glibc/nscd/grpcache.c
Roland McGrath 0b20008e04 2005-11-18 Paul Brook <paul@codesourcery.com>
* nscd/grpcache.c: Include <sys/socket.h>.
	* nscd/nscd_stat.c: Likewise.
	* nscd/pwdcache.c: Likewise.
	* sysdeps/unix/sysv/linux/unlinkat.c: Include <stdlib.h>, <sysdep.h>.
2005-11-18 22:42:21 +00:00

539 lines
15 KiB
C

/* Cache handling for group lookup.
Copyright (C) 1998-2002, 2003, 2004, 2005 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1998.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
#include <alloca.h>
#include <assert.h>
#include <errno.h>
#include <error.h>
#include <grp.h>
#include <libintl.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/socket.h>
#include <stackinfo.h>
#include "nscd.h"
#include "dbg_log.h"
/* This is the standard reply in case the service is disabled. */
static const gr_response_header disabled =
{
.version = NSCD_VERSION,
.found = -1,
.gr_name_len = 0,
.gr_passwd_len = 0,
.gr_gid = -1,
.gr_mem_cnt = 0,
};
/* This is the struct describing how to write this record. */
const struct iovec grp_iov_disabled =
{
.iov_base = (void *) &disabled,
.iov_len = sizeof (disabled)
};
/* This is the standard reply in case we haven't found the dataset. */
static const gr_response_header notfound =
{
.version = NSCD_VERSION,
.found = 0,
.gr_name_len = 0,
.gr_passwd_len = 0,
.gr_gid = -1,
.gr_mem_cnt = 0,
};
static void
cache_addgr (struct database_dyn *db, int fd, request_header *req,
const void *key, struct group *grp, uid_t owner,
struct hashentry *he, struct datahead *dh, int errval)
{
ssize_t total;
ssize_t written;
time_t t = time (NULL);
/* We allocate all data in one memory block: the iov vector,
the response header and the dataset itself. */
struct dataset
{
struct datahead head;
gr_response_header resp;
char strdata[0];
} *dataset;
assert (offsetof (struct dataset, resp) == offsetof (struct datahead, data));
if (grp == NULL)
{
if (he != NULL && errval == EAGAIN)
{
/* If we have an old record available but cannot find one
now because the service is not available we keep the old
record and make sure it does not get removed. */
if (reload_count != UINT_MAX)
/* Do not reset the value if we never not reload the record. */
dh->nreloads = reload_count - 1;
written = total = 0;
}
else
{
/* We have no data. This means we send the standard reply for this
case. */
total = sizeof (notfound);
written = TEMP_FAILURE_RETRY (send (fd, &notfound, total,
MSG_NOSIGNAL));
dataset = mempool_alloc (db, sizeof (struct dataset) + req->key_len);
/* If we cannot permanently store the result, so be it. */
if (dataset != NULL)
{
dataset->head.allocsize = sizeof (struct dataset) + req->key_len;
dataset->head.recsize = total;
dataset->head.notfound = true;
dataset->head.nreloads = 0;
dataset->head.usable = true;
/* Compute the timeout time. */
dataset->head.timeout = t + db->negtimeout;
/* This is the reply. */
memcpy (&dataset->resp, &notfound, total);
/* Copy the key data. */
memcpy (dataset->strdata, key, req->key_len);
/* If necessary, we also propagate the data to disk. */
if (db->persistent)
{
// XXX async OK?
uintptr_t pval = (uintptr_t) dataset & ~pagesize_m1;
msync ((void *) pval,
((uintptr_t) dataset & pagesize_m1)
+ sizeof (struct dataset) + req->key_len, MS_ASYNC);
}
/* Now get the lock to safely insert the records. */
pthread_rwlock_rdlock (&db->lock);
if (cache_add (req->type, &dataset->strdata, req->key_len,
&dataset->head, true, db, owner) < 0)
/* Ensure the data can be recovered. */
dataset->head.usable = false;
pthread_rwlock_unlock (&db->lock);
/* Mark the old entry as obsolete. */
if (dh != NULL)
dh->usable = false;
}
else
++db->head->addfailed;
}
}
else
{
/* Determine the I/O structure. */
size_t gr_name_len = strlen (grp->gr_name) + 1;
size_t gr_passwd_len = strlen (grp->gr_passwd) + 1;
size_t gr_mem_cnt = 0;
uint32_t *gr_mem_len;
size_t gr_mem_len_total = 0;
char *gr_name;
