glibc/sysdeps/sparc/sparc32/soft-fp/sfp-machine.h
2000-09-05 09:07:19 +00:00

222 lines
7.0 KiB
C

/* Machine-dependent software floating-point definitions.
Sparc userland (_Q_*) version.
Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Richard Henderson (rth@cygnus.com),
Jakub Jelinek (jj@ultra.linux.cz) and
David S. Miller (davem@redhat.com).
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include <fpu_control.h>
#define _FP_W_TYPE_SIZE 32
#define _FP_W_TYPE unsigned long
#define _FP_WS_TYPE signed long
#define _FP_I_TYPE long
#define _FP_MUL_MEAT_S(R,X,Y) \
_FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm)
#define _FP_MUL_MEAT_D(R,X,Y) \
_FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm)
#define _FP_MUL_MEAT_Q(R,X,Y) \
_FP_MUL_MEAT_4_wide(_FP_WFRACBITS_Q,R,X,Y,umul_ppmm)
#define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y)
#define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv(D,R,X,Y)
#define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_4_udiv(Q,R,X,Y)
#define _FP_NANFRAC_S ((_FP_QNANBIT_S << 1) - 1)
#define _FP_NANFRAC_D ((_FP_QNANBIT_D << 1) - 1), -1
#define _FP_NANFRAC_Q ((_FP_QNANBIT_Q << 1) - 1), -1, -1, -1
#define _FP_NANSIGN_S 0
#define _FP_NANSIGN_D 0
#define _FP_NANSIGN_Q 0
#define _FP_KEEPNANFRACP 1
/* If one NaN is signaling and the other is not,
* we choose that one, otherwise we choose X.
*/
/* For _Qp_* and _Q_*, this should prefer X, for
* CPU instruction emulation this should prefer Y.
* (see SPAMv9 B.2.2 section).
*/
#define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \
do { \
if ((_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs) \
&& !(_FP_FRAC_HIGH_RAW_##fs(Y) & _FP_QNANBIT_##fs)) \
{ \
R##_s = Y##_s; \
_FP_FRAC_COPY_##wc(R,Y); \
} \
else \
{ \
R##_s = X##_s; \
_FP_FRAC_COPY_##wc(R,X); \
} \
R##_c = FP_CLS_NAN; \
} while (0)
/* Some assembly to speed things up. */
#define __FP_FRAC_ADD_3(r2,r1,r0,x2,x1,x0,y2,y1,y0) \
__asm__ ("addcc %r7,%8,%2
addxcc %r5,%6,%1
addx %r3,%4,%0" \
: "=r" ((USItype)(r2)), \
"=&r" ((USItype)(r1)), \
"=&r" ((USItype)(r0)) \
: "%rJ" ((USItype)(x2)), \
"rI" ((USItype)(y2)), \
"%rJ" ((USItype)(x1)), \
"rI" ((USItype)(y1)), \
"%rJ" ((USItype)(x0)), \
"rI" ((USItype)(y0)) \
: "cc")
#define __FP_FRAC_SUB_3(r2,r1,r0,x2,x1,x0,y2,y1,y0) \
__asm__ ("subcc %r7,%8,%2
subxcc %r5,%6,%1
subx %r3,%4,%0" \
: "=r" ((USItype)(r2)), \
"=&r" ((USItype)(r1)), \
"=&r" ((USItype)(r0)) \
: "%rJ" ((USItype)(x2)), \
"rI" ((USItype)(y2)), \
"%rJ" ((USItype)(x1)), \
"rI" ((USItype)(y1)), \
"%rJ" ((USItype)(x0)), \
"rI" ((USItype)(y0)) \
: "cc")
#define __FP_FRAC_ADD_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \
do { \
/* We need to fool gcc, as we need to pass more than 10 \
input/outputs. */ \
