mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-22 13:00:06 +00:00
30891f35fa
We stopped adding "Contributed by" or similar lines in sources in 2012 in favour of git logs and keeping the Contributors section of the glibc manual up to date. Removing these lines makes the license header a bit more consistent across files and also removes the possibility of error in attribution when license blocks or files are copied across since the contributed-by lines don't actually reflect reality in those cases. Move all "Contributed by" and similar lines (Written by, Test by, etc.) into a new file CONTRIBUTED-BY to retain record of these contributions. These contributors are also mentioned in manual/contrib.texi, so we just maintain this additional record as a courtesy to the earlier developers. The following scripts were used to filter a list of files to edit in place and to clean up the CONTRIBUTED-BY file respectively. These were not added to the glibc sources because they're not expected to be of any use in future given that this is a one time task: https://gist.github.com/siddhesh/b5ecac94eabfd72ed2916d6d8157e7dc https://gist.github.com/siddhesh/15ea1f5e435ace9774f485030695ee02 Reviewed-by: Carlos O'Donell <carlos@redhat.com>
1433 lines
41 KiB
ArmAsm
1433 lines
41 KiB
ArmAsm
.file "expl_m1.s"
|
|
|
|
|
|
// Copyright (c) 2000 - 2003, Intel Corporation
|
|
// All rights reserved.
|
|
//
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote
|
|
// products derived from this software without specific prior written
|
|
// permission.
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Intel Corporation is the author of this code, and requests that all
|
|
// problem reports or change requests be submitted to it directly at
|
|
// http://www.intel.com/software/products/opensource/libraries/num.htm.
|
|
//
|
|
// History
|
|
//==============================================================
|
|
// 02/02/00 Initial Version
|
|
// 04/04/00 Unwind support added
|
|
// 08/15/00 Bundle added after call to __libm_error_support to properly
|
|
// set [the previously overwritten] GR_Parameter_RESULT.
|
|
// 07/07/01 Improved speed of all paths
|
|
// 05/20/02 Cleaned up namespace and sf0 syntax
|
|
// 02/10/03 Reordered header: .section, .global, .proc, .align;
|
|
// used data8 for long double table values
|
|
// 03/11/03 Improved accuracy and performance, corrected missing inexact flags
|
|
// 04/17/03 Eliminated misplaced and unused data label
|
|
// 12/15/03 Eliminated call to error support on expm1l underflow
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Function: Combined expl(x) and expm1l(x), where
|
|
// x
|
|
// expl(x) = e , for double-extended precision x values
|
|
// x
|
|
// expm1l(x) = e - 1 for double-extended precision x values
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Resources Used:
|
|
//
|
|
// Floating-Point Registers: f8 (Input and Return Value)
|
|
// f9-f15,f32-f77
|
|
//
|
|
// General Purpose Registers:
|
|
// r14-r38
|
|
// r35-r38 (Used to pass arguments to error handling routine)
|
|
//
|
|
// Predicate Registers: p6-p15
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// IEEE Special Conditions:
|
|
//
|
|
// Denormal fault raised on denormal inputs
|
|
// Overflow exceptions raised when appropriate for exp and expm1
|
|
// Underflow exceptions raised when appropriate for exp and expm1
|
|
// (Error Handling Routine called for overflow and Underflow)
|
|
// Inexact raised when appropriate by algorithm
|
|
//
|
|
// exp(inf) = inf
|
|
// exp(-inf) = +0
|
|
// exp(SNaN) = QNaN
|
|
// exp(QNaN) = QNaN
|
|
// exp(0) = 1
|
|
// exp(EM_special Values) = QNaN
|
|
// exp(inf) = inf
|
|
// expm1(-inf) = -1
|
|
// expm1(SNaN) = QNaN
|
|
// expm1(QNaN) = QNaN
|
|
// expm1(0) = 0
|
|
// expm1(EM_special Values) = QNaN
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Implementation and Algorithm Notes:
|
|
//
|
|
// ker_exp_64( in_FR : X,
|
|
// out_FR : Y_hi,
|
|
// out_FR : Y_lo,
|
|
// out_FR : scale,
|
|
// out_PR : Safe )
|
|
//
|
|
// On input, X is in register format
|
|
// p6 for exp,
|
|
// p7 for expm1,
|
|
//
|
|
// On output,
|
|
//
|
|
// scale*(Y_hi + Y_lo) approximates exp(X) if exp
|
|
// scale*(Y_hi + Y_lo) approximates exp(X)-1 if expm1
|
|
//
|
|
// The accuracy is sufficient for a highly accurate 64 sig.
|
|
// bit implementation. Safe is set if there is no danger of
|
|
// overflow/underflow when the result is composed from scale,
|
|
// Y_hi and Y_lo. Thus, we can have a fast return if Safe is set.
|
|
// Otherwise, one must prepare to handle the possible exception
|
|
// appropriately. Note that SAFE not set (false) does not mean
|
|
// that overflow/underflow will occur; only the setting of SAFE
|
|
// guarantees the opposite.
|
|
//
|
|
// **** High Level Overview ****
|
|
//
|
|
// The method consists of three cases.
|
|
//
|
|
// If |X| < Tiny use case exp_tiny;
|
|
// else if |X| < 2^(-m) use case exp_small; m=12 for exp, m=7 for expm1
|
|
// else use case exp_regular;
|
|
//
|
|
// Case exp_tiny:
|
|
//
|
|
// 1 + X can be used to approximate exp(X)
|
|
// X + X^2/2 can be used to approximate exp(X) - 1
|
|
//
|
|
// Case exp_small:
|
|
//
|
|
// Here, exp(X) and exp(X) - 1 can all be
|
|
// approximated by a relatively simple polynomial.
|
|
//
|
|
// This polynomial resembles the truncated Taylor series
|
|
//
|
|
// exp(w) = 1 + w + w^2/2! + w^3/3! + ... + w^n/n!
|
|
//
|
|
// Case exp_regular:
|
|
//
|
|
// Here we use a table lookup method. The basic idea is that in
|
|
// order to compute exp(X), we accurately decompose X into
|
|
//
|
|
// X = N * log(2)/(2^12) + r, |r| <= log(2)/2^13.
|
|
//
|
|
// Hence
|
|
//
|
|
// exp(X) = 2^( N / 2^12 ) * exp(r).
|
|
//
|
|
// The value 2^( N / 2^12 ) is obtained by simple combinations
|
|
// of values calculated beforehand and stored in table; exp(r)
|
|
// is approximated by a short polynomial because |r| is small.
|
|
//
|
|
// We elaborate this method in 4 steps.
|
|
//
|
|
// Step 1: Reduction
|
|
//
|
|
// The value 2^12/log(2) is stored as a double-extended number
|
|
// L_Inv.
