mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-27 15:30:07 +00:00
215078017f
To help y2038 work avoid duplicate all the logic of nanosleep on non cancellable version, the patch replace it with a new futex operation, lll_timedwait. The changes are: - Add a expected value for __lll_clocklock_wait, so it can be used to wait for generic values. - Remove its internal atomic operation and move the logic to __lll_clocklock. It makes __lll_clocklock_wait even more generic and __lll_clocklock slight faster on fast-path (since it won't require a function call anymore). - Add lll_timedwait, which uses __lll_clocklock_wait, to replace both __pause_nocancel and __nanosleep_nocancel. It also allows remove the sparc32 __lll_clocklock_wait implementation (since it is similar to the generic one). Checked on x86_64-linux-gnu, sparcv9-linux-gnu, and i686-linux-gnu. Reviewed-by: Carlos O'Donell <carlos@redhat.com>
194 lines
9.1 KiB
C
194 lines
9.1 KiB
C
/* Low-level lock implementation. Generic futex-based version.
|
|
Copyright (C) 2005-2019 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library. If not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef _LOWLEVELLOCK_H
|
|
#define _LOWLEVELLOCK_H 1
|
|
|
|
#include <atomic.h>
|
|
#include <lowlevellock-futex.h>
|
|
#include <time.h>
|
|
|
|
/* Low-level locks use a combination of atomic operations (to acquire and
|
|
release lock ownership) and futex operations (to block until the state
|
|
of a lock changes). A lock can be in one of three states:
|
|
0: not acquired,
|
|
1: acquired with no waiters; no other threads are blocked or about to block
|
|
for changes to the lock state,
|
|
>1: acquired, possibly with waiters; there may be other threads blocked or
|
|
about to block for changes to the lock state.
|
|
|
|
We expect that the common case is an uncontended lock, so we just need
|
|
to transition the lock between states 0 and 1; releasing the lock does
|
|
not need to wake any other blocked threads. If the lock is contended
|
|
and a thread decides to block using a futex operation, then this thread
|
|
needs to first change the state to >1; if this state is observed during
|
|
lock release, the releasing thread will wake one of the potentially
|
|
blocked threads.
|
|
|
|
Much of this code takes a 'private' parameter. This may be:
|
|
LLL_PRIVATE: lock only shared within a process
|
|
LLL_SHARED: lock may be shared across processes.
|
|
|
|
Condition variables contain an optimization for broadcasts that requeues
|
|
waiting threads on a lock's futex. Therefore, there is a special
|
|
variant of the locks (whose name contains "cond") that makes sure to
|
|
always set the lock state to >1 and not just 1.
|
|
|
|
Robust locks set the lock to the id of the owner. This allows detection
|
|
of the case where the owner exits without releasing the lock. Flags are
|
|
OR'd with the owner id to record additional information about lock state.
|
|
Therefore the states of robust locks are:
|
|
0: not acquired
|
|
id: acquired (by user identified by id & FUTEX_TID_MASK)
|
|
|
|
The following flags may be set in the robust lock value:
|
|
FUTEX_WAITERS - possibly has waiters
|
|
FUTEX_OWNER_DIED - owning user has exited without releasing the futex. */
|
|
|
|
|
|
/* If LOCK is 0 (not acquired), set to 1 (acquired with no waiters) and return
|
|
0. Otherwise leave lock unchanged and return non-zero to indicate that the
|
|
lock was not acquired. */
|
|
#define __lll_trylock(lock) \
|
|
__glibc_unlikely (atomic_compare_and_exchange_bool_acq ((lock), 1, 0))
|
|
#define lll_trylock(lock) \
|
|
__lll_trylock (&(lock))
|
|
|
|
/* If LOCK is 0 (not acquired), set to 2 (acquired, possibly with waiters) and
|
|
return 0. Otherwise leave lock unchanged and return non-zero to indicate
|
|
that the lock was not acquired. */
|
|
#define lll_cond_trylock(lock) \
|
|
__glibc_unlikely (atomic_compare_and_exchange_bool_acq (&(lock), 2, 0))
|
|
|
|
extern void __lll_lock_wait_private (int *futex) attribute_hidden;
|
|
extern void __lll_lock_wait (int *futex, int private) attribute_hidden;
|
|
|
|
/* This is an expression rather than a statement even though its value is
|
|
void, so that it can be used in a comma expression or as an expression
|
|
that's cast to void. */
|
|