register USItype _t1 __asm__ ("g1"), _t2 __asm__ ("g2"); \
__asm__ __volatile__ ("
addcc %r8,%9,%1
addxcc %r6,%7,%0
addxcc %r4,%5,%%g2
addx %r2,%3,%%g1" \
: "=&r" ((USItype)(r1)), \
"=&r" ((USItype)(r0)) \
: "%rJ" ((USItype)(x3)), \
"rI" ((USItype)(y3)), \
"%rJ" ((USItype)(x2)), \
"rI" ((USItype)(y2)), \
"%rJ" ((USItype)(x1)), \
"rI" ((USItype)(y1)), \
"%rJ" ((USItype)(x0)), \
"rI" ((USItype)(y0)) \
: "cc", "g1", "g2"); \
__asm__ __volatile__ ("" : "=r" (_t1), "=r" (_t2)); \
r3 = _t1; r2 = _t2; \
} while (0)
#define __FP_FRAC_SUB_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \
do { \
/* We need to fool gcc, as we need to pass more than 10 \
input/outputs. */ \
register USItype _t1 __asm__ ("g1"), _t2 __asm__ ("g2"); \
__asm__ __volatile__ ("
subcc %r8,%9,%1
subxcc %r6,%7,%0
subxcc %r4,%5,%%g2
subx %r2,%3,%%g1" \
: "=&r" ((USItype)(r1)), \
"=&r" ((USItype)(r0)) \
: "%rJ" ((USItype)(x3)), \
"rI" ((USItype)(y3)), \
"%rJ" ((USItype)(x2)), \
"rI" ((USItype)(y2)), \
"%rJ" ((USItype)(x1)), \
"rI" ((USItype)(y1)), \
"%rJ" ((USItype)(x0)), \
"rI" ((USItype)(y0)) \
: "cc", "g1", "g2"); \
__asm__ __volatile__ ("" : "=r" (_t1), "=r" (_t2)); \
r3 = _t1; r2 = _t2; \
} while (0)
#define __FP_FRAC_DEC_3(x2,x1,x0,y2,y1,y0) __FP_FRAC_SUB_3(x2,x1,x0,x2,x1,x0,y2,y1,y0)
#define __FP_FRAC_DEC_4(x3,x2,x1,x0,y3,y2,y1,y0) __FP_FRAC_SUB_4(x3,x2,x1,x0,x3,x2,x1,x0,y3,y2,y1,y0)
#define __FP_FRAC_ADDI_4(x3,x2,x1,x0,i) \
__asm__ ("addcc %3,%4,%3
addxcc %2,%%g0,%2
addxcc %1,%%g0,%1
addx %0,%%g0,%0" \
: "=&r" ((USItype)(x3)), \
"=&r" ((USItype)(x2)), \
"=&r" ((USItype)(x1)), \
"=&r" ((USItype)(x0)) \
: "rI" ((USItype)(i)), \
"0" ((USItype)(x3)), \
"1" ((USItype)(x2)), \
"2" ((USItype)(x1)), \
"3" ((USItype)(x0)) \
: "cc")
/* Obtain the current rounding mode. */
#ifndef FP_ROUNDMODE
#define FP_ROUNDMODE ((_fcw >> 30) & 0x3)
#endif
/* Exception flags. */
#define FP_EX_INVALID (1 << 4)
#define FP_EX_OVERFLOW (1 << 3)
#define FP_EX_UNDERFLOW (1 << 2)
#define FP_EX_DIVZERO (1 << 1)
#define FP_EX_INEXACT (1 << 0)
#define _FP_DECL_EX fpu_control_t _fcw
#define FP_INIT_ROUNDMODE \
do { \
_FPU_GETCW(_fcw); \
} while (0)
/* Simulate exceptions using double arithmetics. */
extern double ___Q_simulate_exceptions(int exc);
#define FP_HANDLE_EXCEPTIONS \
do { \
if (!_fex) \
{ \
/* This is the common case, so we do it inline. \
* We need to clear cexc bits if any. \
*/ \
extern unsigned long long ___Q_numbers[]; \
__asm__ __volatile__("
ldd [%0], %%f30
faddd %%f30, %%f30, %%f30
" : : "r" (___Q_numbers) : "f30"); \
} \
else \
{ \
__asm__ __volatile__("
mov %0, %%o0
mov %%o7, %%g1
call ___Q_simulate_exceptions
mov %%g1, %%o7
" : : "r" (_fex) : \
"g1", "g2", "g3", "g4", "g5", "o0", \
"o1", "o2", "o3", "o4", "o5", "cc"); \
} \
} while (0)