|
|
//
|
|
// N := round_to_nearest_integer( X * L_Inv )
|
|
//
|
|
// The value log(2)/2^12 is stored as two numbers L_hi and L_lo so
|
|
// that r can be computed accurately via
|
|
//
|
|
// r := (X - N*L_hi) - N*L_lo
|
|
//
|
|
// We pick L_hi such that N*L_hi is representable in 64 sig. bits
|
|
// and thus the FMA X - N*L_hi is error free. So r is the
|
|
// 1 rounding error from an exact reduction with respect to
|
|
//
|
|
// L_hi + L_lo.
|
|
//
|
|
// In particular, L_hi has 30 significant bit and can be stored
|
|
// as a double-precision number; L_lo has 64 significant bits and
|
|
// stored as a double-extended number.
|
|
//
|
|
// Step 2: Approximation
|
|
//
|
|
// exp(r) - 1 is approximated by a short polynomial of the form
|
|
//
|
|
// r + A_1 r^2 + A_2 r^3 + A_3 r^4 .
|
|
//
|
|
// Step 3: Composition from Table Values
|
|
//
|
|
// The value 2^( N / 2^12 ) can be composed from a couple of tables
|
|
// of precalculated values. First, express N as three integers
|
|
// K, M_1, and M_2 as
|
|
//
|
|
// N = K * 2^12 + M_1 * 2^6 + M_2
|
|
//
|
|
// Where 0 <= M_1, M_2 < 2^6; and K can be positive or negative.
|
|
// When N is represented in 2's complement, M_2 is simply the 6
|
|
// lsb's, M_1 is the next 6, and K is simply N shifted right
|
|
// arithmetically (sign extended) by 12 bits.
|
|
//
|
|
// Now, 2^( N / 2^12 ) is simply
|
|
//
|
|
// 2^K * 2^( M_1 / 2^6 ) * 2^( M_2 / 2^12 )
|
|
//
|
|
// Clearly, 2^K needs no tabulation. The other two values are less
|
|
// trivial because if we store each accurately to more than working
|
|
// precision, than its product is too expensive to calculate. We
|
|
// use the following method.
|
|
//
|
|
// Define two mathematical values, delta_1 and delta_2, implicitly
|
|
// such that
|
|
//
|
|
// T_1 = exp( [M_1 log(2)/2^6] - delta_1 )
|
|
// T_2 = exp( [M_2 log(2)/2^12] - delta_2 )
|
|
//
|
|
// are representable as 24 significant bits. To illustrate the idea,
|
|
// we show how we define delta_1:
|
|
//
|
|
// T_1 := round_to_24_bits( exp( M_1 log(2)/2^6 ) )
|
|
// delta_1 = (M_1 log(2)/2^6) - log( T_1 )
|
|
//
|
|
// The last equality means mathematical equality. We then tabulate
|
|
//
|
|
// W_1 := exp(delta_1) - 1
|
|
// W_2 := exp(delta_2) - 1
|
|
//
|
|
// Both in double precision.
|
|
//
|
|
// From the tabulated values T_1, T_2, W_1, W_2, we compose the values
|
|
// T and W via
|
|
//
|
|
// T := T_1 * T_2 ...exactly
|
|
// W := W_1 + (1 + W_1)*W_2
|
|
//
|
|
// W approximates exp( delta ) - 1 where delta = delta_1 + delta_2.
|
|
// The mathematical product of T and (W+1) is an accurate representation
|
|
// of 2^(M_1/2^6) * 2^(M_2/2^12).
|
|
//
|
|
// Step 4. Reconstruction
|
|
//
|
|
// Finally, we can reconstruct exp(X), exp(X) - 1.
|
|
// Because
|
|
//
|
|
// X = K * log(2) + (M_1*log(2)/2^6 - delta_1)
|
|
// + (M_2*log(2)/2^12 - delta_2)
|
|
// + delta_1 + delta_2 + r ...accurately
|
|
// We have
|
|
//
|
|
// exp(X) ~=~ 2^K * ( T + T*[exp(delta_1+delta_2+r) - 1] )
|
|
// ~=~ 2^K * ( T + T*[exp(delta + r) - 1] )
|
|
// ~=~ 2^K * ( T + T*[(exp(delta)-1)
|
|
// + exp(delta)*(exp(r)-1)] )
|
|
// ~=~ 2^K * ( T + T*( W + (1+W)*poly(r) ) )
|
|
// ~=~ 2^K * ( Y_hi + Y_lo )
|
|
//
|
|
// where Y_hi = T and Y_lo = T*(W + (1+W)*poly(r))
|
|
//
|
|
// For exp(X)-1, we have
|
|
//
|
|
// exp(X)-1 ~=~ 2^K * ( Y_hi + Y_lo ) - 1
|
|
// ~=~ 2^K * ( Y_hi + Y_lo - 2^(-K) )
|
|
//
|
|
// and we combine Y_hi + Y_lo - 2^(-N) into the form of two
|
|
// numbers Y_hi + Y_lo carefully.
|
|
//
|
|
// **** Algorithm Details ****
|
|
//
|
|
// A careful algorithm must be used to realize the mathematical ideas
|
|
// accurately. We describe each of the three cases. We assume SAFE
|
|
// is preset to be TRUE.
|
|
//
|
|
// Case exp_tiny:
|
|
//
|
|
// The important points are to ensure an accurate result under
|
|
// different rounding directions and a correct setting of the SAFE
|
|
// flag.
|
|
//
|
|
// If expm1 is 1, then
|
|
// SAFE := False ...possibility of underflow
|
|
// Scale := 1.0
|
|
// Y_hi := X
|
|
// Y_lo := 2^(-17000)
|
|
// Else
|
|
// Scale := 1.0
|
|
// Y_hi := 1.0
|
|
// Y_lo := X ...for different rounding modes
|
|
// Endif
|
|
//
|
|
// Case exp_small:
|
|
//
|
|
// Here we compute a simple polynomial. To exploit parallelism, we split
|
|
// the polynomial into several portions.
|
|
//
|
|
// Let r = X
|
|
//
|
|
// If exp ...i.e. exp( argument )
|
|
//
|
|
// rsq := r * r;
|
|
// r4 := rsq*rsq
|
|
// poly_lo := P_3 + r*(P_4 + r*(P_5 + r*P_6))
|
|
// poly_hi := r + rsq*(P_1 + r*P_2)
|
|
// Y_lo := poly_hi + r4 * poly_lo
|
|
// Y_hi := 1.0
|
|
// Scale := 1.0
|
|
//
|
|
// Else ...i.e. exp( argument ) - 1
|
|
//
|
|
// rsq := r * r
|
|
// r4 := rsq * rsq
|
|
// poly_lo := Q_7 + r*(Q_8 + r*Q_9))
|
|
// poly_med:= Q_3 + r*Q_4 + rsq*(Q_5 + r*Q_6)
|
|
// poly_med:= poly_med + r4*poly_lo
|
|
// poly_hi := Q_1 + r*Q_2
|
|
// Y_lo := rsq*(poly_hi + rsq*poly_lo)
|
|
// Y_hi := X
|
|
// Scale := 1.0
|
|
//
|
|
// Endif
|
|
//
|
|
// Case exp_regular:
|
|
//
|
|
// The previous description contain enough information except the
|
|
// computation of poly and the final Y_hi and Y_lo in the case for
|
|
// exp(X)-1.
