glibc/sysdeps/ieee754/dbl-64/e_pow.c
Szabolcs Nagy 424c4f60ed Add new pow implementation
The algorithm is exp(y * log(x)), where log(x) is computed with about
1.3*2^-68 relative error (1.5*2^-68 without fma), returning the result
in two doubles, and the exp part uses the same algorithm (and lookup
tables) as exp, but takes the input as two doubles and a sign (to handle
negative bases with odd integer exponent).  The __exp1 internal symbol
is no longer necessary.

There is separate code path when fma is not available but the worst case
error is about 0.54 ULP in both cases.  The lookup table and consts for
log are 4168 bytes.  The .rodata+.text is decreased by 37908 bytes on
aarch64.  The non-nearest rounding error is less than 1 ULP.

Improvements on Cortex-A72 compared to current glibc master:
pow thruput: 2.40x in [0.01 11.1]x[0.01 11.1]
pow latency: 1.84x in [0.01 11.1]x[0.01 11.1]

Tested on
aarch64-linux-gnu (defined __FP_FAST_FMA, TOINT_INTRINSICS) and
arm-linux-gnueabihf (!defined __FP_FAST_FMA, !TOINT_INTRINSICS) and
x86_64-linux-gnu (!defined __FP_FAST_FMA, !TOINT_INTRINSICS) and
powerpc64le-linux-gnu (defined __FP_FAST_FMA, !TOINT_INTRINSICS) targets.

	* NEWS: Mention pow improvements.
	* math/Makefile (type-double-routines): Add e_pow_log_data.
	* sysdeps/generic/math_private.h (__exp1): Remove.
	* sysdeps/i386/fpu/e_pow_log_data.c: New file.
	* sysdeps/ia64/fpu/e_pow_log_data.c: New file.
	* sysdeps/ieee754/dbl-64/Makefile (CFLAGS-e_pow.c): Allow fma
	contraction.
	* sysdeps/ieee754/dbl-64/e_exp.c (__exp1): Remove.
	(exp_inline): Remove.
	(__ieee754_exp): Only single double input is handled.
	* sysdeps/ieee754/dbl-64/e_pow.c: Rewrite.
	* sysdeps/ieee754/dbl-64/e_pow_log_data.c: New file.
	* sysdeps/ieee754/dbl-64/math_config.h (issignaling_inline): Define.
	(__pow_log_data): Define.
	* sysdeps/ieee754/dbl-64/upow.h: Remove.
	* sysdeps/ieee754/dbl-64/upow.tbl: Remove.
	* sysdeps/m68k/m680x0/fpu/e_pow_log_data.c: New file.
	* sysdeps/x86_64/fpu/multiarch/Makefile (CFLAGS-e_pow-fma.c): Allow fma
	contraction.
	(CFLAGS-e_pow-fma4.c): Likewise.
2018-09-19 10:04:51 +01:00

381 lines
12 KiB
C

/* Double-precision x^y function.
Copyright (C) 2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <math.h>
#include <stdint.h>
#include <math-barriers.h>
#include <math-narrow-eval.h>
#include "math_config.h"
/*
Worst-case error: 0.54 ULP (~= ulperr_exp + 1024*Ln2*relerr_log*2^53)
relerr_log: 1.3 * 2^-68 (Relative error of log, 1.5 * 2^-68 without fma)
ulperr_exp: 0.509 ULP (ULP error of exp, 0.511 ULP without fma)
*/
#define T __pow_log_data.tab
#define A __pow_log_data.poly
#define Ln2hi __pow_log_data.ln2hi
#define Ln2lo __pow_log_data.ln2lo
#define N (1 << POW_LOG_TABLE_BITS)
#define OFF 0x3fe6955500000000
/* Top 12 bits of a double (sign and exponent bits). */
static inline uint32_t
top12 (double x)
{
return asuint64 (x) >> 52;
}
/* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
additional 15 bits precision. IX is the bit representation of x, but
normalized in the subnormal range using the sign bit for the exponent. */
static inline double_t
log_inline (uint64_t ix, double_t *tail)
{
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
double_t z, r, y, invc, logc, logctail, kd, hi, t1, t2, lo, lo1, lo2, p;
uint64_t iz, tmp;
int k, i;
/* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
The range is split into N subintervals.
