glibc/sysdeps/ia64/fpu/e_sqrt.S
Joseph Myers abd383584b Add narrowing square root functions
This patch adds the narrowing square root functions from TS 18661-1 /
TS 18661-3 / C2X to glibc's libm: fsqrt, fsqrtl, dsqrtl, f32sqrtf64,
f32sqrtf32x, f32xsqrtf64 for all configurations; f32sqrtf64x,
f32sqrtf128, f64sqrtf64x, f64sqrtf128, f32xsqrtf64x, f32xsqrtf128,
f64xsqrtf128 for configurations with _Float64x and _Float128;
__f32sqrtieee128 and __f64sqrtieee128 aliases in the powerpc64le case
(for calls to fsqrtl and dsqrtl when long double is IEEE binary128).
Corresponding tgmath.h macro support is also added.

The changes are mostly similar to those for the other narrowing
functions previously added, so the description of those generally
applies to this patch as well.  However, the not-actually-narrowing
cases (where the two types involved in the function have the same
floating-point format) are aliased to sqrt, sqrtl or sqrtf128 rather
than needing a separately built not-actually-narrowing function such
as was needed for add / sub / mul / div.  Thus, there is no
__nldbl_dsqrtl name for ldbl-opt because no such name was needed
(whereas the other functions needed such a name since the only other
name for that entry point was e.g. f32xaddf64, not reserved by TS
18661-1); the headers are made to arrange for sqrt to be called in
that case instead.

The DIAG_* calls in sysdeps/ieee754/soft-fp/s_dsqrtl.c are because
they were observed to be needed in GCC 7 testing of
riscv32-linux-gnu-rv32imac-ilp32.  The other sysdeps/ieee754/soft-fp/
files added didn't need such DIAG_* in any configuration I tested with
build-many-glibcs.py, but if they do turn out to be needed in more
files with some other configuration / GCC version, they can always be
added there.

I reused the same test inputs in auto-libm-test-in as for
non-narrowing sqrt rather than adding extra or separate inputs for
narrowing sqrt.  The tests in libm-test-narrow-sqrt.inc also follow
those for non-narrowing sqrt.

Tested as followed: natively with the full glibc testsuite for x86_64
(GCC 11, 7, 6) and x86 (GCC 11); with build-many-glibcs.py with GCC
11, 7 and 6; cross testing of math/ tests for powerpc64le, powerpc32
hard float, mips64 (all three ABIs, both hard and soft float).  The
different GCC versions are to cover the different cases in tgmath.h
and tgmath.h tests properly (GCC 6 has _Float* only as typedefs in
glibc headers, GCC 7 has proper _Float* support, GCC 8 adds
__builtin_tgmath).
2021-09-10 20:56:22 +00:00