|
|
//
|
|
// The computation of poly for Step 2:
|
|
//
|
|
// rsq := r*r
|
|
// poly := r + rsq*(A_1 + r*(A_2 + r*A_3))
|
|
//
|
|
// For the case exp(X) - 1, we need to incorporate 2^(-K) into
|
|
// Y_hi and Y_lo at the end of Step 4.
|
|
//
|
|
// If K > 10 then
|
|
// Y_lo := Y_lo - 2^(-K)
|
|
// Else
|
|
// If K < -10 then
|
|
// Y_lo := Y_hi + Y_lo
|
|
// Y_hi := -2^(-K)
|
|
// Else
|
|
// Y_hi := Y_hi - 2^(-K)
|
|
// End If
|
|
// End If
|
|
//
|
|
//=======================================================
|
|
// General Purpose Registers
|
|
//
|
|
GR_ad_Arg = r14
|
|
GR_ad_A = r15
|
|
GR_sig_inv_ln2 = r15
|
|
GR_rshf_2to51 = r16
|
|
GR_ad_PQ = r16
|
|
GR_ad_Q = r16
|
|
GR_signexp_x = r17
|
|
GR_exp_x = r17
|
|
GR_small_exp = r18
|
|
GR_rshf = r18
|
|
GR_exp_mask = r19
|
|
GR_ad_W1 = r20
|
|
GR_exp_2tom51 = r20
|
|
GR_ad_W2 = r21
|
|
GR_exp_underflow = r21
|
|
GR_M2 = r22
|
|
GR_huge_exp = r22
|
|
GR_M1 = r23
|
|
GR_huge_signif = r23
|
|
GR_K = r24
|
|
GR_one = r24
|
|
GR_minus_one = r24
|
|
GR_exp_bias = r25
|
|
GR_ad_Limits = r26
|
|
GR_N_fix = r26
|
|
GR_exp_2_mk = r26
|
|
GR_ad_P = r27
|
|
GR_exp_2_k = r27
|
|
GR_big_expo_neg = r28
|
|
GR_very_small_exp = r29
|
|
GR_exp_half = r29
|
|
GR_ad_T1 = r30
|
|
GR_ad_T2 = r31
|
|
|
|
GR_SAVE_PFS = r32
|
|
GR_SAVE_B0 = r33
|
|
GR_SAVE_GP = r34
|
|
GR_Parameter_X = r35
|
|
GR_Parameter_Y = r36
|
|
GR_Parameter_RESULT = r37
|
|
GR_Parameter_TAG = r38
|
|
|
|
// Floating Point Registers
|
|
//
|
|
FR_norm_x = f9
|
|
FR_RSHF_2TO51 = f10
|
|
FR_INV_LN2_2TO63 = f11
|
|
FR_W_2TO51_RSH = f12
|
|
FR_2TOM51 = f13
|
|
FR_RSHF = f14
|
|
FR_Y_hi = f34
|
|
FR_Y_lo = f35
|
|
FR_scale = f36
|
|
FR_tmp = f37
|
|
FR_float_N = f38
|
|
FR_N_signif = f39
|
|
FR_L_hi = f40
|
|
FR_L_lo = f41
|
|
FR_r = f42
|
|
FR_W1 = f43
|
|
FR_T1 = f44
|
|
FR_W2 = f45
|
|
FR_T2 = f46
|
|
FR_W1_p1 = f47
|
|
FR_rsq = f48
|
|
FR_A2 = f49
|
|
FR_r4 = f50
|
|
FR_A3 = f51
|
|
FR_poly = f52
|
|
FR_T = f53
|
|
FR_W = f54
|
|
FR_Wp1 = f55
|
|
FR_p21 = f59
|
|
FR_p210 = f59
|
|
FR_p65 = f60
|
|
FR_p654 = f60
|
|
FR_p6543 = f60
|
|
FR_2_mk = f61
|
|
FR_P4Q7 = f61
|
|
FR_P4 = f61
|
|
FR_Q7 = f61
|
|
FR_P3Q6 = f62
|
|
FR_P3 = f62
|
|
FR_Q6 = f62
|
|
FR_q65 = f62
|
|
FR_q6543 = f62
|
|
FR_P2Q5 = f63
|
|
FR_P2 = f63
|
|
FR_Q5 = f63
|
|
FR_P1Q4 = f64
|
|
FR_P1 = f64
|
|
FR_Q4 = f64
|
|
FR_q43 = f64
|
|
FR_Q3 = f65
|
|
FR_Q2 = f66
|
|
FR_q21 = f66
|
|
FR_Q1 = f67
|
|
FR_A1 = f68
|
|
FR_P6Q9 = f68
|
|
FR_P6 = f68
|
|
FR_Q9 = f68
|
|
FR_P5Q8 = f69
|
|
FR_P5 = f69
|
|
FR_Q8 = f69
|
|
FR_q987 = f69
|
|
FR_q98 = f69
|
|
FR_q9876543 = f69
|
|
FR_min_oflow_x = f70
|
|
FR_huge_exp = f70
|
|
FR_zero_uflow_x = f71
|
|
FR_huge_signif = f71
|
|
FR_huge = f72
|
|
FR_small = f72
|
|
FR_half = f73
|
|
FR_T_scale = f74
|
|
FR_result_lo = f75
|
|
FR_W_T_scale = f76
|
|
FR_Wp1_T_scale = f77
|
|
FR_ftz = f77
|
|
FR_half_x = f77
|
|
//
|
|
|
|
FR_X = f9
|
|
FR_Y = f0
|
|
FR_RESULT = f15
|
|
|
|
// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
|
|
|
|
// double-extended 1/ln(2)
|
|
// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
|
|
// 3fff b8aa 3b29 5c17 f0bc
|
|
// For speed the significand will be loaded directly with a movl and setf.sig
|
|
// and the exponent will be bias+63 instead of bias+0. Thus subsequent
|
|
// computations need to scale appropriately.
|
|
// The constant 2^12/ln(2) is needed for the computation of N. This is also
|
|
// obtained by scaling the computations.
|
|
//
|
|
// Two shifting constants are loaded directly with movl and setf.d.
