mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-25 12:11:10 +00:00
09220e6634
math/Makefile currently has: # The fdlibm code generates a lot of these warnings but is otherwise clean. override CFLAGS += -Wno-uninitialized This is of course undesirable; warnings should be disabled as narrowly as possible. To remove this override, we need to fix files that generate such warnings, or put warning-disabling pragmas in them. This patch does so for Bessel function implementations, one of the cases that have the warnings if the override is removed. The warnings arise because functions set pointer variables p and q only for certain values of the function argument, then use them unconditionally. As the static functions in question only get called for arguments that satisfy the last condition in the if/else chain, the natural fix is to change the last "else if" to just "else", which this patch does. (The ldbl-128 / ldbl-128ibm implementation of these functions is substantially different and looks like it already does use "else" in the last case in the nearest corresponding code.) Tested for x86_64 and x86. * sysdeps/ieee754/dbl-64/e_j0.c (pzero): Change last case for setting p and q from "else if" to "else". (qzero): Likewise. * sysdeps/ieee754/dbl-64/e_j1.c (pone): Likewise. (qone): Likewise. * sysdeps/ieee754/flt-32/e_j0f.c (pzerof): Likewise. (qzerof): Likewise. * sysdeps/ieee754/flt-32/e_j1f.c (ponef): Likewise. (qonef): Likewise. * sysdeps/ieee754/ldbl-96/e_j0l.c (pzero): Likewise. (qzero): Likewise. * sysdeps/ieee754/ldbl-96/e_j1l.c (pone): Likewise. (qone): Likewise.
338 lines
10 KiB
C
338 lines
10 KiB
C
/* e_j0f.c -- float version of e_j0.c.
|
|
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
|
*/
|
|
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
|
|
static float pzerof(float), qzerof(float);
|
|
|
|
static const float
|
|
huge = 1e30,
|
|
one = 1.0,
|
|
invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
|
|
tpi = 6.3661974669e-01, /* 0x3f22f983 */
|
|
/* R0/S0 on [0, 2.00] */
|
|
R02 = 1.5625000000e-02, /* 0x3c800000 */
|
|
R03 = -1.8997929874e-04, /* 0xb947352e */
|
|
R04 = 1.8295404516e-06, /* 0x35f58e88 */
|
|
R05 = -4.6183270541e-09, /* 0xb19eaf3c */
|
|
S01 = 1.5619102865e-02, /* 0x3c7fe744 */
|
|
S02 = 1.1692678527e-04, /* 0x38f53697 */
|
|
S03 = 5.1354652442e-07, /* 0x3509daa6 */
|
|
S04 = 1.1661400734e-09; /* 0x30a045e8 */
|
|
|
|
static const float zero = 0.0;
|
|
|
|
float
|
|
__ieee754_j0f(float x)
|
|
{
|
|
float z, s,c,ss,cc,r,u,v;
|
|
int32_t hx,ix;
|
|
|
|
GET_FLOAT_WORD(hx,x);
|
|
ix = hx&0x7fffffff;
|
|
if(ix>=0x7f800000) return one/(x*x);
|
|
x = fabsf(x);
|
|
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
|
__sincosf (x, &s, &c);
|
|
ss = s-c;
|
|
cc = s+c;
|
|
if(ix<0x7f000000) { /* make sure x+x not overflow */
|
|
z = -__cosf(x+x);
|
|
if ((s*c)<zero) cc = z/ss;
|
|
else ss = z/cc;
|
|
}
|
|
/*
|
|
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
|
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
|
*/
|
|
if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrtf(x);
