mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-19 07:00:08 +00:00
0aac205a81
Compiler generates the following instruction sequence for GNU2 dynamic TLS access: leaq tls_var@TLSDESC(%rip), %rax call *tls_var@TLSCALL(%rax) or leal tls_var@TLSDESC(%ebx), %eax call *tls_var@TLSCALL(%eax) CALL instruction is transparent to compiler which assumes all registers, except for EFLAGS and RAX/EAX, are unchanged after CALL. When _dl_tlsdesc_dynamic is called, it calls __tls_get_addr on the slow path. __tls_get_addr is a normal function which doesn't preserve any caller-saved registers. _dl_tlsdesc_dynamic saved and restored integer caller-saved registers, but didn't preserve any other caller-saved registers. Add _dl_tlsdesc_dynamic IFUNC functions for FNSAVE, FXSAVE, XSAVE and XSAVEC to save and restore all caller-saved registers. This fixes BZ #31372. Add GLRO(dl_x86_64_runtime_resolve) with GLRO(dl_x86_tlsdesc_dynamic) to optimize elf_machine_runtime_setup. Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
757 lines
24 KiB
C
757 lines
24 KiB
C
/* Machine-dependent ELF dynamic relocation inline functions. x86-64 version.
|
|
Copyright (C) 2001-2024 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef dl_machine_h
|
|
#define dl_machine_h
|
|
|
|
#define ELF_MACHINE_NAME "x86_64"
|
|
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
#include <sys/param.h>
|
|
#include <sysdep.h>
|
|
#include <tls.h>
|
|
#include <dl-tlsdesc.h>
|
|
#include <dl-static-tls.h>
|
|
#include <dl-machine-rel.h>
|
|
#include <isa-level.h>
|
|
#ifdef __CET__
|
|
# include <dl-cet.h>
|
|
#else
|
|
# define RTLD_START_ENABLE_X86_FEATURES
|
|
#endif
|
|
|
|
/* Translate a processor specific dynamic tag to the index in l_info array. */
|
|
#define DT_X86_64(x) (DT_X86_64_##x - DT_LOPROC + DT_NUM)
|
|
|
|
/* Return nonzero iff ELF header is compatible with the running host. */
|
|
static inline int __attribute__ ((unused))
|
|
elf_machine_matches_host (const ElfW(Ehdr) *ehdr)
|
|
{
|
|
return ehdr->e_machine == EM_X86_64;
|
|
}
|
|
|
|
|
|
/* Return the run-time load address of the shared object. */
|
|
static inline ElfW(Addr) __attribute__ ((unused))
|
|
elf_machine_load_address (void)
|
|
{
|
|
extern const ElfW(Ehdr) __ehdr_start attribute_hidden;
|
|
return (ElfW(Addr)) &__ehdr_start;
|
|
}
|
|
|
|
/* Return the link-time address of _DYNAMIC. */
|
|
static inline ElfW(Addr) __attribute__ ((unused))
|
|
elf_machine_dynamic (void)
|
|
{
|
|
extern ElfW(Dyn) _DYNAMIC[] attribute_hidden;
|
|
return (ElfW(Addr)) _DYNAMIC - elf_machine_load_address ();
|
|
}
|
|
|
|
/* Set up the loaded object described by L so its unrelocated PLT
|
|
entries will jump to the on-demand fixup code in dl-runtime.c. */
|
|
|
|
static inline int __attribute__ ((unused, always_inline))
|
|
elf_machine_runtime_setup (struct link_map *l, struct r_scope_elem *scope[],
|
|
int lazy, int profile)
|
|
{
|
|
Elf64_Addr *got;
|
|
extern void _dl_runtime_profile_sse (ElfW(Word)) attribute_hidden;
|
|
extern void _dl_runtime_profile_avx (ElfW(Word)) attribute_hidden;
|
|
extern void _dl_runtime_profile_avx512 (ElfW(Word)) attribute_hidden;
|
|
|
|
if (l->l_info[DT_JMPREL] && lazy)
|
|
{
|
|
/* The GOT entries for functions in the PLT have not yet been filled
|
|
in. Their initial contents will arrange when called to push an
|
|
offset into the .rel.plt section, push _GLOBAL_OFFSET_TABLE_[1],
|
|
and then jump to _GLOBAL_OFFSET_TABLE_[2]. */
|
|
got = (Elf64_Addr *) D_PTR (l, l_info[DT_PLTGOT]);
|
|
/* If a library is prelinked but we have to relocate anyway,
|
|
we have to be able to undo the prelinking of .got.plt.