|
|
// 1. RSHF_2TO51 = 1.1000..00 * 2^(63-12)
|
|
// This constant is added to x*1/ln2 to shift the integer part of
|
|
// x*2^12/ln2 into the rightmost bits of the significand.
|
|
// The result of this fma is N_signif.
|
|
// 2. RSHF = 1.1000..00 * 2^(63)
|
|
// This constant is subtracted from N_signif * 2^(-51) to give
|
|
// the integer part of N, N_fix, as a floating-point number.
|
|
// The result of this fms is float_N.
|
|
|
|
RODATA
|
|
.align 64
|
|
LOCAL_OBJECT_START(Constants_exp_64_Arg)
|
|
//data8 0xB8AA3B295C17F0BC,0x0000400B // Inv_L = 2^12/log(2)
|
|
data8 0xB17217F400000000,0x00003FF2 // L_hi = hi part log(2)/2^12
|
|
data8 0xF473DE6AF278ECE6,0x00003FD4 // L_lo = lo part log(2)/2^12
|
|
LOCAL_OBJECT_END(Constants_exp_64_Arg)
|
|
|
|
LOCAL_OBJECT_START(Constants_exp_64_Limits)
|
|
data8 0xb17217f7d1cf79ac,0x0000400c // Smallest long dbl oflow x
|
|
data8 0xb220000000000000,0x0000c00c // Small long dbl uflow zero x
|
|
LOCAL_OBJECT_END(Constants_exp_64_Limits)
|
|
|
|
LOCAL_OBJECT_START(Constants_exp_64_A)
|
|
data8 0xAAAAAAABB1B736A0,0x00003FFA // A3
|
|
data8 0xAAAAAAAB90CD6327,0x00003FFC // A2
|
|
data8 0xFFFFFFFFFFFFFFFF,0x00003FFD // A1
|
|
LOCAL_OBJECT_END(Constants_exp_64_A)
|
|
|
|
LOCAL_OBJECT_START(Constants_exp_64_P)
|
|
data8 0xD00D6C8143914A8A,0x00003FF2 // P6
|
|
data8 0xB60BC4AC30304B30,0x00003FF5 // P5
|
|
data8 0x888888887474C518,0x00003FF8 // P4
|
|
data8 0xAAAAAAAA8DAE729D,0x00003FFA // P3
|
|
data8 0xAAAAAAAAAAAAAF61,0x00003FFC // P2
|
|
data8 0x80000000000004C7,0x00003FFE // P1
|
|
LOCAL_OBJECT_END(Constants_exp_64_P)
|
|
|
|
LOCAL_OBJECT_START(Constants_exp_64_Q)
|
|
data8 0x93F2AC5F7471F32E, 0x00003FE9 // Q9
|
|
data8 0xB8DA0F3550B3E764, 0x00003FEC // Q8
|
|
data8 0xD00D00D0028E89C4, 0x00003FEF // Q7
|
|
data8 0xD00D00DAEB8C4E91, 0x00003FF2 // Q6
|
|
data8 0xB60B60B60B60B6F5, 0x00003FF5 // Q5
|
|
data8 0x888888888886CC23, 0x00003FF8 // Q4
|
|
data8 0xAAAAAAAAAAAAAAAB, 0x00003FFA // Q3
|
|
data8 0xAAAAAAAAAAAAAAAB, 0x00003FFC // Q2
|
|
data8 0x8000000000000000, 0x00003FFE // Q1
|
|
LOCAL_OBJECT_END(Constants_exp_64_Q)
|
|
|
|
LOCAL_OBJECT_START(Constants_exp_64_T1)
|
|
data4 0x3F800000,0x3F8164D2,0x3F82CD87,0x3F843A29
|
|
data4 0x3F85AAC3,0x3F871F62,0x3F88980F,0x3F8A14D5
|
|
data4 0x3F8B95C2,0x3F8D1ADF,0x3F8EA43A,0x3F9031DC
|
|
data4 0x3F91C3D3,0x3F935A2B,0x3F94F4F0,0x3F96942D
|
|
data4 0x3F9837F0,0x3F99E046,0x3F9B8D3A,0x3F9D3EDA
|
|
data4 0x3F9EF532,0x3FA0B051,0x3FA27043,0x3FA43516
|
|
data4 0x3FA5FED7,0x3FA7CD94,0x3FA9A15B,0x3FAB7A3A
|
|
data4 0x3FAD583F,0x3FAF3B79,0x3FB123F6,0x3FB311C4
|
|
data4 0x3FB504F3,0x3FB6FD92,0x3FB8FBAF,0x3FBAFF5B
|
|
data4 0x3FBD08A4,0x3FBF179A,0x3FC12C4D,0x3FC346CD
|
|
data4 0x3FC5672A,0x3FC78D75,0x3FC9B9BE,0x3FCBEC15
|
|
data4 0x3FCE248C,0x3FD06334,0x3FD2A81E,0x3FD4F35B
|
|
data4 0x3FD744FD,0x3FD99D16,0x3FDBFBB8,0x3FDE60F5
|
|
data4 0x3FE0CCDF,0x3FE33F89,0x3FE5B907,0x3FE8396A
|
|
data4 0x3FEAC0C7,0x3FED4F30,0x3FEFE4BA,0x3FF28177
|
|
data4 0x3FF5257D,0x3FF7D0DF,0x3FFA83B3,0x3FFD3E0C
|
|
LOCAL_OBJECT_END(Constants_exp_64_T1)
|
|
|
|
LOCAL_OBJECT_START(Constants_exp_64_T2)
|
|
data4 0x3F800000,0x3F80058C,0x3F800B18,0x3F8010A4
|
|
data4 0x3F801630,0x3F801BBD,0x3F80214A,0x3F8026D7
|
|
data4 0x3F802C64,0x3F8031F2,0x3F803780,0x3F803D0E
|
|
data4 0x3F80429C,0x3F80482B,0x3F804DB9,0x3F805349
|
|
data4 0x3F8058D8,0x3F805E67,0x3F8063F7,0x3F806987
|
|
data4 0x3F806F17,0x3F8074A8,0x3F807A39,0x3F807FCA
|
|
data4 0x3F80855B,0x3F808AEC,0x3F80907E,0x3F809610
|
|
data4 0x3F809BA2,0x3F80A135,0x3F80A6C7,0x3F80AC5A
|
|
data4 0x3F80B1ED,0x3F80B781,0x3F80BD14,0x3F80C2A8
|
|
data4 0x3F80C83C,0x3F80CDD1,0x3F80D365,0x3F80D8FA
|
|
data4 0x3F80DE8F,0x3F80E425,0x3F80E9BA,0x3F80EF50
|
|
data4 0x3F80F4E6,0x3F80FA7C,0x3F810013,0x3F8105AA
|
|
data4 0x3F810B41,0x3F8110D8,0x3F81166F,0x3F811C07
|
|
data4 0x3F81219F,0x3F812737,0x3F812CD0,0x3F813269
|
|
data4 0x3F813802,0x3F813D9B,0x3F814334,0x3F8148CE
|
|
data4 0x3F814E68,0x3F815402,0x3F81599C,0x3F815F37
|
|
LOCAL_OBJECT_END(Constants_exp_64_T2)
|
|
|
|
LOCAL_OBJECT_START(Constants_exp_64_W1)
|
|
data8 0x0000000000000000, 0xBE384454171EC4B4
|
|