The ith subinterval contains z and c is near its center. */
tmp = ix - OFF;
i = (tmp >> (52 - POW_LOG_TABLE_BITS)) % N;
k = (int64_t) tmp >> 52; /* arithmetic shift */
iz = ix - (tmp & 0xfffULL << 52);
z = asdouble (iz);
kd = (double_t) k;
/* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */
invc = T[i].invc;
logc = T[i].logc;
logctail = T[i].logctail;
/* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and
|z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */
#ifdef __FP_FAST_FMA
r = __builtin_fma (z, invc, -1.0);
#else
/* Split z such that rhi, rlo and rhi*rhi are exact and |rlo| <= |r|. */
double_t zhi = asdouble ((iz + (1ULL << 31)) & (-1ULL << 32));
double_t zlo = z - zhi;
double_t rhi = zhi * invc - 1.0;
double_t rlo = zlo * invc;
r = rhi + rlo;
#endif
/* k*Ln2 + log(c) + r. */
t1 = kd * Ln2hi + logc;
t2 = t1 + r;
lo1 = kd * Ln2lo + logctail;
lo2 = t1 - t2 + r;
/* Evaluation is optimized assuming superscalar pipelined execution. */
double_t ar, ar2, ar3, lo3, lo4;
ar = A[0] * r; /* A[0] = -0.5. */
ar2 = r * ar;
ar3 = r * ar2;
/* k*Ln2 + log(c) + r + A[0]*r*r. */
#ifdef __FP_FAST_FMA
hi = t2 + ar2;
lo3 = __builtin_fma (ar, r, -ar2);
lo4 = t2 - hi + ar2;
#else
double_t arhi = A[0] * rhi;
double_t arhi2 = rhi * arhi;
hi = t2 + arhi2;
lo3 = rlo * (ar + arhi);
lo4 = t2 - hi + arhi2;
#endif
/* p = log1p(r) - r - A[0]*r*r. */
p = (ar3
* (A[1] + r * A[2] + ar2 * (A[3] + r * A[4] + ar2 * (A[5] + r * A[6]))));
lo = lo1 + lo2 + lo3 + lo4 + p;
y = hi + lo;
*tail = hi - y + lo;
return y;
}
#undef N
#undef T
#define N (1 << EXP_TABLE_BITS)
#define InvLn2N __exp_data.invln2N
#define NegLn2hiN __exp_data.negln2hiN
#define NegLn2loN __exp_data.negln2loN
#define Shift __exp_data.shift
#define T __exp_data.tab
#define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
#define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
#define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
#define C5 __exp_data.poly[8 - EXP_POLY_ORDER]
#define C6 __exp_data.poly[9 - EXP_POLY_ORDER]
/* Handle cases that may overflow or underflow when computing the result that
is scale*(1+TMP) without intermediate rounding. The bit representation of
scale is in SBITS, however it has a computed exponent that may have
overflown into the sign bit so that needs to be adjusted before using it as
a double. (int32_t)KI is the k used in the argument reduction and exponent
adjustment of scale, positive k here means the result may overflow and
negative k means the result may underflow. */
static inline double
specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
{
double_t scale, y;
if ((ki & 0x80000000) == 0)
{
/* k > 0, the exponent of scale might have overflowed by <= 460. */
sbits -= 1009ull << 52;
scale = asdouble (sbits);
y = 0x1p1009 * (scale + scale * tmp);
return check_oflow (y);
}
/* k < 0, need special care in the subnormal range. */
sbits += 1022ull << 52;
/* Note: sbits is signed scale. */
scale = asdouble (sbits);
y = scale + scale * tmp;
if (fabs (y) < 1.0)
{