|
|
The prelinker saved us here address of .plt + 0x16. */
|
|
if (got[1])
|
|
{
|
|
l->l_mach.plt = got[1] + l->l_addr;
|
|
l->l_mach.gotplt = (ElfW(Addr)) &got[3];
|
|
}
|
|
/* Identify this shared object. */
|
|
*(ElfW(Addr) *) (got + 1) = (ElfW(Addr)) l;
|
|
|
|
#ifdef SHARED
|
|
/* The got[2] entry contains the address of a function which gets
|
|
called to get the address of a so far unresolved function and
|
|
jump to it. The profiling extension of the dynamic linker allows
|
|
to intercept the calls to collect information. In this case we
|
|
don't store the address in the GOT so that all future calls also
|
|
end in this function. */
|
|
if (__glibc_unlikely (profile))
|
|
{
|
|
const struct cpu_features* cpu_features = __get_cpu_features ();
|
|
if (X86_ISA_CPU_FEATURE_USABLE_P (cpu_features, AVX512F))
|
|
*(ElfW(Addr) *) (got + 2) = (ElfW(Addr)) &_dl_runtime_profile_avx512;
|
|
else if (X86_ISA_CPU_FEATURE_USABLE_P (cpu_features, AVX))
|
|
*(ElfW(Addr) *) (got + 2) = (ElfW(Addr)) &_dl_runtime_profile_avx;
|
|
else
|
|
*(ElfW(Addr) *) (got + 2) = (ElfW(Addr)) &_dl_runtime_profile_sse;
|
|
|
|
if (GLRO(dl_profile) != NULL
|
|
&& _dl_name_match_p (GLRO(dl_profile), l))
|
|
/* This is the object we are looking for. Say that we really
|
|
want profiling and the timers are started. */
|
|
GL(dl_profile_map) = l;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
/* This function will get called to fix up the GOT entry
|
|
indicated by the offset on the stack, and then jump to
|
|
the resolved address. */
|
|
*(ElfW(Addr) *) (got + 2)
|
|
= (ElfW(Addr)) GLRO(dl_x86_64_runtime_resolve);
|
|
}
|
|
}
|
|
|
|
return lazy;
|
|
}
|
|
|
|
/* Initial entry point code for the dynamic linker.
|
|
The C function `_dl_start' is the real entry point;
|
|
its return value is the user program's entry point. */
|
|
#define RTLD_START asm ("\n\
|
|
.text\n\
|
|
.align 16\n\
|
|
.globl _start\n\
|
|
.globl _dl_start_user\n\
|
|
_start:\n\
|
|
movq %rsp, %rdi\n\
|
|
call _dl_start\n\
|
|
_dl_start_user:\n\
|
|
# Save the user entry point address in %r12.\n\
|
|
movq %rax, %r12\n\
|
|
# Save %rsp value in %r13.\n\
|
|
movq %rsp, %r13\n\
|
|
"\
|
|
RTLD_START_ENABLE_X86_FEATURES \
|
|
"\
|
|
# Read the original argument count.\n\
|
|
movq (%rsp), %rdx\n\
|
|
# Call _dl_init (struct link_map *main_map, int argc, char **argv, char **env)\n\
|
|
# argc -> rsi\n\
|
|
movq %rdx, %rsi\n\
|
|
# And align stack for the _dl_init call. \n\
|
|
andq $-16, %rsp\n\
|
|
# _dl_loaded -> rdi\n\
|
|
movq _rtld_local(%rip), %rdi\n\
|
|
# env -> rcx\n\
|
|
leaq 16(%r13,%rdx,8), %rcx\n\
|
|
# argv -> rdx\n\
|
|
leaq 8(%r13), %rdx\n\
|
|
# Clear %rbp to mark outermost frame obviously even for constructors.\n\
|
|
xorl %ebp, %ebp\n\
|
|
# Call the function to run the initializers.\n\
|
|
call _dl_init\n\
|
|
# Pass our finalizer function to the user in %rdx, as per ELF ABI.\n\
|
|
leaq _dl_fini(%rip), %rdx\n\
|
|
# And make sure %rsp points to argc stored on the stack.\n\
|
|
movq %r13, %rsp\n\
|
|
# Jump to the user's entry point.\n\
|
|
jmp *%r12\n\
|
|
.previous\n\
|
|
");
|
|
|
|
/* ELF_RTYPE_CLASS_PLT iff TYPE describes relocation of a PLT entry or
|
|
TLS variable, so undefined references should not be allowed to
|
|
define the value.