data8 0xBE6947414AA72766, 0xBE5D32B6D42518F8
|
|
data8 0x3E68D96D3A319149, 0xBE68F4DA62415F36
|
|
data8 0xBE6DDA2FC9C86A3B, 0x3E6B2E50F49228FE
|
|
data8 0xBE49C0C21188B886, 0x3E64BFC21A4C2F1F
|
|
data8 0xBE6A2FBB2CB98B54, 0x3E5DC5DE9A55D329
|
|
data8 0x3E69649039A7AACE, 0x3E54728B5C66DBA5
|
|
data8 0xBE62B0DBBA1C7D7D, 0x3E576E0409F1AF5F
|
|
data8 0x3E6125001A0DD6A1, 0xBE66A419795FBDEF
|
|
data8 0xBE5CDE8CE1BD41FC, 0xBE621376EA54964F
|
|
data8 0x3E6370BE476E76EE, 0x3E390D1A3427EB92
|
|
data8 0x3E1336DE2BF82BF8, 0xBE5FF1CBD0F7BD9E
|
|
data8 0xBE60A3550CEB09DD, 0xBE5CA37E0980F30D
|
|
data8 0xBE5C541B4C082D25, 0xBE5BBECA3B467D29
|
|
data8 0xBE400D8AB9D946C5, 0xBE5E2A0807ED374A
|
|
data8 0xBE66CB28365C8B0A, 0x3E3AAD5BD3403BCA
|
|
data8 0x3E526055C7EA21E0, 0xBE442C75E72880D6
|
|
data8 0x3E58B2BB85222A43, 0xBE5AAB79522C42BF
|
|
data8 0xBE605CB4469DC2BC, 0xBE589FA7A48C40DC
|
|
data8 0xBE51C2141AA42614, 0xBE48D087C37293F4
|
|
data8 0x3E367A1CA2D673E0, 0xBE51BEBB114F7A38
|
|
data8 0xBE6348E5661A4B48, 0xBDF526431D3B9962
|
|
data8 0x3E3A3B5E35A78A53, 0xBE46C46C1CECD788
|
|
data8 0xBE60B7EC7857D689, 0xBE594D3DD14F1AD7
|
|
data8 0xBE4F9C304C9A8F60, 0xBE52187302DFF9D2
|
|
data8 0xBE5E4C8855E6D68F, 0xBE62140F667F3DC4
|
|
data8 0xBE36961B3BF88747, 0x3E602861C96EC6AA
|
|
data8 0xBE3B5151D57FD718, 0x3E561CD0FC4A627B
|
|
data8 0xBE3A5217CA913FEA, 0x3E40A3CC9A5D193A
|
|
data8 0xBE5AB71310A9C312, 0x3E4FDADBC5F57719
|
|
data8 0x3E361428DBDF59D5, 0x3E5DB5DB61B4180D
|
|
data8 0xBE42AD5F7408D856, 0x3E2A314831B2B707
|
|
LOCAL_OBJECT_END(Constants_exp_64_W1)
|
|
|
|
LOCAL_OBJECT_START(Constants_exp_64_W2)
|
|
data8 0x0000000000000000, 0xBE641F2537A3D7A2
|
|
data8 0xBE68DD57AD028C40, 0xBE5C77D8F212B1B6
|
|
data8 0x3E57878F1BA5B070, 0xBE55A36A2ECAE6FE
|
|
data8 0xBE620608569DFA3B, 0xBE53B50EA6D300A3
|
|
data8 0x3E5B5EF2223F8F2C, 0xBE56A0D9D6DE0DF4
|
|
data8 0xBE64EEF3EAE28F51, 0xBE5E5AE2367EA80B
|
|
data8 0x3E47CB1A5FCBC02D, 0xBE656BA09BDAFEB7
|
|
data8 0x3E6E70C6805AFEE7, 0xBE6E0509A3415EBA
|
|
data8 0xBE56856B49BFF529, 0x3E66DD3300508651
|
|
data8 0x3E51165FC114BC13, 0x3E53333DC453290F
|
|
data8 0x3E6A072B05539FDA, 0xBE47CD877C0A7696
|
|
data8 0xBE668BF4EB05C6D9, 0xBE67C3E36AE86C93
|
|
data8 0xBE533904D0B3E84B, 0x3E63E8D9556B53CE
|
|
data8 0x3E212C8963A98DC8, 0xBE33138F032A7A22
|
|
data8 0x3E530FA9BC584008, 0xBE6ADF82CCB93C97
|
|
data8 0x3E5F91138370EA39, 0x3E5443A4FB6A05D8
|
|
data8 0x3E63DACD181FEE7A, 0xBE62B29DF0F67DEC
|
|
data8 0x3E65C4833DDE6307, 0x3E5BF030D40A24C1
|
|
data8 0x3E658B8F14E437BE, 0xBE631C29ED98B6C7
|
|
data8 0x3E6335D204CF7C71, 0x3E529EEDE954A79D
|
|
data8 0x3E5D9257F64A2FB8, 0xBE6BED1B854ED06C
|
|
data8 0x3E5096F6D71405CB, 0xBE3D4893ACB9FDF5
|
|
data8 0xBDFEB15801B68349, 0x3E628D35C6A463B9
|
|
data8 0xBE559725ADE45917, 0xBE68C29C042FC476
|
|
data8 0xBE67593B01E511FA, 0xBE4A4313398801ED
|
|
data8 0x3E699571DA7C3300, 0x3E5349BE08062A9E
|
|
data8 0x3E5229C4755BB28E, 0x3E67E42677A1F80D
|
|
data8 0xBE52B33F6B69C352, 0xBE6B3550084DA57F
|
|
data8 0xBE6DB03FD1D09A20, 0xBE60CBC42161B2C1
|
|
data8 0x3E56ED9C78A2B771, 0xBE508E319D0FA795
|
|
data8 0xBE59482AFD1A54E9, 0xBE2A17CEB07FD23E
|
|
data8 0x3E68BF5C17365712, 0x3E3956F9B3785569
|
|
LOCAL_OBJECT_END(Constants_exp_64_W2)
|
|
|
|
|
|
.section .text
|
|
|
|
GLOBAL_IEEE754_ENTRY(expm1l)
|
|
|
|
//
|
|
// Set p7 true for expm1, p6 false
|
|
//
|
|
|
|
{ .mlx
|
|
getf.exp GR_signexp_x = f8 // Get sign and exponent of x, redo if unorm
|
|
movl GR_sig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
|
|
}
|
|
{ .mlx
|
|
addl GR_ad_Arg = @ltoff(Constants_exp_64_Arg#),gp
|
|
movl GR_rshf_2to51 = 0x4718000000000000 // 1.10000 2^(63+51)
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ld8 GR_ad_Arg = [GR_ad_Arg] // Point to Arg table
|
|
fclass.m p8, p0 = f8, 0x1E7 // Test x for natval, nan, inf, zero
|
|
cmp.eq p7, p6 = r0, r0
|
|
}
|
|
{ .mfb
|
|
mov GR_exp_half = 0x0FFFE // Exponent of 0.5, for very small path
|
|
fnorm.s1 FR_norm_x = f8 // Normalize x
|
|
br.cond.sptk exp_continue
|
|
}
|
|
;;
|
|
|
|
GLOBAL_IEEE754_END(expm1l)
|
|
libm_alias_ldouble_other (__expm1, expm1)
|
|
|
|
|
|
GLOBAL_IEEE754_ENTRY(expl)
|
|
//
