
if ((ix | lx) == 0)
return x;
/* Overflow. */
if (x > maxlog)
{
__set_errno (ERANGE);
return (big * big);
}
/* Minimum value. */
if (x < minarg)
return (4.0/big - 1.0L);
/* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
xx = C1 + C2; /* ln 2. */
px = __floorl (0.5 + x / xx);
k = px;
/* remainder times ln 2 */
x -= px * C1;
x -= px * C2;
/* Approximate exp(remainder ln 2). */
px = (((((((P7 * x
+ P6) * x
+ P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x;
qx = (((((((x
+ Q7) * x
+ Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
xx = x * x;
qx = x + (0.5 * xx + xx * px / qx);
/* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
We have qx = exp(remainder ln 2) - 1, so
exp(x) - 1 = 2^k (qx + 1) - 1
= 2^k qx + 2^k - 1. */
px = __ldexpl (1.0L, k);
x = px * qx + (px - 1.0);
return x;
}
libm_hidden_def (__expm1l)
long_double_symbol (libm, __expm1l, expm1l);