|
|
ELF_RTYPE_CLASS_COPY iff TYPE should not be allowed to resolve to one
|
|
of the main executable's symbols, as for a COPY reloc. */
|
|
#define elf_machine_type_class(type) \
|
|
((((type) == R_X86_64_JUMP_SLOT \
|
|
|| (type) == R_X86_64_DTPMOD64 \
|
|
|| (type) == R_X86_64_DTPOFF64 \
|
|
|| (type) == R_X86_64_TPOFF64 \
|
|
|| (type) == R_X86_64_TLSDESC) \
|
|
* ELF_RTYPE_CLASS_PLT) \
|
|
| (((type) == R_X86_64_COPY) * ELF_RTYPE_CLASS_COPY))
|
|
|
|
/* A reloc type used for ld.so cmdline arg lookups to reject PLT entries. */
|
|
#define ELF_MACHINE_JMP_SLOT R_X86_64_JUMP_SLOT
|
|
|
|
/* The relative ifunc relocation. */
|
|
// XXX This is a work-around for a broken linker. Remove!
|
|
#define ELF_MACHINE_IRELATIVE R_X86_64_IRELATIVE
|
|
|
|
/* We define an initialization function. This is called very early in
|
|
_dl_sysdep_start. */
|
|
#define DL_PLATFORM_INIT dl_platform_init ()
|
|
|
|
static inline void __attribute__ ((unused))
|
|
dl_platform_init (void)
|
|
{
|
|
#if IS_IN (rtld)
|
|
/* _dl_x86_init_cpu_features is a wrapper for init_cpu_features which
|
|
has been called early from __libc_start_main in static executable. */
|
|
_dl_x86_init_cpu_features ();
|
|
#else
|
|
if (GLRO(dl_platform) != NULL && *GLRO(dl_platform) == '\0')
|
|
/* Avoid an empty string which would disturb us. */
|
|
GLRO(dl_platform) = NULL;
|
|
#endif
|
|
}
|
|
|
|
static inline ElfW(Addr)
|
|
elf_machine_fixup_plt (struct link_map *map, lookup_t t,
|
|
const ElfW(Sym) *refsym, const ElfW(Sym) *sym,
|
|
const ElfW(Rela) *reloc,
|
|
ElfW(Addr) *reloc_addr, ElfW(Addr) value)
|
|
{
|
|
return *reloc_addr = value;
|
|
}
|
|
|
|
/* Return the final value of a PLT relocation. On x86-64 the
|
|
JUMP_SLOT relocation ignores the addend. */
|
|
static inline ElfW(Addr)
|
|
elf_machine_plt_value (struct link_map *map, const ElfW(Rela) *reloc,
|
|
ElfW(Addr) value)
|
|
{
|
|
return value;
|
|
}
|
|
|
|
|
|
/* Names of the architecture-specific auditing callback functions. */
|
|
#define ARCH_LA_PLTENTER x86_64_gnu_pltenter
|
|
#define ARCH_LA_PLTEXIT x86_64_gnu_pltexit
|
|
|
|
#endif /* !dl_machine_h */
|
|
|
|
#ifdef RESOLVE_MAP
|
|
|
|
/* Perform the relocation specified by RELOC and SYM (which is fully resolved).
|
|
MAP is the object containing the reloc. */
|
|
|
|
static inline void __attribute__((always_inline))
|
|
elf_machine_rela(struct link_map *map, struct r_scope_elem *scope[],
|
|
const ElfW(Rela) *reloc, const ElfW(Sym) *sym,
|
|
const struct r_found_version *version,
|
|
void *const reloc_addr_arg, int skip_ifunc) {
|
|
ElfW(Addr) *const reloc_addr = reloc_addr_arg;
|
|
const unsigned long int r_type = ELFW(R_TYPE) (reloc->r_info);
|
|
|
|
# if !defined RTLD_BOOTSTRAP
|
|
if (__glibc_unlikely (r_type == R_X86_64_RELATIVE))
|
|
*reloc_addr = map->l_addr + reloc->r_addend;
|
|
else
|
|
# endif
|
|
# if !defined RTLD_BOOTSTRAP
|
|
/* l_addr + r_addend may be > 0xffffffff and R_X86_64_RELATIVE64
|
|
relocation updates the whole 64-bit entry. */
|
|
if (__glibc_unlikely (r_type == R_X86_64_RELATIVE64))
|
|
*(Elf64_Addr *) reloc_addr = (Elf64_Addr) map->l_addr + reloc->r_addend;
|
|
else
|
|
# endif
|
|
if (__glibc_unlikely (r_type == R_X86_64_NONE))
|
|
return;
|
|
else
|
|
{
|
|
# ifndef RTLD_BOOTSTRAP
|
|
const ElfW(Sym) *const refsym = sym;
|
|
# endif
|
|
struct link_map *sym_map = RESOLVE_MAP (map, scope, &sym, version,
