glibc/sysdeps/ieee754/dbl-64/e_sqrt.c
Vineet Gupta e93c264336 ieee754/dbl-64: Reduce the scope of temporary storage variables
This came to light when adding hard-flaot support to ARC glibc port
without hardware sqrt support causing glibc build to fail:

| ../sysdeps/ieee754/dbl-64/e_sqrt.c: In function '__ieee754_sqrt':
| ../sysdeps/ieee754/dbl-64/e_sqrt.c:58:54: error: unused variable 'ty' [-Werror=unused-variable]
|   double y, t, del, res, res1, hy, z, zz, p, hx, tx, ty, s;

The reason being EMULV() macro uses the hardware provided
__builtin_fma() variant, leaving temporary variables 'p, hx, tx, hy, ty'
unused hence compiler warning and ensuing error.

The intent of the patch was to fix that error, but EMULV is pervasive
and used fair bit indirectly via othe rmacros, hence this patch.
Functionally it should not result in code gen changes and if at all
those would be better since the scope of those temporaries is greatly
reduced now

Built tested with aarch64-linux-gnu arm-linux-gnueabi arm-linux-gnueabihf hppa-linux-gnu x86_64-linux-gnu arm-linux-gnueabihf riscv64-linux-gnu-rv64imac-lp64 riscv64-linux-gnu-rv64imafdc-lp64 powerpc-linux-gnu microblaze-linux-gnu nios2-linux-gnu hppa-linux-gnu

Also as suggested by Joseph [1] used --strip and compared the libs with
and w/o patch and they are byte-for-byte unchanged (with gcc 9).

| for i in `find . -name libm-2.31.9000.so`;
| do
|    echo $i; diff $i /SCRATCH/vgupta/gnu2/install/glibcs/$i ; echo $?;
| done

| ./aarch64-linux-gnu/lib64/libm-2.31.9000.so
| 0
| ./arm-linux-gnueabi/lib/libm-2.31.9000.so
| 0
| ./x86_64-linux-gnu/lib64/libm-2.31.9000.so
| 0
| ./arm-linux-gnueabihf/lib/libm-2.31.9000.so
| 0
| ./riscv64-linux-gnu-rv64imac-lp64/lib64/lp64/libm-2.31.9000.so
| 0
| ./riscv64-linux-gnu-rv64imafdc-lp64/lib64/lp64/libm-2.31.9000.so
| 0
| ./powerpc-linux-gnu/lib/libm-2.31.9000.so
| 0
| ./microblaze-linux-gnu/lib/libm-2.31.9000.so
| 0
| ./nios2-linux-gnu/lib/libm-2.31.9000.so
| 0
| ./hppa-linux-gnu/lib/libm-2.31.9000.so
| 0
| ./s390x-linux-gnu/lib64/libm-2.31.9000.so

[1] https://sourceware.org/pipermail/libc-alpha/2019-November/108267.html
2020-06-15 13:09:21 -07:00

151 lines
5.1 KiB
C

/*
* IBM Accurate Mathematical Library
* written by International Business Machines Corp.
* Copyright (C) 2001-2020 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, see <https://www.gnu.org/licenses/>.
*/
/*********************************************************************/
/* MODULE_NAME: uroot.c */
/* */
/* FUNCTION: usqrt */
/* */
/* FILES NEEDED: dla.h endian.h mydefs.h */
/* uroot.tbl */
/* */
/* An ultimate sqrt routine. Given an IEEE double machine number x */
/* it computes the correctly rounded (to nearest) value of square */
/* root of x. */
/* Assumption: Machine arithmetic operations are performed in */
/* round to nearest mode of IEEE 754 standard. */
/* */
/*********************************************************************/
#include "endian.h"
#include "mydefs.h"
#include <dla.h>
#include "MathLib.h"
#include "root.tbl"
#include <math-barriers.h>
#include <math_private.h>
#include <fenv_private.h>
#include <libm-alias-finite.h>
#include <math-use-builtins.h>
/*********************************************************************/
/* An ultimate sqrt routine. Given an IEEE double machine number x */
/* it computes the correctly rounded (to nearest) value of square */
/* root of x. */
/*********************************************************************/
double
__ieee754_sqrt (double x)
{
#if USE_SQRT_BUILTIN
return __builtin_sqrt (x);
#else
/* Use generic implementation. */
static const double
rt0 = 9.99999999859990725855365213134618E-01,
rt1 = 4.99999999495955425917856814202739E-01,
rt2 = 3.75017500867345182581453026130850E-01,
rt3 = 3.12523626554518656309172508769531E-01;
static const double big = 134217728.0;
double y, t, del, res, res1, hy, z, zz, s;
mynumber a, c = { { 0, 0 } };
int4 k;
a.x = x;
k = a.i[HIGH_HALF];
a.i[HIGH_HALF] = (k & 0x001fffff) | 0x3fe00000;
t = inroot[(k & 0x001fffff) >> 14];
s = a.x;
/*----------------- 2^-1022 <= | x |< 2^1024 -----------------*/
if (k > 0x000fffff && k < 0x7ff00000)
{
int rm = __fegetround ();
fenv_t env;
libc_feholdexcept_setround (&env, FE_TONEAREST);
double ret;
y = 1.0 - t * (t * s);
t = t * (rt0 + y * (rt1 + y * (rt2 + y * rt3)));
c.i[HIGH_HALF] = 0x20000000 + ((k & 0x7fe00000) >> 1);
y = t * s;
hy = (y + big) - big;
del = 0.5 * t * ((s - hy * hy) - (y - hy) * (y + hy));
res = y + del;
if (res == (res + 1.002 * ((y - res) + del)))
ret = res * c.x;
else
{
res1 = res + 1.5 * ((y - res) + del);
EMULV (res, res1, z, zz); /* (z+zz)=res*res1 */
res = ((((z - s) + zz) < 0) ? max (res, res1) :
min (res, res1));
ret = res * c.x;
}
math_force_eval (ret);
libc_fesetenv (&env);
double dret = x / ret;
if (dret != ret)
{
double force_inexact = 1.0 / 3.0;
math_force_eval (force_inexact);
/* The square root is inexact, ret is the round-to-nearest
value which may need adjusting for other rounding
modes. */
switch (rm)
{
#ifdef FE_UPWARD
case FE_UPWARD:
if (dret > ret)
ret = (res + 0x1p-1022) * c.x;
break;
#endif
#ifdef FE_DOWNWARD
case FE_DOWNWARD:
#endif
#ifdef FE_TOWARDZERO
case FE_TOWARDZERO:
#endif
#if defined FE_DOWNWARD || defined FE_TOWARDZERO
if (dret < ret)
ret = (res - 0x1p-1022) * c.x;
break;
#endif
default:
break;
}
}
/* Otherwise (x / ret == ret), either the square root was exact or
the division was inexact. */
return ret;
}
else
{
if ((k & 0x7ff00000) == 0x7ff00000)
return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
if (x == 0)
return x; /* sqrt(+0)=+0, sqrt(-0)=-0 */
if (k < 0)
return (x - x) / (x - x); /* sqrt(-ve)=sNaN */
return 0x1p-256 * __ieee754_sqrt (x * 0x1p512);
}
#endif /* ! USE_SQRT_BUILTIN */
}
#ifndef __ieee754_sqrt
libm_alias_finite (__ieee754_sqrt, __sqrt)
#endif