344 lines
9.1 KiB
ArmAsm

.file "sqrt.s"
// Copyright (c) 2000 - 2003, Intel Corporation
// All rights reserved.
//
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
//********************************************************************
// History
//********************************************************************
// 02/02/00 Initial version
// 04/04/00 Unwind support added
// 08/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
// 02/10/03 Reordered header: .section, .global, .proc, .align
//
//********************************************************************
//
// Function: Combined sqrt(x), where
// _
// sqrt(x) = |x, for double precision x values
//
//********************************************************************
//
// Accuracy: Correctly Rounded
//
//********************************************************************
//
// Resources Used:
//
// Floating-Point Registers: f8 (Input and Return Value)
// f7 -f14
//
// General Purpose Registers:
// r32-r36 (Locals)
// r37-r40 (Used to pass arguments to error handling routine)
//
// Predicate Registers: p6, p7, p8
//
//*********************************************************************
//
// IEEE Special Conditions:
//
// All faults and exceptions should be raised correctly.
// sqrt(QNaN) = QNaN
// sqrt(SNaN) = QNaN
// sqrt(+/-0) = +/-0
// sqrt(negative) = QNaN and error handling is called
//
//*********************************************************************
//
// Implementation:
//
// Modified Newton-Raphson Algorithm
//
//*********************************************************************
GR_SAVE_PFS = r33
GR_SAVE_B0 = r34
GR_SAVE_GP = r35
GR_Parameter_X = r37
GR_Parameter_Y = r38
GR_Parameter_RESULT = r39
.section .text
GLOBAL_IEEE754_ENTRY(sqrt)
{ .mfi
alloc r32= ar.pfs,0,5,4,0
frsqrta.s0 f7,p6=f8
nop.i 0
} { .mlx
// BEGIN DOUBLE PRECISION MINIMUM LATENCY SQUARE ROOT ALGORITHM
nop.m 0
// exponent of +1/2 in r2
movl r2 = 0x0fffe;;
} { .mmi
// +1/2 in f9
setf.exp f9 = r2
nop.m 0
nop.i 0
} { .mlx
nop.m 0
// 3/2 in r3
movl r3=0x3fc00000;;
} { .mfi
setf.s f10=r3
// Step (1)
// y0 = 1/sqrt(a) in f7
fclass.m.unc p7,p8 = f8,0x3A
nop.i 0;;
} { .mlx
nop.m 0
// 5/2 in r2
movl r2 = 0x40200000
} { .mlx
nop.m 0
// 63/8 in r3
movl r3 = 0x40fc0000;;
} { .mfi
setf.s f11=r2
// Step (2)
// h = +1/2 * y0 in f6
(p6) fma.s1 f6=f9,f7,f0
nop.i 0
} { .mfi
setf.s f12=r3
// Step (3)
// g = a * y0 in f7
(p6) fma.s1 f7=f8,f7,f0
nop.i 0
} { .mfi
nop.m 0
mov f15 = f8
nop.i 0;;
} { .mlx
nop.m 0
// 231/16 in r2
movl r2 = 0x41670000;;
} { .mfi
setf.s f13=r2
// Step (4)
// e = 1/2 - g * h in f9
(p6) fnma.s1 f9=f7,f6,f9
nop.i 0
} { .mlx
nop.m 0
// 35/8 in r3
movl r3 = 0x408c0000;;
} { .mfi
setf.s f14=r3
// Step (5)
// S = 3/2 + 5/2 * e in f10
(p6) fma.s1 f10=f11,f9,f10
nop.i 0
} { .mfi
nop.m 0
// Step (6)
// e2 = e * e in f11
(p6) fma.s1 f11=f9,f9,f0
nop.i 0;;
} { .mfi
nop.m 0
// Step (7)
// t = 63/8 + 231/16 * e in f12
(p6) fma.s1 f12=f13,f9,f12
nop.i 0;;
} { .mfi
nop.m 0
// Step (8)
// S1 = e + e2 * S in f10
(p6) fma.s1 f10=f11,f10,f9
nop.i 0
} { .mfi
nop.m 0
// Step (9)
// e4 = e2 * e2 in f11
(p6) fma.s1 f11=f11,f11,f0
nop.i 0;;
} { .mfi
nop.m 0
// Step (10)
// t1 = 35/8 + e * t in f9
(p6) fma.s1 f9=f9,f12,f14
nop.i 0;;
} { .mfi
nop.m 0
// Step (11)
// G = g + S1 * g in f12
(p6) fma.s1 f12=f10,f7,f7
nop.i 0
} { .mfi
nop.m 0
// Step (12)
// E = g * e4 in f7
(p6) fma.s1 f7=f7,f11,f0
nop.i 0;;
} { .mfi
nop.m 0
// Step (13)
// u = S1 + e4 * t1 in f10
(p6) fma.s1 f10=f11,f9,f10
nop.i 0;;
} { .mfi
nop.m 0
// Step (14)
// g1 = G + t1 * E in f7
(p6) fma.d.s1 f7=f9,f7,f12
nop.i 0;;
} { .mfi
nop.m 0
// Step (15)
// h1 = h + u * h in f6
(p6) fma.s1 f6=f10,f6,f6
nop.i 0;;
} { .mfi
nop.m 0
// Step (16)
// d = a - g1 * g1 in f9
(p6) fnma.s1 f9=f7,f7,f8
nop.i 0;;
} { .mfb
nop.m 0
// Step (17)
// g2 = g1 + d * h1 in f7
(p6) fma.d.s0 f8=f9,f6,f7
(p6) br.ret.sptk b0 ;;
}
{ .mfb
nop.m 0
mov f8 = f7
(p8) br.ret.sptk b0 ;;
}
{ .mfb
(p7) mov r40 = 49
nop.f 0
(p7) br.cond.sptk __libm_error_region ;;
}
// END DOUBLE PRECISION MINIMUM LATENCY SQUARE ROOT ALGORITHM
GLOBAL_IEEE754_END(sqrt)
libm_alias_double_other (__sqrt, sqrt)
libm_alias_double_narrow (__sqrt, sqrt)
// Stack operations when calling error support.
// (1) (2) (3) (call) (4)
// sp -> + psp -> + psp -> + sp -> +
// | | | |
// | | <- GR_Y R3 ->| <- GR_RESULT | -> f8
// | | | |
// | <-GR_Y Y2->| Y2 ->| <- GR_Y |
// | | | |
// | | <- GR_X X1 ->| |
// | | | |
// sp-64 -> + sp -> + sp -> + +
// save ar.pfs save b0 restore gp
// save gp restore ar.pfs
LOCAL_LIBM_ENTRY(__libm_error_region)
//
// This branch includes all those special values that are not negative,
// with the result equal to frcpa(x)
//
.prologue
// We are distinguishing between over(under)flow and letting
// __libm_error_support set ERANGE or do anything else needed.
// (1)
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
// (2)
{ .mmi
stfd [GR_Parameter_Y] = f0,16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
// (3)
{ .mib
stfd [GR_Parameter_X] = f15 // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
nop.b 0
}
{ .mib
stfd [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
nop.m 0
nop.m 0
add GR_Parameter_RESULT = 48,sp
};;
// (4)
{ .mmi
ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#