|
|
r_type);
|
|
ElfW(Addr) value = SYMBOL_ADDRESS (sym_map, sym, true);
|
|
|
|
if (sym != NULL
|
|
&& __glibc_unlikely (ELFW(ST_TYPE) (sym->st_info) == STT_GNU_IFUNC)
|
|
&& __glibc_likely (sym->st_shndx != SHN_UNDEF)
|
|
&& __glibc_likely (!skip_ifunc))
|
|
{
|
|
# ifndef RTLD_BOOTSTRAP
|
|
if (sym_map != map
|
|
&& !sym_map->l_relocated)
|
|
{
|
|
const char *strtab
|
|
= (const char *) D_PTR (map, l_info[DT_STRTAB]);
|
|
if (sym_map->l_type == lt_executable)
|
|
_dl_fatal_printf ("\
|
|
%s: IFUNC symbol '%s' referenced in '%s' is defined in the executable \
|
|
and creates an unsatisfiable circular dependency.\n",
|
|
RTLD_PROGNAME, strtab + refsym->st_name,
|
|
map->l_name);
|
|
else
|
|
_dl_error_printf ("\
|
|
%s: Relink `%s' with `%s' for IFUNC symbol `%s'\n",
|
|
RTLD_PROGNAME, map->l_name,
|
|
sym_map->l_name,
|
|
strtab + refsym->st_name);
|
|
}
|
|
# endif
|
|
value = ((ElfW(Addr) (*) (void)) value) ();
|
|
}
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_X86_64_JUMP_SLOT:
|
|
map->l_has_jump_slot_reloc = true;
|
|
/* fallthrough */
|
|
case R_X86_64_GLOB_DAT:
|
|
*reloc_addr = value;
|
|
break;
|
|
|
|
# ifndef RTLD_BOOTSTRAP
|
|
# ifdef __ILP32__
|
|
case R_X86_64_SIZE64:
|
|
/* Set to symbol size plus addend. */
|
|
*(Elf64_Addr *) (uintptr_t) reloc_addr
|
|
= (Elf64_Addr) sym->st_size + reloc->r_addend;
|
|
break;
|
|
|
|
case R_X86_64_SIZE32:
|
|
# else
|
|
case R_X86_64_SIZE64:
|
|
# endif
|
|
/* Set to symbol size plus addend. */
|
|
value = sym->st_size;
|
|
*reloc_addr = value + reloc->r_addend;
|
|
break;
|
|
|
|
case R_X86_64_DTPMOD64:
|
|
/* Get the information from the link map returned by the
|
|
resolve function. */
|
|
if (sym_map != NULL)
|
|
*reloc_addr = sym_map->l_tls_modid;
|
|
break;
|
|
case R_X86_64_DTPOFF64:
|
|
/* During relocation all TLS symbols are defined and used.
|
|
Therefore the offset is already correct. */
|
|
if (sym != NULL)
|
|
{
|
|
value = sym->st_value + reloc->r_addend;
|
|
# ifdef __ILP32__
|
|
/* This relocation type computes a signed offset that is
|
|
usually negative. The symbol and addend values are 32
|
|
bits but the GOT entry is 64 bits wide and the whole
|
|
64-bit entry is used as a signed quantity, so we need
|
|
to sign-extend the computed value to 64 bits. */
|
|
*(Elf64_Sxword *) reloc_addr = (Elf64_Sxword) (Elf32_Sword) value;
|
|
# else
|
|
*reloc_addr = value;
|
|
# endif
|
|
}
|
|
break;
|
|
case R_X86_64_TLSDESC:
|
|
{
|
|
struct tlsdesc volatile *td =
|
|
(struct tlsdesc volatile *)reloc_addr;
|
|
|
|
if (! sym)
|
|
{
|
|
td->arg = (void*)reloc->r_addend;
|
|
td->entry = _dl_tlsdesc_undefweak;
|
|
}
|
|
else
|
|
{
|
|
# ifndef SHARED
|
|
CHECK_STATIC_TLS (map, sym_map);
|
|
# else
|
|
if (!TRY_STATIC_TLS (map, sym_map))
|
|
{
|
|
td->arg = _dl_make_tlsdesc_dynamic
|
|
(sym_map, sym->st_value + reloc->r_addend);
|
|
td->entry = GLRO(dl_x86_tlsdesc_dynamic);
|
|
}
|
|
else
|
|
# endif
|
|
{
|
|
td->arg = (void*)(sym->st_value - sym_map->l_tls_offset
|
|
+ reloc->r_addend);
|
|
td->entry = _dl_tlsdesc_return;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case R_X86_64_TPOFF64:
|
|
/* The offset is negative, forward from the thread pointer. */
|
|
if (sym != NULL)
|
|
{
|
|
CHECK_STATIC_TLS (map, sym_map);
|
|
/* We know the offset of the object the symbol is contained in.