char *cp;
const size_t key_len = strlen (key);
const size_t buf_len = 3 * sizeof (grp->gr_gid) + key_len + 1;
char *buf = alloca (buf_len);
ssize_t n;
size_t cnt;
/* We need this to insert the `bygid' entry. */
int key_offset;
n = snprintf (buf, buf_len, "%d%c%n%s", grp->gr_gid, '\0',
&key_offset, (char *) key) + 1;
/* Determine the length of all members. */
while (grp->gr_mem[gr_mem_cnt])
++gr_mem_cnt;
gr_mem_len = (uint32_t *) alloca (gr_mem_cnt * sizeof (uint32_t));
for (gr_mem_cnt = 0; grp->gr_mem[gr_mem_cnt]; ++gr_mem_cnt)
{
gr_mem_len[gr_mem_cnt] = strlen (grp->gr_mem[gr_mem_cnt]) + 1;
gr_mem_len_total += gr_mem_len[gr_mem_cnt];
}
written = total = (sizeof (struct dataset)
+ gr_mem_cnt * sizeof (uint32_t)
+ gr_name_len + gr_passwd_len + gr_mem_len_total);
/* If we refill the cache, first assume the reconrd did not
change. Allocate memory on the cache since it is likely
discarded anyway. If it turns out to be necessary to have a
new record we can still allocate real memory. */
bool alloca_used = false;
dataset = NULL;
if (he == NULL)
{
dataset = (struct dataset *) mempool_alloc (db, total + n);
if (dataset == NULL)
++db->head->addfailed;
}
if (dataset == NULL)
{
/* We cannot permanently add the result in the moment. But
we can provide the result as is. Store the data in some
temporary memory. */
dataset = (struct dataset *) alloca (total + n);
/* We cannot add this record to the permanent database. */
alloca_used = true;
}
dataset->head.allocsize = total + n;
dataset->head.recsize = total - offsetof (struct dataset, resp);
dataset->head.notfound = false;
dataset->head.nreloads = he == NULL ? 0 : (dh->nreloads + 1);
dataset->head.usable = true;
/* Compute the timeout time. */
dataset->head.timeout = t + db->postimeout;
dataset->resp.version = NSCD_VERSION;
dataset->resp.found = 1;
dataset->resp.gr_name_len = gr_name_len;
dataset->resp.gr_passwd_len = gr_passwd_len;
dataset->resp.gr_gid = grp->gr_gid;
dataset->resp.gr_mem_cnt = gr_mem_cnt;
cp = dataset->strdata;
/* This is the member string length array. */
cp = mempcpy (cp, gr_mem_len, gr_mem_cnt * sizeof (uint32_t));
gr_name = cp;
cp = mempcpy (cp, grp->gr_name, gr_name_len);
cp = mempcpy (cp, grp->gr_passwd, gr_passwd_len);
for (cnt = 0; cnt < gr_mem_cnt; ++cnt)
cp = mempcpy (cp, grp->gr_mem[cnt], gr_mem_len[cnt]);
/* Finally the stringified GID value. */
memcpy (cp, buf, n);
char *key_copy = cp + key_offset;
assert (key_copy == (char *) rawmemchr (cp, '\0') + 1);
/* Now we can determine whether on refill we have to create a new
record or not. */
if (he != NULL)
{
assert (fd == -1);
if (total + n == dh->allocsize
&& total - offsetof (struct dataset, resp) == dh->recsize
&& memcmp (&dataset->resp, dh->data,
dh->allocsize - offsetof (struct dataset, resp)) == 0)
{
/* The data has not changed. We will just bump the
timeout value. Note that the new record has been
allocated on the stack and need not be freed. */
dh->timeout = dataset->head.timeout;
++dh->nreloads;
}
else
{
/* We have to create a new record. Just allocate
appropriate memory and copy it. */
struct dataset *newp
= (struct dataset *) mempool_alloc (db, total + n);
if (newp != NULL)
{
/* Adjust pointers into the memory block. */
gr_name = (char *) newp + (gr_name - (char *) dataset);
cp = (char *) newp + (cp - (char *) dataset);
dataset = memcpy (newp, dataset, total + n);
alloca_used = false;
}
/* Mark the old record as obsolete. */
dh->usable = false;
}
}
else
{
/* We write the dataset before inserting it to the database
since while inserting this thread might block and so would
unnecessarily let the receiver wait. */
assert (fd != -1);
written = writeall (fd, &dataset->resp, total);
}
/* Add the record to the database. But only if it has not been
stored on the stack. */
if (! alloca_used)
{
/* If necessary, we also propagate the data to disk. */
if (db->persistent)
{
// XXX async OK?