|
|
else {
|
|
u = pzerof(x); v = qzerof(x);
|
|
z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrtf(x);
|
|
}
|
|
return z;
|
|
}
|
|
if(ix<0x39000000) { /* |x| < 2**-13 */
|
|
math_force_eval(huge+x); /* raise inexact if x != 0 */
|
|
if(ix<0x32000000) return one; /* |x|<2**-27 */
|
|
else return one - (float)0.25*x*x;
|
|
}
|
|
z = x*x;
|
|
r = z*(R02+z*(R03+z*(R04+z*R05)));
|
|
s = one+z*(S01+z*(S02+z*(S03+z*S04)));
|
|
if(ix < 0x3F800000) { /* |x| < 1.00 */
|
|
return one + z*((float)-0.25+(r/s));
|
|
} else {
|
|
u = (float)0.5*x;
|
|
return((one+u)*(one-u)+z*(r/s));
|
|
}
|
|
}
|
|
strong_alias (__ieee754_j0f, __j0f_finite)
|
|
|
|
static const float
|
|
u00 = -7.3804296553e-02, /* 0xbd9726b5 */
|
|
u01 = 1.7666645348e-01, /* 0x3e34e80d */
|
|
u02 = -1.3818567619e-02, /* 0xbc626746 */
|
|
u03 = 3.4745343146e-04, /* 0x39b62a69 */
|
|
u04 = -3.8140706238e-06, /* 0xb67ff53c */
|
|
u05 = 1.9559013964e-08, /* 0x32a802ba */
|
|
u06 = -3.9820518410e-11, /* 0xae2f21eb */
|
|
v01 = 1.2730483897e-02, /* 0x3c509385 */
|
|
v02 = 7.6006865129e-05, /* 0x389f65e0 */
|
|
v03 = 2.5915085189e-07, /* 0x348b216c */
|
|
v04 = 4.4111031494e-10; /* 0x2ff280c2 */
|
|
|
|
float
|
|
__ieee754_y0f(float x)
|
|
{
|
|
float z, s,c,ss,cc,u,v;
|
|
int32_t hx,ix;
|
|
|
|
GET_FLOAT_WORD(hx,x);
|
|
ix = 0x7fffffff&hx;
|
|
/* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0, y0(0) is -inf. */
|
|
if(ix>=0x7f800000) return one/(x+x*x);
|
|
if(ix==0) return -HUGE_VALF+x; /* -inf and overflow exception. */
|
|
if(hx<0) return zero/(zero*x);
|
|
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
|
/* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
|
|
* where x0 = x-pi/4
|
|
* Better formula:
|
|
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
|
|
* = 1/sqrt(2) * (sin(x) + cos(x))
|
|
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
|
* = 1/sqrt(2) * (sin(x) - cos(x))
|
|
* To avoid cancellation, use
|
|
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
|
* to compute the worse one.
|
|
*/
|
|
__sincosf (x, &s, &c);
|
|
ss = s-c;
|
|
cc = s+c;
|
|
/*
|
|
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
|
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
|
*/
|
|
if(ix<0x7f000000) { /* make sure x+x not overflow */
|
|
z = -__cosf(x+x);
|
|
if ((s*c)<zero) cc = z/ss;
|
|
else ss = z/cc;
|
|
}
|
|
if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrtf(x);
|
|
else {
|
|
u = pzerof(x); v = qzerof(x);
|
|
z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrtf(x);
|
|
}
|
|
return z;
|
|
}
|
|
if(ix<=0x39800000) { /* x < 2**-13 */
|
|
return(u00 + tpi*__ieee754_logf(x));
|
|
}
|
|
z = x*x;
|
|
u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
|
|
v = one+z*(v01+z*(v02+z*(v03+z*v04)));
|
|
return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x)));
|
|
}
|
|
strong_alias (__ieee754_y0f, __y0f_finite)
|
|
|
|
/* The asymptotic expansions of pzero is
|
|
* 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
|
|
* For x >= 2, We approximate pzero by
|
|
* pzero(x) = 1 + (R/S)