|
|
It is a negative value which will be added to the
|
|
thread pointer. */
|
|
value = (sym->st_value + reloc->r_addend
|
|
- sym_map->l_tls_offset);
|
|
# ifdef __ILP32__
|
|
/* The symbol and addend values are 32 bits but the GOT
|
|
entry is 64 bits wide and the whole 64-bit entry is used
|
|
as a signed quantity, so we need to sign-extend the
|
|
computed value to 64 bits. */
|
|
*(Elf64_Sxword *) reloc_addr = (Elf64_Sxword) (Elf32_Sword) value;
|
|
# else
|
|
*reloc_addr = value;
|
|
# endif
|
|
}
|
|
break;
|
|
|
|
case R_X86_64_64:
|
|
/* value + r_addend may be > 0xffffffff and R_X86_64_64
|
|
relocation updates the whole 64-bit entry. */
|
|
*(Elf64_Addr *) reloc_addr = (Elf64_Addr) value + reloc->r_addend;
|
|
break;
|
|
# ifndef __ILP32__
|
|
case R_X86_64_SIZE32:
|
|
/* Set to symbol size plus addend. */
|
|
value = sym->st_size;
|
|
# endif
|
|
/* Fall through. */
|
|
case R_X86_64_32:
|
|
value += reloc->r_addend;
|
|
*(unsigned int *) reloc_addr = value;
|
|
|
|
const char *fmt;
|
|
if (__glibc_unlikely (value > UINT_MAX))
|
|
{
|
|
const char *strtab;
|
|
|
|
fmt = "\
|
|
%s: Symbol `%s' causes overflow in R_X86_64_32 relocation\n";
|
|
print_err:
|
|
strtab = (const char *) D_PTR (map, l_info[DT_STRTAB]);
|
|
|
|
_dl_error_printf (fmt, RTLD_PROGNAME, strtab + refsym->st_name);
|
|
}
|
|
break;
|
|
/* Not needed for dl-conflict.c. */
|
|
case R_X86_64_PC32:
|
|
value += reloc->r_addend - (ElfW(Addr)) reloc_addr;
|
|
*(unsigned int *) reloc_addr = value;
|
|
if (__glibc_unlikely (value != (int) value))
|
|
{
|
|
fmt = "\
|
|
%s: Symbol `%s' causes overflow in R_X86_64_PC32 relocation\n";
|
|
goto print_err;
|
|
}
|
|
break;
|
|
case R_X86_64_COPY:
|
|
if (sym == NULL)
|
|
/* This can happen in trace mode if an object could not be
|
|
found. */
|
|
break;
|
|
memcpy (reloc_addr_arg, (void *) value,
|
|
MIN (sym->st_size, refsym->st_size));
|
|
if (__glibc_unlikely (sym->st_size > refsym->st_size)
|
|
|| (__glibc_unlikely (sym->st_size < refsym->st_size)
|
|
&& GLRO(dl_verbose)))
|
|
{
|
|
fmt = "\
|
|
%s: Symbol `%s' has different size in shared object, consider re-linking\n";
|
|
goto print_err;
|
|
}
|
|
break;
|
|
case R_X86_64_IRELATIVE:
|
|
value = map->l_addr + reloc->r_addend;
|
|
if (__glibc_likely (!skip_ifunc))
|
|
value = ((ElfW(Addr) (*) (void)) value) ();
|
|
*reloc_addr = value;
|
|
break;
|
|
default:
|
|
_dl_reloc_bad_type (map, r_type, 0);
|
|
break;
|
|
# endif /* !RTLD_BOOTSTRAP */
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
__attribute ((always_inline))
|
|
elf_machine_rela_relative (ElfW(Addr) l_addr, const ElfW(Rela) *reloc,
|
|
void *const reloc_addr_arg)
|
|
{
|
|
ElfW(Addr) *const reloc_addr = reloc_addr_arg;
|
|
#if !defined RTLD_BOOTSTRAP
|
|
/* l_addr + r_addend may be > 0xffffffff and R_X86_64_RELATIVE64
|
|
relocation updates the whole 64-bit entry. */
|
|
if (__glibc_unlikely (ELFW(R_TYPE) (reloc->r_info) == R_X86_64_RELATIVE64))
|
|
*(Elf64_Addr *) reloc_addr = (Elf64_Addr) l_addr + reloc->r_addend;
|
|