uintptr_t pval = (uintptr_t) dataset & ~pagesize_m1;
msync ((void *) pval,
((uintptr_t) dataset & pagesize_m1) + total + n,
MS_ASYNC);
}
/* Now get the lock to safely insert the records. */
pthread_rwlock_rdlock (&db->lock);
/* NB: in the following code we always must add the entry
marked with FIRST first. Otherwise we end up with
dangling "pointers" in case a latter hash entry cannot be
added. */
bool first = req->type == GETGRBYNAME;
/* If the request was by GID, add that entry first. */
if (req->type != GETGRBYNAME)
{
if (cache_add (GETGRBYGID, cp, key_offset, &dataset->head, true,
db, owner) < 0)
{
/* Could not allocate memory. Make sure the data gets
discarded. */
dataset->head.usable = false;
goto out;
}
}
/* If the key is different from the name add a separate entry. */
else if (strcmp (key_copy, gr_name) != 0)
{
if (cache_add (GETGRBYNAME, key_copy, key_len + 1,
&dataset->head, first, db, owner) < 0)
{
/* Could not allocate memory. Make sure the data gets
discarded. */
dataset->head.usable = false;
goto out;
}
first = false;
}
/* We have to add the value for both, byname and byuid. */
if (__builtin_expect (cache_add (GETGRBYNAME, gr_name, gr_name_len,
&dataset->head, first, db, owner)
== 0, 1))
{
if (req->type == GETGRBYNAME)
(void) cache_add (GETGRBYGID, cp, key_offset, &dataset->head,
req->type != GETGRBYNAME, db, owner);
}
else if (first)
/* Could not allocate memory. Make sure the data gets
discarded. */
dataset->head.usable = false;
out:
pthread_rwlock_unlock (&db->lock);
}
}
if (__builtin_expect (written != total, 0) && debug_level > 0)
{
char buf[256];
dbg_log (_("short write in %s: %s"), __FUNCTION__,
strerror_r (errno, buf, sizeof (buf)));
}
}
union keytype
{
void *v;
gid_t g;
};
static int
lookup (int type, union keytype key, struct group *resultbufp, char *buffer,
size_t buflen, struct group **grp)
{
if (type == GETGRBYNAME)
return __getgrnam_r (key.v, resultbufp, buffer, buflen, grp);
else
return __getgrgid_r (key.g, resultbufp, buffer, buflen, grp);
}
static void
addgrbyX (struct database_dyn *db, int fd, request_header *req,
union keytype key, const char *keystr, uid_t uid,
struct hashentry *he, struct datahead *dh)
{
/* Search for the entry matching the key. Please note that we don't
look again in the table whether the dataset is now available. We
simply insert it. It does not matter if it is in there twice. The
pruning function only will look at the timestamp. */
size_t buflen = 1024;
char *buffer = (char *) alloca (buflen);
struct group resultbuf;
struct group *grp;
bool use_malloc = false;
int errval = 0;
if (__builtin_expect (debug_level > 0, 0))
{
if (he == NULL)
dbg_log (_("Haven't found \"%s\" in group cache!"), keystr);
else
dbg_log (_("Reloading \"%s\" in group cache!"), keystr);
}
#if 0
uid_t oldeuid = 0;
if (db->secure)
{
oldeuid = geteuid ();
pthread_seteuid_np (uid);
}
#endif
while (lookup (req->type, key, &resultbuf, buffer, buflen, &grp) != 0
&& (errval = errno) == ERANGE)
{
char *old_buffer = buffer;
errno = 0;
if (__builtin_expect (buflen > 32768, 0))
{
buflen *= 2;
buffer = (char *) realloc (use_malloc ? buffer : NULL, buflen);
if (buffer == NULL)
{
/* We ran out of memory. We cannot do anything but
sending a negative response. In reality this should
never happen. */
grp = NULL;
buffer = old_buffer;
/* We set the error to indicate this is (possibly) a
temporary error and that it does not mean the entry
is not available at all. */
errval = EAGAIN;
break;
}
use_malloc = true;
}
else
/* Allocate a new buffer on the stack. If possible combine it
with the previously allocated buffer. */
buffer = (char *) extend_alloca (buffer, buflen, 2 * buflen);
}
#if 0
if (db->secure)
pthread_seteuid_np (oldeuid);
#endif
cache_addgr (db, fd, req, keystr, grp, uid, he, dh, errval);
if (use_malloc)
free (buffer);
}
void
addgrbyname (struct database_dyn *db, int fd, request_header *req,
void *key, uid_t uid)
{
union keytype u = { .v = key };
addgrbyX (db, fd, req, u, key, uid, NULL, NULL);
}
void
readdgrbyname (struct database_dyn *db, struct hashentry *he,
struct datahead *dh)
{
request_header req =
{
.type = GETGRBYNAME,
.key_len = he->len
};
union keytype u = { .v = db->data + he->key };
addgrbyX (db, -1, &req, u, db->data + he->key, he->owner, he, dh);
}
void
addgrbygid (struct database_dyn *db, int fd, request_header *req,
void *key, uid_t uid)
{
char *ep;
gid_t gid = strtoul ((char *) key, &ep, 10);
if (*(char *) key == '\0' || *ep != '\0') /* invalid numeric uid */
{
if (debug_level > 0)
dbg_log (_("Invalid numeric gid \"%s\"!"), (char *) key);
errno = EINVAL;
return;
}
union keytype u = { .g = gid };
addgrbyX (db, fd, req, u, key, uid, NULL, NULL);
}
void
readdgrbygid (struct database_dyn *db, struct hashentry *he,
struct datahead *dh)
{
char *ep;
gid_t gid = strtoul (db->data + he->key, &ep, 10);
/* Since the key has been added before it must be OK. */
assert (*(db->data + he->key) != '\0' && *ep == '\0');
request_header req =
{
.type = GETGRBYGID,
.key_len = he->len
};
union keytype u = { .g = gid };
addgrbyX (db, -1, &req, u, db->data + he->key, he->owner, he, dh);
}