/* Round y to the right precision before scaling it into the subnormal
range to avoid double rounding that can cause 0.5+E/2 ulp error where
E is the worst-case ulp error outside the subnormal range. So this
is only useful if the goal is better than 1 ulp worst-case error. */
double_t hi, lo, one = 1.0;
if (y < 0.0)
one = -1.0;
lo = scale - y + scale * tmp;
hi = one + y;
lo = one - hi + y + lo;
y = math_narrow_eval (hi + lo) - one;
/* Fix the sign of 0. */
if (y == 0.0)
y = asdouble (sbits & 0x8000000000000000);
/* The underflow exception needs to be signaled explicitly. */
math_force_eval (math_opt_barrier (0x1p-1022) * 0x1p-1022);
}
y = 0x1p-1022 * y;
return check_uflow (y);
}
#define SIGN_BIAS (0x800 << EXP_TABLE_BITS)
/* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
The sign_bias argument is SIGN_BIAS or 0 and sets the sign to -1 or 1. */
static inline double
exp_inline (double x, double xtail, uint32_t sign_bias)
{
uint32_t abstop;
uint64_t ki, idx, top, sbits;
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
double_t kd, z, r, r2, scale, tail, tmp;
abstop = top12 (x) & 0x7ff;
if (__glibc_unlikely (abstop - top12 (0x1p-54)
>= top12 (512.0) - top12 (0x1p-54)))
{
if (abstop - top12 (0x1p-54) >= 0x80000000)
{
/* Avoid spurious underflow for tiny x. */
/* Note: 0 is common input. */
double_t one = WANT_ROUNDING ? 1.0 + x : 1.0;
return sign_bias ? -one : one;
}
if (abstop >= top12 (1024.0))
{
/* Note: inf and nan are already handled. */
if (asuint64 (x) >> 63)
return __math_uflow (sign_bias);
else
return __math_oflow (sign_bias);
}
/* Large x is special cased below. */
abstop = 0;
}
/* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
/* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */
z = InvLn2N * x;
#if TOINT_INTRINSICS
/* z - kd is in [-0.5, 0.5] in all rounding modes. */
kd = roundtoint (z);
ki = converttoint (z);
#else
/* z - kd is in [-1, 1] in non-nearest rounding modes. */
kd = math_narrow_eval (z + Shift);
ki = asuint64 (kd);
kd -= Shift;
#endif
r = x + kd * NegLn2hiN + kd * NegLn2loN;
/* The code assumes 2^-200 < |xtail| < 2^-8/N. */
r += xtail;
/* 2^(k/N) ~= scale * (1 + tail). */
idx = 2 * (ki % N);
top = (ki + sign_bias) << (52 - EXP_TABLE_BITS);
tail = asdouble (T[idx]);
/* This is only a valid scale when -1023*N < k < 1024*N. */
sbits = T[idx + 1] + top;
/* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */
/* Evaluation is optimized assuming superscalar pipelined execution. */
r2 = r * r;
/* Without fma the worst case error is 0.25/N ulp larger. */
/* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */
tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
if (__glibc_unlikely (abstop == 0))
return specialcase (tmp, sbits, ki);
scale = asdouble (sbits);
/* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
is no spurious underflow here even without fma. */
return scale + scale * tmp;
}
/* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is
the bit representation of a non-zero finite floating-point value. */
static inline int