else
|
|
#endif
|
|
{
|
|
assert (ELFW(R_TYPE) (reloc->r_info) == R_X86_64_RELATIVE);
|
|
*reloc_addr = l_addr + reloc->r_addend;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
__attribute ((always_inline))
|
|
elf_machine_lazy_rel (struct link_map *map, struct r_scope_elem *scope[],
|
|
ElfW(Addr) l_addr, const ElfW(Rela) *reloc,
|
|
int skip_ifunc)
|
|
{
|
|
ElfW(Addr) *const reloc_addr = (void *) (l_addr + reloc->r_offset);
|
|
const unsigned long int r_type = ELFW(R_TYPE) (reloc->r_info);
|
|
|
|
/* Check for unexpected PLT reloc type. */
|
|
if (__glibc_likely (r_type == R_X86_64_JUMP_SLOT))
|
|
{
|
|
/* Prelink has been deprecated. */
|
|
if (__glibc_likely (map->l_mach.plt == 0))
|
|
*reloc_addr += l_addr;
|
|
else
|
|
*reloc_addr =
|
|
map->l_mach.plt
|
|
+ (((ElfW(Addr)) reloc_addr) - map->l_mach.gotplt) * 2;
|
|
}
|
|
else if (__glibc_likely (r_type == R_X86_64_TLSDESC))
|
|
{
|
|
const Elf_Symndx symndx = ELFW (R_SYM) (reloc->r_info);
|
|
const ElfW (Sym) *symtab = (const void *)D_PTR (map, l_info[DT_SYMTAB]);
|
|
const ElfW (Sym) *sym = &symtab[symndx];
|
|
const struct r_found_version *version = NULL;
|
|
|
|
if (map->l_info[VERSYMIDX (DT_VERSYM)] != NULL)
|
|
{
|
|
const ElfW (Half) *vernum =
|
|
(const void *)D_PTR (map, l_info[VERSYMIDX (DT_VERSYM)]);
|
|
version = &map->l_versions[vernum[symndx] & 0x7fff];
|
|
}
|
|
|
|
/* Always initialize TLS descriptors completely at load time, in
|
|
case static TLS is allocated for it that requires locking. */
|
|
elf_machine_rela (map, scope, reloc, sym, version, reloc_addr, skip_ifunc);
|
|
}
|
|
else if (__glibc_unlikely (r_type == R_X86_64_IRELATIVE))
|
|
{
|
|
ElfW(Addr) value = map->l_addr + reloc->r_addend;
|
|
if (__glibc_likely (!skip_ifunc))
|
|
value = ((ElfW(Addr) (*) (void)) value) ();
|
|
*reloc_addr = value;
|
|
}
|
|
else
|
|
_dl_reloc_bad_type (map, r_type, 1);
|
|
}
|
|
|
|
#endif /* RESOLVE_MAP */
|
|
|
|
#if !defined ELF_DYNAMIC_AFTER_RELOC && !defined RTLD_BOOTSTRAP \
|
|
&& defined SHARED
|
|
# define ELF_DYNAMIC_AFTER_RELOC(map, lazy) \
|
|
x86_64_dynamic_after_reloc (map, (lazy))
|
|
|
|
# define JMP32_INSN_OPCODE 0xe9
|
|
# define JMP32_INSN_SIZE 5
|
|
# define JMPABS_INSN_OPCODE 0xa100d5
|
|
# define JMPABS_INSN_SIZE 11
|
|
# define INT3_INSN_OPCODE 0xcc
|
|
|
|
static const char *
|
|
x86_64_reloc_symbol_name (struct link_map *map, const ElfW(Rela) *reloc)
|
|
{
|
|
const ElfW(Sym) *const symtab
|
|
= (const void *) map->l_info[DT_SYMTAB]->d_un.d_ptr;
|
|
const ElfW(Sym) *const refsym = &symtab[ELFW (R_SYM) (reloc->r_info)];
|
|
const char *strtab = (const char *) map->l_info[DT_STRTAB]->d_un.d_ptr;
|
|
return strtab + refsym->st_name;
|
|
}
|
|
|
|
static void
|
|
x86_64_rewrite_plt (struct link_map *map, ElfW(Addr) plt_rewrite)
|
|
{
|
|
ElfW(Addr) l_addr = map->l_addr;
|
|
ElfW(Addr) pltent = map->l_info[DT_X86_64 (PLTENT)]->d_un.d_val;
|
|
ElfW(Addr) start = map->l_info[DT_JMPREL]->d_un.d_ptr;
|
|
ElfW(Addr) size = map->l_info[DT_PLTRELSZ]->d_un.d_val;
|
|