|
|
// Set p7 false for exp, p6 true
|
|
//
|
|
{ .mlx
|
|
getf.exp GR_signexp_x = f8 // Get sign and exponent of x, redo if unorm
|
|
movl GR_sig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
|
|
}
|
|
{ .mlx
|
|
addl GR_ad_Arg = @ltoff(Constants_exp_64_Arg#),gp
|
|
movl GR_rshf_2to51 = 0x4718000000000000 // 1.10000 2^(63+51)
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ld8 GR_ad_Arg = [GR_ad_Arg] // Point to Arg table
|
|
fclass.m p8, p0 = f8, 0x1E7 // Test x for natval, nan, inf, zero
|
|
cmp.eq p6, p7 = r0, r0
|
|
}
|
|
{ .mfi
|
|
mov GR_exp_half = 0x0FFFE // Exponent of 0.5, for very small path
|
|
fnorm.s1 FR_norm_x = f8 // Normalize x
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
exp_continue:
|
|
// Form two constants we need
|
|
// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128
|
|
// 1.1000..000 * 2^(63+63-12) to right shift int(N) into the significand
|
|
|
|
{ .mfi
|
|
setf.sig FR_INV_LN2_2TO63 = GR_sig_inv_ln2 // form 1/ln2 * 2^63
|
|
fclass.nm.unc p9, p0 = f8, 0x1FF // Test x for unsupported
|
|
mov GR_exp_2tom51 = 0xffff-51
|
|
}
|
|
{ .mlx
|
|
setf.d FR_RSHF_2TO51 = GR_rshf_2to51 // Form const 1.1000 * 2^(63+51)
|
|
movl GR_rshf = 0x43e8000000000000 // 1.10000 2^63 for right shift
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
setf.exp FR_half = GR_exp_half // Form 0.5 for very small path
|
|
fma.s1 FR_scale = f1,f1,f0 // Scale = 1.0
|
|
mov GR_exp_bias = 0x0FFFF // Set exponent bias
|
|
}
|
|
{ .mib
|
|
add GR_ad_Limits = 0x20, GR_ad_Arg // Point to Limits table
|
|
mov GR_exp_mask = 0x1FFFF // Form exponent mask
|
|
(p8) br.cond.spnt EXP_64_SPECIAL // Branch if natval, nan, inf, zero
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
setf.exp FR_2TOM51 = GR_exp_2tom51 // Form 2^-51 for scaling float_N
|
|
nop.f 999
|
|
add GR_ad_A = 0x40, GR_ad_Arg // Point to A table
|
|
}
|
|
{ .mib
|
|
setf.d FR_RSHF = GR_rshf // Form right shift const 1.1000 * 2^63
|
|
add GR_ad_T1 = 0x160, GR_ad_Arg // Point to T1 table
|
|
(p9) br.cond.spnt EXP_64_UNSUPPORTED // Branch if unsupported
|
|
}
|
|
;;
|
|
|
|
.pred.rel "mutex",p6,p7
|
|
{ .mfi
|
|
ldfe FR_L_hi = [GR_ad_Arg],16 // Get L_hi
|
|
fcmp.eq.s0 p9,p0 = f8, f0 // Dummy op to flag denormals
|
|
(p6) add GR_ad_PQ = 0x30, GR_ad_A // Point to P table for exp
|
|
}
|
|
{ .mfi
|
|
ldfe FR_min_oflow_x = [GR_ad_Limits],16 // Get min x to cause overflow
|
|
fmpy.s1 FR_rsq = f8, f8 // rsq = x * x for small path
|
|
(p7) add GR_ad_PQ = 0x90, GR_ad_A // Point to Q table for expm1
|
|
};;
|
|
|
|
{ .mmi
|
|
ldfe FR_L_lo = [GR_ad_Arg],16 // Get L_lo
|
|
ldfe FR_zero_uflow_x = [GR_ad_Limits],16 // Get x for zero uflow result
|
|
add GR_ad_W1 = 0x200, GR_ad_T1 // Point to W1 table
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfe FR_P6Q9 = [GR_ad_PQ],16 // P6(exp) or Q9(expm1) for small path
|
|
mov FR_r = FR_norm_x // r = X for small path
|
|
mov GR_very_small_exp = -60 // Exponent of x for very small path
|
|
}
|
|
{ .mfi
|
|
add GR_ad_W2 = 0x400, GR_ad_T1 // Point to W2 table
|
|
nop.f 999
|
|
(p7) mov GR_small_exp = -7 // Exponent of x for small path expm1
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfe FR_P5Q8 = [GR_ad_PQ],16 // P5(exp) or Q8(expm1) for small path
|
|
and GR_exp_x = GR_signexp_x, GR_exp_mask
|
|
(p6) mov GR_small_exp = -12 // Exponent of x for small path exp
|
|
}
|
|
;;
|
|
|
|
// N_signif = X * Inv_log2_by_2^12
|
|
// By adding 1.10...0*2^63 we shift and get round_int(N_signif) in significand.
|
|
// We actually add 1.10...0*2^51 to X * Inv_log2 to do the same thing.
|
|
{ .mfi
|
|
ldfe FR_P4Q7 = [GR_ad_PQ],16 // P4(exp) or Q7(expm1) for small path
|
|
fma.s1 FR_N_signif = FR_norm_x, FR_INV_LN2_2TO63, FR_RSHF_2TO51
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
sub GR_exp_x = GR_exp_x, GR_exp_bias // Get exponent
|
|
fmpy.s1 FR_r4 = FR_rsq, FR_rsq // Form r4 for small path
|
|
cmp.eq.unc p15, p0 = r0, r0 // Set Safe as default
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfe FR_P3Q6 = [GR_ad_PQ],16 // P3(exp) or Q6(expm1) for small path
|
|
cmp.lt p14, p0 = GR_exp_x, GR_very_small_exp // Is |x| < 2^-60?
