mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-14 21:10:19 +00:00
159 lines
3.9 KiB
C
159 lines
3.9 KiB
C
/* Complex cosine hyperbole function for float.
|
|
Copyright (C) 1997-2013 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <complex.h>
|
|
#include <fenv.h>
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <float.h>
|
|
|
|
__complex__ float
|
|
__ccoshf (__complex__ float x)
|
|
{
|
|
__complex__ float retval;
|
|
int rcls = fpclassify (__real__ x);
|
|
int icls = fpclassify (__imag__ x);
|
|
|
|
if (__builtin_expect (rcls >= FP_ZERO, 1))
|
|
{
|
|
/* Real part is finite. */
|
|
if (__builtin_expect (icls >= FP_ZERO, 1))
|
|
{
|
|
/* Imaginary part is finite. */
|
|
const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2);
|
|
float sinix, cosix;
|
|
|
|
if (__builtin_expect (icls != FP_SUBNORMAL, 1))
|
|
{
|
|
__sincosf (__imag__ x, &sinix, &cosix);
|
|
}
|
|
else
|
|
{
|
|
sinix = __imag__ x;
|
|
cosix = 1.0f;
|
|
}
|
|
|
|
if (fabsf (__real__ x) > t)
|
|
{
|
|
float exp_t = __ieee754_expf (t);
|
|
float rx = fabsf (__real__ x);
|
|
if (signbit (__real__ x))
|
|
sinix = -sinix;
|
|
rx -= t;
|
|
sinix *= exp_t / 2.0f;
|
|
cosix *= exp_t / 2.0f;
|
|
if (rx > t)
|
|
{
|
|
rx -= t;
|
|
sinix *= exp_t;
|
|
cosix *= exp_t;
|
|
}
|
|
if (rx > t)
|
|
{
|
|
/* Overflow (original real part of x > 3t). */
|
|
__real__ retval = FLT_MAX * cosix;
|
|
__imag__ retval = FLT_MAX * sinix;
|
|
}
|
|
else
|
|
{
|
|
float exp_val = __ieee754_expf (rx);
|
|
__real__ retval = exp_val * cosix;
|
|
__imag__ retval = exp_val * sinix;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
__real__ retval = __ieee754_coshf (__real__ x) * cosix;
|
|
__imag__ retval = __ieee754_sinhf (__real__ x) * sinix;
|
|
}
|
|
|
|
if (fabsf (__real__ retval) < FLT_MIN)
|
|
{
|
|
volatile float force_underflow
|
|
= __real__ retval * __real__ retval;
|
|
(void) force_underflow;
|
|
}
|
|
if (fabsf (__imag__ retval) < FLT_MIN)
|
|
{
|
|
volatile float force_underflow
|
|
= __imag__ retval * __imag__ retval;
|
|
(void) force_underflow;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
__imag__ retval = __real__ x == 0.0 ? 0.0 : __nanf ("");
|
|
__real__ retval = __nanf ("");
|
|
|
|
if (icls == FP_INFINITE)
|
|
feraiseexcept (FE_INVALID);
|
|
}
|
|
}
|
|
else if (__builtin_expect (rcls == FP_INFINITE, 1))
|
|
{
|
|
/* Real part is infinite. */
|
|
if (__builtin_expect (icls > FP_ZERO, 1))
|
|
{
|
|
/* Imaginary part is finite. */
|
|
float sinix, cosix;
|
|
|
|
if (__builtin_expect (icls != FP_SUBNORMAL, 1))
|
|
{
|
|
__sincosf (__imag__ x, &sinix, &cosix);
|
|
}
|
|
else
|
|
{
|
|
sinix = __imag__ x;
|
|
cosix = 1.0f;
|
|
}
|
|
|
|
__real__ retval = __copysignf (HUGE_VALF, cosix);
|
|
__imag__ retval = (__copysignf (HUGE_VALF, sinix)
|
|
* __copysignf (1.0, __real__ x));
|
|
}
|
|
else if (icls == FP_ZERO)
|
|
{
|
|
/* Imaginary part is 0.0. */
|
|
__real__ retval = HUGE_VALF;
|
|
__imag__ retval = __imag__ x * __copysignf (1.0, __real__ x);
|
|
}
|
|
else
|
|
{
|
|
/* The addition raises the invalid exception. */
|
|
__real__ retval = HUGE_VALF;
|
|
__imag__ retval = __nanf ("") + __nanf ("");
|
|
|
|
#ifdef FE_INVALID
|
|
if (icls == FP_INFINITE)
|
|
feraiseexcept (FE_INVALID);
|
|
#endif
|
|
}
|
|
}
|
|
else
|
|
{
|
|
__real__ retval = __nanf ("");
|
|
__imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nanf ("");
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
#ifndef __ccoshf
|
|
weak_alias (__ccoshf, ccoshf)
|
|
#endif
|