const ElfW(Rela) *reloc = (const void *) start;
|
|
const ElfW(Rela) *reloc_end = (const void *) (start + size);
|
|
|
|
# ifdef __CET__
|
|
bool ibt_enabled_p = dl_cet_ibt_enabled ();
|
|
# else
|
|
bool ibt_enabled_p = false;
|
|
# endif
|
|
|
|
if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_FILES))
|
|
_dl_debug_printf ("\nchanging PLT in '%s' to direct branch\n",
|
|
DSO_FILENAME (map->l_name));
|
|
|
|
for (; reloc < reloc_end; reloc++)
|
|
if (ELFW(R_TYPE) (reloc->r_info) == R_X86_64_JUMP_SLOT)
|
|
{
|
|
/* Get the value from the GOT entry. */
|
|
ElfW(Addr) value = *(ElfW(Addr) *) (l_addr + reloc->r_offset);
|
|
|
|
/* Get the corresponding PLT entry from r_addend. */
|
|
ElfW(Addr) branch_start = l_addr + reloc->r_addend;
|
|
/* Skip ENDBR64 if IBT isn't enabled. */
|
|
if (!ibt_enabled_p)
|
|
branch_start = ALIGN_DOWN (branch_start, pltent);
|
|
/* Get the displacement from the branch target. NB: We must use
|
|
64-bit integer on x32 to avoid overflow. */
|
|
uint64_t disp = (uint64_t) value - branch_start - JMP32_INSN_SIZE;
|
|
ElfW(Addr) plt_end;
|
|
ElfW(Addr) pad;
|
|
|
|
plt_end = (branch_start | (pltent - 1)) + 1;
|
|
|
|
/* Update the PLT entry. */
|
|
if (((uint64_t) disp + (uint64_t) ((uint32_t) INT32_MIN))
|
|
<= (uint64_t) UINT32_MAX)
|
|
{
|
|
pad = branch_start + JMP32_INSN_SIZE;
|
|
|
|
if (__glibc_unlikely (pad > plt_end))
|
|
continue;
|
|
|
|
/* If the target branch can be reached with a direct branch,
|
|
rewrite the PLT entry with a direct branch. */
|
|
if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_BINDINGS))
|
|
{
|
|
const char *sym_name = x86_64_reloc_symbol_name (map,
|
|
reloc);
|
|
_dl_debug_printf ("changing '%s' PLT entry in '%s' to "
|
|
"direct branch\n", sym_name,
|
|
DSO_FILENAME (map->l_name));
|
|
}
|
|
|
|
/* Write out direct branch. */
|
|
*(uint8_t *) branch_start = JMP32_INSN_OPCODE;
|
|
*(uint32_t *) (branch_start + 1) = disp;
|
|
}
|
|
else
|
|
{
|
|
if (GL(dl_x86_feature_control).plt_rewrite
|
|
!= plt_rewrite_jmpabs)
|
|
{
|
|
if (__glibc_unlikely (GLRO(dl_debug_mask)
|
|
& DL_DEBUG_BINDINGS))
|
|
{
|
|
const char *sym_name
|
|
= x86_64_reloc_symbol_name (map, reloc);
|
|
_dl_debug_printf ("skipping '%s' PLT entry in '%s'\n",
|
|
sym_name,
|
|
DSO_FILENAME (map->l_name));
|
|
}
|
|
continue;
|
|
}
|
|
|
|
pad = branch_start + JMPABS_INSN_SIZE;
|
|
|
|
if (__glibc_unlikely (pad > plt_end))
|
|
continue;
|
|
|
|
/* Rewrite the PLT entry with JMPABS. */
|
|
if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_BINDINGS))
|
|
{
|
|
const char *sym_name = x86_64_reloc_symbol_name (map,
|
|
reloc);
|
|
_dl_debug_printf ("changing '%s' PLT entry in '%s' to "
|
|
"JMPABS\n", sym_name,
|
|
DSO_FILENAME (map->l_name));
|
|
}
|
|
|
|
/* "jmpabs $target" for 64-bit displacement. NB: JMPABS has
|
|
a 3-byte opcode + 64bit address. There is a 1-byte overlap
|
|
between 4-byte write and 8-byte write. */
|
|
*(uint32_t *) (branch_start) = JMPABS_INSN_OPCODE;
|
|
*(uint64_t *) (branch_start + 3) = value;
|
|
}
|
|
|
|