checkint (uint64_t iy)
{
int e = iy >> 52 & 0x7ff;
if (e < 0x3ff)
return 0;
if (e > 0x3ff + 52)
return 2;
if (iy & ((1ULL << (0x3ff + 52 - e)) - 1))
return 0;
if (iy & (1ULL << (0x3ff + 52 - e)))
return 1;
return 2;
}
/* Returns 1 if input is the bit representation of 0, infinity or nan. */
static inline int
zeroinfnan (uint64_t i)
{
return 2 * i - 1 >= 2 * asuint64 (INFINITY) - 1;
}
#ifndef SECTION
# define SECTION
#endif
double
SECTION
__ieee754_pow (double x, double y)
{
uint32_t sign_bias = 0;
uint64_t ix, iy;
uint32_t topx, topy;
ix = asuint64 (x);
iy = asuint64 (y);
topx = top12 (x);
topy = top12 (y);
if (__glibc_unlikely (topx - 0x001 >= 0x7ff - 0x001
|| (topy & 0x7ff) - 0x3be >= 0x43e - 0x3be))
{
/* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0
and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1. */
/* Special cases: (x < 0x1p-126 or inf or nan) or
(|y| < 0x1p-65 or |y| >= 0x1p63 or nan). */
if (__glibc_unlikely (zeroinfnan (iy)))
{
if (2 * iy == 0)
return issignaling_inline (x) ? x + y : 1.0;
if (ix == asuint64 (1.0))
return issignaling_inline (y) ? x + y : 1.0;
if (2 * ix > 2 * asuint64 (INFINITY)
|| 2 * iy > 2 * asuint64 (INFINITY))
return x + y;
if (2 * ix == 2 * asuint64 (1.0))
return 1.0;
if ((2 * ix < 2 * asuint64 (1.0)) == !(iy >> 63))
return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf. */
return y * y;
}
if (__glibc_unlikely (zeroinfnan (ix)))
{
double_t x2 = x * x;
if (ix >> 63 && checkint (iy) == 1)
{
x2 = -x2;
sign_bias = 1;
}
if (WANT_ERRNO && 2 * ix == 0 && iy >> 63)
return __math_divzero (sign_bias);
/* Without the barrier some versions of clang hoist the 1/x2 and
thus division by zero exception can be signaled spuriously. */
return iy >> 63 ? math_opt_barrier (1 / x2) : x2;
}
/* Here x and y are non-zero finite. */
if (ix >> 63)
{
/* Finite x < 0. */
int yint = checkint (iy);
if (yint == 0)
return __math_invalid (x);
if (yint == 1)
sign_bias = SIGN_BIAS;
ix &= 0x7fffffffffffffff;
topx &= 0x7ff;
}
if ((topy & 0x7ff) - 0x3be >= 0x43e - 0x3be)
{
/* Note: sign_bias == 0 here because y is not odd. */
if (ix == asuint64 (1.0))
return 1.0;
if ((topy & 0x7ff) < 0x3be)
{
/* |y| < 2^-65, x^y ~= 1 + y*log(x). */
if (WANT_ROUNDING)
return ix > asuint64 (1.0) ? 1.0 + y : 1.0 - y;
else
return 1.0;
}
return (ix > asuint64 (1.0)) == (topy < 0x800) ? __math_oflow (0)
: __math_uflow (0);
}
if (topx == 0)
{
/* Normalize subnormal x so exponent becomes negative. */
ix = asuint64 (x * 0x1p52);
ix &= 0x7fffffffffffffff;
ix -= 52ULL << 52;
}
}
double_t lo;
double_t hi = log_inline (ix, &lo);
double_t ehi, elo;
#ifdef __FP_FAST_FMA
ehi = y * hi;
elo = y * lo + __builtin_fma (y, hi, -ehi);
#else
double_t yhi = asdouble (iy & -1ULL << 27);
double_t ylo = y - yhi;
double_t lhi = asdouble (asuint64 (hi) & -1ULL << 27);
double_t llo = hi - lhi + lo;
ehi = yhi * lhi;
elo = ylo * lhi + y * llo; /* |elo| < |ehi| * 2^-25. */
#endif
return exp_inline (ehi, elo, sign_bias);
}
#ifndef __ieee754_pow
strong_alias (__ieee754_pow, __pow_finite)
#endif