|
|
* where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
|
|
* S = 1 + pS0*s^2 + ... + pS4*s^10
|
|
* and
|
|
* | pzero(x)-1-R/S | <= 2 ** ( -60.26)
|
|
*/
|
|
static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
|
0.0000000000e+00, /* 0x00000000 */
|
|
-7.0312500000e-02, /* 0xbd900000 */
|
|
-8.0816707611e+00, /* 0xc1014e86 */
|
|
-2.5706311035e+02, /* 0xc3808814 */
|
|
-2.4852163086e+03, /* 0xc51b5376 */
|
|
-5.2530439453e+03, /* 0xc5a4285a */
|
|
};
|
|
static const float pS8[5] = {
|
|
1.1653436279e+02, /* 0x42e91198 */
|
|
3.8337448730e+03, /* 0x456f9beb */
|
|
4.0597855469e+04, /* 0x471e95db */
|
|
1.1675296875e+05, /* 0x47e4087c */
|
|
4.7627726562e+04, /* 0x473a0bba */
|
|
};
|
|
static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
|
-1.1412546255e-11, /* 0xad48c58a */
|
|
-7.0312492549e-02, /* 0xbd8fffff */
|
|
-4.1596107483e+00, /* 0xc0851b88 */
|
|
-6.7674766541e+01, /* 0xc287597b */
|
|
-3.3123129272e+02, /* 0xc3a59d9b */
|
|
-3.4643338013e+02, /* 0xc3ad3779 */
|
|
};
|
|
static const float pS5[5] = {
|
|
6.0753936768e+01, /* 0x42730408 */
|
|
1.0512523193e+03, /* 0x44836813 */
|
|
5.9789707031e+03, /* 0x45bad7c4 */
|
|
9.6254453125e+03, /* 0x461665c8 */
|
|
2.4060581055e+03, /* 0x451660ee */
|
|
};
|
|
|
|
static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
|
-2.5470459075e-09, /* 0xb12f081b */
|
|
-7.0311963558e-02, /* 0xbd8fffb8 */
|
|
-2.4090321064e+00, /* 0xc01a2d95 */
|
|
-2.1965976715e+01, /* 0xc1afba52 */
|
|
-5.8079170227e+01, /* 0xc2685112 */
|
|
-3.1447946548e+01, /* 0xc1fb9565 */
|
|
};
|
|
static const float pS3[5] = {
|
|
3.5856033325e+01, /* 0x420f6c94 */
|
|
3.6151397705e+02, /* 0x43b4c1ca */
|
|
1.1936077881e+03, /* 0x44953373 */
|
|
1.1279968262e+03, /* 0x448cffe6 */
|
|
1.7358093262e+02, /* 0x432d94b8 */
|
|
};
|
|
|
|
static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
|
-8.8753431271e-08, /* 0xb3be98b7 */
|
|
-7.0303097367e-02, /* 0xbd8ffb12 */
|
|
-1.4507384300e+00, /* 0xbfb9b1cc */
|
|
-7.6356959343e+00, /* 0xc0f4579f */
|
|
-1.1193166733e+01, /* 0xc1331736 */
|
|
-3.2336456776e+00, /* 0xc04ef40d */
|
|
};
|
|
static const float pS2[5] = {
|
|
2.2220300674e+01, /* 0x41b1c32d */
|
|
1.3620678711e+02, /* 0x430834f0 */
|
|
2.7047027588e+02, /* 0x43873c32 */
|
|
1.5387539673e+02, /* 0x4319e01a */
|
|
1.4657617569e+01, /* 0x416a859a */
|
|
};
|
|
|
|
static float
|
|
pzerof(float x)
|
|
{
|
|
const float *p,*q;
|
|
float z,r,s;
|
|
int32_t ix;
|
|
GET_FLOAT_WORD(ix,x);
|
|
ix &= 0x7fffffff;
|
|
/* ix >= 0x40000000 for all calls to this function. */
|
|
if(ix>=0x41000000) {p = pR8; q= pS8;}
|
|
else if(ix>=0x40f71c58){p = pR5; q= pS5;}
|
|
else if(ix>=0x4036db68){p = pR3; q= pS3;}
|
|
else {p = pR2; q= pS2;}
|
|
z = one/(x*x);
|
|
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
|
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
|
|
return one+ r/s;
|
|
}
|
|
|
|
|
|
/* For x >= 8, the asymptotic expansions of qzero is
|
|
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
|
|
* We approximate pzero by
|
|
* qzero(x) = s*(-1.25 + (R/S))