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfe FR_P2Q5 = [GR_ad_PQ],16 // P2(exp) or Q5(expm1) for small path
|
|
fmpy.s1 FR_half_x = FR_half, FR_norm_x // 0.5 * x for very small path
|
|
cmp.lt p13, p0 = GR_exp_x, GR_small_exp // Is |x| < 2^-m?
|
|
}
|
|
{ .mib
|
|
nop.m 999
|
|
nop.i 999
|
|
(p14) br.cond.spnt EXP_VERY_SMALL // Branch if |x| < 2^-60
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfe FR_A3 = [GR_ad_A],16 // Get A3 for normal path
|
|
fcmp.ge.s1 p10,p0 = FR_norm_x, FR_min_oflow_x // Will result overflow?
|
|
mov GR_big_expo_neg = -16381 // -0x3ffd
|
|
}
|
|
{ .mfb
|
|
ldfe FR_P1Q4 = [GR_ad_PQ],16 // P1(exp) or Q4(expm1) for small path
|
|
nop.f 999
|
|
(p13) br.cond.spnt EXP_SMALL // Branch if |x| < 2^-m
|
|
// m=12 for exp, m=7 for expm1
|
|
}
|
|
;;
|
|
|
|
// Now we are on the main path for |x| >= 2^-m, m=12 for exp, m=7 for expm1
|
|
//
|
|
// float_N = round_int(N_signif)
|
|
// The signficand of N_signif contains the rounded integer part of X * 2^12/ln2,
|
|
// as a twos complement number in the lower bits (that is, it may be negative).
|
|
// That twos complement number (called N) is put into GR_N.
|
|
|
|
// Since N_signif is scaled by 2^51, it must be multiplied by 2^-51
|
|
// before the shift constant 1.10000 * 2^63 is subtracted to yield float_N.
|
|
// Thus, float_N contains the floating point version of N
|
|
|
|
|
|
{ .mfi
|
|
ldfe FR_A2 = [GR_ad_A],16 // Get A2 for main path
|
|
fcmp.lt.s1 p11,p0 = FR_norm_x, FR_zero_uflow_x // Certain zero, uflow?
|
|
add GR_ad_T2 = 0x100, GR_ad_T1 // Point to T2 table
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fms.s1 FR_float_N = FR_N_signif, FR_2TOM51, FR_RSHF // Form float_N
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mbb
|
|
getf.sig GR_N_fix = FR_N_signif // Get N from significand
|
|
(p10) br.cond.spnt EXP_OVERFLOW // Branch if result will overflow
|
|
(p11) br.cond.spnt EXP_CERTAIN_UNDERFLOW_ZERO // Branch if certain zero, uflow
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfe FR_A1 = [GR_ad_A],16 // Get A1 for main path
|
|
fnma.s1 FR_r = FR_L_hi, FR_float_N, FR_norm_x // r = -L_hi * float_N + x
|
|
extr.u GR_M1 = GR_N_fix, 6, 6 // Extract index M_1
|
|
}
|
|
{ .mfi
|
|
and GR_M2 = 0x3f, GR_N_fix // Extract index M_2
|
|
nop.f 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// N_fix is only correct up to 50 bits because of our right shift technique.
|
|
// Actually in the normal path we will have restricted K to about 14 bits.
|
|
// Somewhat arbitrarily we extract 32 bits.
|
|
{ .mfi
|
|
shladd GR_ad_W1 = GR_M1,3,GR_ad_W1 // Point to W1
|
|
nop.f 999
|
|
extr GR_K = GR_N_fix, 12, 32 // Extract limited range K
|
|
}
|
|
{ .mfi
|
|
shladd GR_ad_T1 = GR_M1,2,GR_ad_T1 // Point to T1
|
|
nop.f 999
|
|
shladd GR_ad_T2 = GR_M2,2,GR_ad_T2 // Point to T2
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfs FR_T1 = [GR_ad_T1],0 // Get T1
|
|
ldfd FR_W1 = [GR_ad_W1],0 // Get W1
|
|
add GR_exp_2_k = GR_exp_bias, GR_K // Form exponent of 2^k
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfs FR_T2 = [GR_ad_T2],0 // Get T2
|
|
shladd GR_ad_W2 = GR_M2,3,GR_ad_W2 // Point to W2
|
|
sub GR_exp_2_mk = GR_exp_bias, GR_K // Form exponent of 2^-k
|
|
}
|
|
;;
|
|
|
|
{ .mmf
|
|
ldfd FR_W2 = [GR_ad_W2],0 // Get W2
|
|
setf.exp FR_scale = GR_exp_2_k // Set scale = 2^k
|
|
fnma.s1 FR_r = FR_L_lo, FR_float_N, FR_r // r = -L_lo * float_N + r
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
setf.exp FR_2_mk = GR_exp_2_mk // Form 2^-k
|
|
fma.s1 FR_poly = FR_r, FR_A3, FR_A2 // poly = r * A3 + A2
|
|
cmp.lt p8,p15 = GR_K,GR_big_expo_neg // Set Safe if K > big_expo_neg
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 FR_T = FR_T1, FR_T2 // T = T1 * T2
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 FR_W1_p1 = FR_W1, f1 // W1_p1 = W1 + 1.0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p7) cmp.lt.unc p8, p9 = 10, GR_K // If expm1, set p8 if K > 10
|
|
fma.s1 FR_poly = FR_r, FR_poly, FR_A1 // poly = r * poly + A1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p7) cmp.eq p15, p0 = r0, r0 // If expm1, set Safe flag
|
|
fma.s1 FR_T_scale = FR_T, FR_scale, f0 // T_scale = T * scale
|
|
(p9) cmp.gt.unc p9, p10 = -10, GR_K // If expm1, set p9 if K < -10
|
|
// If expm1, set p10 if -10<=K<=10
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 FR_W = FR_W2, FR_W1_p1, FR_W1 // W = W2 * (W1+1.0) + W1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
mov FR_Y_hi = FR_T // Assume Y_hi = T
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 FR_poly = FR_rsq, FR_poly, FR_r // poly = rsq * poly + r
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 FR_Wp1_T_scale = FR_W, FR_T_scale, FR_T_scale // (W+1)*T*scale
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 FR_W_T_scale = FR_W, FR_T_scale, f0 // W*T*scale
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fsub.s1 FR_Y_hi = f0, FR_2_mk // If expm1, if K < -10 set Y_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p10) fsub.s1 FR_Y_hi = FR_T, FR_2_mk // If expm1, if |K|<=10 set Y_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 FR_result_lo = FR_Wp1_T_scale, FR_poly, FR_W_T_scale
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