/* Fill the unused part of the PLT entry with INT3. */
|
|
for (; pad < plt_end; pad++)
|
|
*(uint8_t *) pad = INT3_INSN_OPCODE;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
x86_64_rewrite_plt_in_place (struct link_map *map)
|
|
{
|
|
/* Adjust DT_X86_64_PLT address and DT_X86_64_PLTSZ values. */
|
|
ElfW(Addr) plt = (map->l_info[DT_X86_64 (PLT)]->d_un.d_ptr
|
|
+ map->l_addr);
|
|
size_t pagesize = GLRO(dl_pagesize);
|
|
ElfW(Addr) plt_aligned = ALIGN_DOWN (plt, pagesize);
|
|
size_t pltsz = (map->l_info[DT_X86_64 (PLTSZ)]->d_un.d_val
|
|
+ plt - plt_aligned);
|
|
|
|
if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_FILES))
|
|
_dl_debug_printf ("\nchanging PLT in '%s' to writable\n",
|
|
DSO_FILENAME (map->l_name));
|
|
|
|
if (__glibc_unlikely (__mprotect ((void *) plt_aligned, pltsz,
|
|
PROT_WRITE | PROT_READ) < 0))
|
|
{
|
|
if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_FILES))
|
|
_dl_debug_printf ("\nfailed to change PLT in '%s' to writable\n",
|
|
DSO_FILENAME (map->l_name));
|
|
return;
|
|
}
|
|
|
|
x86_64_rewrite_plt (map, plt_aligned);
|
|
|
|
if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_FILES))
|
|
_dl_debug_printf ("\nchanging PLT in '%s' back to read-only\n",
|
|
DSO_FILENAME (map->l_name));
|
|
|
|
if (__glibc_unlikely (__mprotect ((void *) plt_aligned, pltsz,
|
|
PROT_EXEC | PROT_READ) < 0))
|
|
_dl_signal_error (0, DSO_FILENAME (map->l_name), NULL,
|
|
"failed to change PLT back to read-only");
|
|
}
|
|
|
|
/* Rewrite PLT entries to direct branch if possible. */
|
|
|
|
static inline void
|
|
x86_64_dynamic_after_reloc (struct link_map *map, int lazy)
|
|
{
|
|
/* Ignore DT_X86_64_PLT if the lazy binding is enabled. */
|
|
if (lazy != 0)
|
|
return;
|
|
|
|
/* Ignore DT_X86_64_PLT if PLT rewrite isn't enabled. */
|
|
if (__glibc_likely (GL(dl_x86_feature_control).plt_rewrite
|
|
== plt_rewrite_none))
|
|
return;
|
|
|
|
if (__glibc_likely (map->l_info[DT_X86_64 (PLT)] == NULL))
|
|
return;
|
|
|
|
/* Ignore DT_X86_64_PLT if there is no R_X86_64_JUMP_SLOT. */
|
|
if (map->l_has_jump_slot_reloc == 0)
|
|
return;
|
|
|
|
/* Ignore DT_X86_64_PLT if
|
|
1. DT_JMPREL isn't available or its value is 0.
|
|
2. DT_PLTRELSZ is 0.
|
|
3. DT_X86_64_PLTENT isn't available or its value is smaller than
|
|
16 bytes.
|
|
4. DT_X86_64_PLTSZ isn't available or its value is smaller than
|
|
DT_X86_64_PLTENT's value or isn't a multiple of DT_X86_64_PLTENT's
|
|
value. */
|
|
if (map->l_info[DT_JMPREL] == NULL
|
|
|| map->l_info[DT_JMPREL]->d_un.d_ptr == 0
|
|
|| map->l_info[DT_PLTRELSZ]->d_un.d_val == 0
|
|
|| map->l_info[DT_X86_64 (PLTSZ)] == NULL
|
|
|| map->l_info[DT_X86_64 (PLTENT)] == NULL
|
|
|| map->l_info[DT_X86_64 (PLTENT)]->d_un.d_val < 16
|
|
|| (map->l_info[DT_X86_64 (PLTSZ)]->d_un.d_val
|
|
< map->l_info[DT_X86_64 (PLTENT)]->d_un.d_val)
|
|
|| (map->l_info[DT_X86_64 (PLTSZ)]->d_un.d_val
|
|
% map->l_info[DT_X86_64 (PLTENT)]->d_un.d_val) != 0)
|
|
return;
|
|
|
|
x86_64_rewrite_plt_in_place (map);
|
|
}
|
|
#endif
|