|
|
* where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
|
|
* S = 1 + qS0*s^2 + ... + qS5*s^12
|
|
* and
|
|
* | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
|
|
*/
|
|
static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
|
0.0000000000e+00, /* 0x00000000 */
|
|
7.3242187500e-02, /* 0x3d960000 */
|
|
1.1768206596e+01, /* 0x413c4a93 */
|
|
5.5767340088e+02, /* 0x440b6b19 */
|
|
8.8591972656e+03, /* 0x460a6cca */
|
|
3.7014625000e+04, /* 0x471096a0 */
|
|
};
|
|
static const float qS8[6] = {
|
|
1.6377603149e+02, /* 0x4323c6aa */
|
|
8.0983447266e+03, /* 0x45fd12c2 */
|
|
1.4253829688e+05, /* 0x480b3293 */
|
|
8.0330925000e+05, /* 0x49441ed4 */
|
|
8.4050156250e+05, /* 0x494d3359 */
|
|
-3.4389928125e+05, /* 0xc8a7eb69 */
|
|
};
|
|
|
|
static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
|
1.8408595828e-11, /* 0x2da1ec79 */
|
|
7.3242180049e-02, /* 0x3d95ffff */
|
|
5.8356351852e+00, /* 0x40babd86 */
|
|
1.3511157227e+02, /* 0x43071c90 */
|
|
1.0272437744e+03, /* 0x448067cd */
|
|
1.9899779053e+03, /* 0x44f8bf4b */
|
|
};
|
|
static const float qS5[6] = {
|
|
8.2776611328e+01, /* 0x42a58da0 */
|
|
2.0778142090e+03, /* 0x4501dd07 */
|
|
1.8847289062e+04, /* 0x46933e94 */
|
|
5.6751113281e+04, /* 0x475daf1d */
|
|
3.5976753906e+04, /* 0x470c88c1 */
|
|
-5.3543427734e+03, /* 0xc5a752be */
|
|
};
|
|
|
|
static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
|
4.3774099900e-09, /* 0x3196681b */
|
|
7.3241114616e-02, /* 0x3d95ff70 */
|
|
3.3442313671e+00, /* 0x405607e3 */
|
|
4.2621845245e+01, /* 0x422a7cc5 */
|
|
1.7080809021e+02, /* 0x432acedf */
|
|
1.6673394775e+02, /* 0x4326bbe4 */
|
|
};
|
|
static const float qS3[6] = {
|
|
4.8758872986e+01, /* 0x42430916 */
|
|
7.0968920898e+02, /* 0x44316c1c */
|
|
3.7041481934e+03, /* 0x4567825f */
|
|
6.4604252930e+03, /* 0x45c9e367 */
|
|
2.5163337402e+03, /* 0x451d4557 */
|
|
-1.4924745178e+02, /* 0xc3153f59 */
|
|
};
|
|
|
|
static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
|
1.5044444979e-07, /* 0x342189db */
|
|
7.3223426938e-02, /* 0x3d95f62a */
|
|
1.9981917143e+00, /* 0x3fffc4bf */
|
|
1.4495602608e+01, /* 0x4167edfd */
|
|
3.1666231155e+01, /* 0x41fd5471 */
|
|
1.6252708435e+01, /* 0x4182058c */
|
|
};
|
|
static const float qS2[6] = {
|
|
3.0365585327e+01, /* 0x41f2ecb8 */
|
|
2.6934811401e+02, /* 0x4386ac8f */
|
|
8.4478375244e+02, /* 0x44533229 */
|
|
8.8293585205e+02, /* 0x445cbbe5 */
|
|
2.1266638184e+02, /* 0x4354aa98 */
|
|
-5.3109550476e+00, /* 0xc0a9f358 */
|
|
};
|
|
|
|
static float
|
|
qzerof(float x)
|
|
{
|
|
const float *p,*q;
|
|
float s,r,z;
|
|
int32_t ix;
|
|
GET_FLOAT_WORD(ix,x);
|
|
ix &= 0x7fffffff;
|
|
/* ix >= 0x40000000 for all calls to this function. */
|
|
if(ix>=0x41000000) {p = qR8; q= qS8;}
|
|
else if(ix>=0x40f71c58){p = qR5; q= qS5;}
|
|
else if(ix>=0x4036db68){p = qR3; q= qS3;}
|
|
else {p = qR2; q= qS2;}
|
|
z = one/(x*x);
|
|
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
|
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
|
|
return (-(float).125 + r/s)/x;
|
|
}
|