/* The inner conditional compiles to a call to __lll_lock_wait_private if
|
|
private is known at compile time to be LLL_PRIVATE, and to a call to
|
|
__lll_lock_wait otherwise. */
|
|
/* If FUTEX is 0 (not acquired), set to 1 (acquired with no waiters) and
|
|
return. Otherwise, ensure that it is >1 (acquired, possibly with waiters)
|
|
and then block until we acquire the lock, at which point FUTEX will still be
|
|
>1. The lock is always acquired on return. */
|
|
#define __lll_lock(futex, private) \
|
|
((void) \
|
|
({ \
|
|
int *__futex = (futex); \
|
|
if (__glibc_unlikely \
|
|
(atomic_compare_and_exchange_bool_acq (__futex, 1, 0))) \
|
|
{ \
|
|
if (__builtin_constant_p (private) && (private) == LLL_PRIVATE) \
|
|
__lll_lock_wait_private (__futex); \
|
|
else \
|
|
__lll_lock_wait (__futex, private); \
|
|
} \
|
|
}))
|
|
#define lll_lock(futex, private) \
|
|
__lll_lock (&(futex), private)
|
|
|
|
|
|
/* This is an expression rather than a statement even though its value is
|
|
void, so that it can be used in a comma expression or as an expression
|
|
that's cast to void. */
|
|
/* Unconditionally set FUTEX to 2 (acquired, possibly with waiters). If FUTEX
|
|
was 0 (not acquired) then return. Otherwise, block until the lock is
|
|
acquired, at which point FUTEX is 2 (acquired, possibly with waiters). The
|
|
lock is always acquired on return. */
|
|
#define __lll_cond_lock(futex, private) \
|
|
((void) \
|
|
({ \
|
|
int *__futex = (futex); \
|
|
if (__glibc_unlikely (atomic_exchange_acq (__futex, 2) != 0)) \
|
|
__lll_lock_wait (__futex, private); \
|
|
}))
|
|
#define lll_cond_lock(futex, private) __lll_cond_lock (&(futex), private)
|
|
|
|
|
|
extern int __lll_clocklock_wait (int *futex, int val, clockid_t,
|
|
const struct timespec *,
|
|
int private) attribute_hidden;
|
|
|
|
#define lll_timedwait(futex, val, clockid, abstime, private) \
|
|
__lll_clocklock_wait (futex, val, clockid, abstime, private)
|
|
|
|
/* As __lll_lock, but with an absolute timeout measured against the clock
|
|
specified in CLOCKID. If the timeout occurs then return ETIMEDOUT. If
|
|
ABSTIME is invalid, return EINVAL. */
|
|
#define __lll_clocklock(futex, clockid, abstime, private) \
|
|
({ \
|
|
int *__futex = (futex); \
|
|
int __val = 0; \
|
|
\
|
|
if (__glibc_unlikely \
|
|
(atomic_compare_and_exchange_bool_acq (__futex, 1, 0))) \
|
|
{ \
|
|
while (atomic_exchange_acq (futex, 2) != 0) \
|
|
{ \
|
|
__val = __lll_clocklock_wait (__futex, 2, clockid, \
|
|
abstime, private); \
|
|
if (__val == EINVAL || __val == ETIMEDOUT) \
|
|
break; \
|
|
} \
|
|
} \
|
|
__val; \
|
|
})
|
|
#define lll_clocklock(futex, clockid, abstime, private) \
|
|
__lll_clocklock (&(futex), clockid, abstime, private)
|
|
|
|
|
|
/* This is an expression rather than a statement even though its value is
|
|
void, so that it can be used in a comma expression or as an expression
|
|
that's cast to void. */
|
|
/* Unconditionally set FUTEX to 0 (not acquired), releasing the lock. If FUTEX
|
|
was >1 (acquired, possibly with waiters), then wake any waiters. The waiter
|
|
that acquires the lock will set FUTEX to >1.
|
|
Evaluate PRIVATE before releasing the lock so that we do not violate the
|
|
mutex destruction requirements. Specifically, we need to ensure that
|
|
another thread can destroy the mutex (and reuse its memory) once it
|
|
acquires the lock and when there will be no further lock acquisitions;
|
|
thus, we must not access the lock after releasing it, or those accesses
|
|
could be concurrent with mutex destruction or reuse of the memory. */
|
|
#define __lll_unlock(futex, private) \
|
|
((void) \
|
|
({ \
|
|
int *__futex = (futex); \
|
|
int __private = (private); \
|
|
int __oldval = atomic_exchange_rel (__futex, 0); \
|
|
if (__glibc_unlikely (__oldval > 1)) \
|
|
lll_futex_wake (__futex, 1, __private); \
|
|
}))
|
|
#define lll_unlock(futex, private) \
|
|
__lll_unlock (&(futex), private)
|
|
|
|
|
|
#define lll_islocked(futex) \
|
|
((futex) != LLL_LOCK_INITIALIZER)
|
|
|
|
|
|
/* Our internal lock implementation is identical to the binary-compatible
|
|
mutex implementation. */
|
|
|
|
/* Initializers for lock. */
|
|
#define LLL_LOCK_INITIALIZER (0)
|
|
#define LLL_LOCK_INITIALIZER_LOCKED (1)
|
|
|
|
#endif /* lowlevellock.h */
|