.pred.rel "mutex",p8,p9
|
|
// If K > 10 adjust result_lo = result_lo - scale * 2^-k
|
|
// If |K| <= 10 adjust result_lo = result_lo + scale * T
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fnma.s1 FR_result_lo = FR_scale, FR_2_mk, FR_result_lo // If K > 10
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fma.s1 FR_result_lo = FR_T_scale, f1, FR_result_lo // If |K| <= 10
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s0 FR_tmp = FR_A1, FR_A1 // Dummy op to set inexact
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p15) fma.s0 f8 = FR_Y_hi, FR_scale, FR_result_lo // Safe result
|
|
(p15) br.ret.sptk b0 // Safe exit for normal path
|
|
}
|
|
;;
|
|
|
|
// Here if unsafe, will only be here for exp with K < big_expo_neg
|
|
{ .mfb
|
|
nop.m 999
|
|
fma.s0 FR_RESULT = FR_Y_hi, FR_scale, FR_result_lo // Prelim result
|
|
br.cond.sptk EXP_POSSIBLE_UNDERFLOW // Branch to unsafe code
|
|
}
|
|
;;
|
|
|
|
|
|
EXP_SMALL:
|
|
// Here if 2^-60 < |x| < 2^-m, m=12 for exp, m=7 for expm1
|
|
{ .mfi
|
|
(p7) ldfe FR_Q3 = [GR_ad_Q],16 // Get Q3 for small path, if expm1
|
|
(p6) fma.s1 FR_p65 = FR_P6, FR_r, FR_P5 // If exp, p65 = P6 * r + P5
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
mov GR_minus_one = -1
|
|
(p7) fma.s1 FR_q98 = FR_Q9, FR_r, FR_Q8 // If expm1, q98 = Q9 * r + Q8
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p7) ldfe FR_Q2 = [GR_ad_Q],16 // Get Q2 for small path, if expm1
|
|
(p7) fma.s1 FR_q65 = FR_Q6, FR_r, FR_Q5 // If expm1, q65 = Q6 * r + Q5
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
setf.sig FR_tmp = GR_minus_one // Create value to force inexact
|
|
(p6) fma.s1 FR_p21 = FR_P2, FR_r, FR_P1 // If exp, p21 = P2 * r + P1
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
(p7) ldfe FR_Q1 = [GR_ad_Q],16 // Get Q1 for small path, if expm1
|
|
(p7) fma.s1 FR_q43 = FR_Q4, FR_r, FR_Q3 // If expm1, q43 = Q4 * r + Q3
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fma.s1 FR_p654 = FR_p65, FR_r, FR_P4 // If exp, p654 = p65 * r + P4
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fma.s1 FR_q987 = FR_q98, FR_r, FR_Q7 // If expm1, q987 = q98 * r + Q7
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fma.s1 FR_q21 = FR_Q2, FR_r, FR_Q1 // If expm1, q21 = Q2 * r + Q1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fma.s1 FR_p210 = FR_p21, FR_rsq, FR_r // If exp, p210 = p21 * r + P0
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fma.s1 FR_q6543 = FR_q65, FR_rsq, FR_q43 // If expm1, q6543 = q65*r2+q43
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fma.s1 FR_p6543 = FR_p654, FR_r, FR_P3 // If exp, p6543 = p654 * r + P3
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fma.s1 FR_q9876543 = FR_q987, FR_r4, FR_q6543 // If expm1, q9876543 = ...
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fma.s1 FR_Y_lo = FR_p6543, FR_r4, FR_p210 // If exp, form Y_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fma.s1 FR_Y_lo = FR_q9876543, FR_rsq, FR_q21 // If expm1, form Y_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s0 FR_tmp = FR_tmp, FR_tmp // Dummy op to set inexact
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
.pred.rel "mutex",p6,p7
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fma.s0 f8 = FR_Y_lo, f1, f1 // If exp, result = 1 + Y_lo
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p7) fma.s0 f8 = FR_Y_lo, FR_rsq, FR_norm_x // If expm1, result = Y_lo*r2+x
|
|
br.ret.sptk b0 // Exit for 2^-60 <= |x| < 2^-m
|
|
// m=12 for exp, m=7 for expm1
|
|
}
|
|
;;
|
|
|
|
|
|
EXP_VERY_SMALL:
|
|
//
|
|
// Here if 0 < |x| < 2^-60
|
|
// If exp, result = 1.0 + x
|
|
// If expm1, result = x +x*x/2, but have to check for possible underflow
|
|
//
|
|
|
|
{ .mfi
|
|
(p7) mov GR_exp_underflow = -16381 // Exponent for possible underflow
|
|
(p6) fadd.s0 f8 = f1, FR_norm_x // If exp, result = 1+x
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fmpy.s1 FR_result_lo = FR_half_x, FR_norm_x // If expm1 result_lo = x*x/2
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p7) cmp.lt.unc p0, p8 = GR_exp_x, GR_exp_underflow // Unsafe if expm1 x small
|
|
(p7) mov FR_Y_hi = FR_norm_x // If expm1, Y_hi = x
|
|
(p7) cmp.lt p0, p15 = GR_exp_x, GR_exp_underflow // Unsafe if expm1 x small
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
(p8) fma.s0 f8 = FR_norm_x, f1, FR_result_lo // If expm1, result=x+x*x/2
|
|
(p15) br.ret.sptk b0 // If Safe, exit
|
|
}
|
|
;;
|
|
|
|
// Here if expm1 and 0 < |x| < 2^-16381; may be possible underflow
|
|
{ .mfb
|
|
nop.m 999
|
|
fma.s0 FR_RESULT = FR_Y_hi, FR_scale, FR_result_lo // Prelim result
|
|
br.cond.sptk EXP_POSSIBLE_UNDERFLOW // Branch to unsafe code
|
|
}
|
|
;;
|
|
|
|
EXP_CERTAIN_UNDERFLOW_ZERO:
|
|
// Here if x < zero_uflow_x
|
|
// For exp, set result to tiny+0.0 and set I, U, and branch to error handling
|
|
// For expm1, set result to tiny-1.0 and set I, and exit
|
|
{ .mmi
|
|
alloc GR_SAVE_PFS = ar.pfs,0,3,4,0
|
|
nop.m 999
|
|
mov GR_one = 1
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
setf.exp FR_small = GR_one // Form small value
|
|
nop.m 999
|
|
(p6) mov GR_Parameter_TAG = 13 // Error tag for exp underflow
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmerge.s FR_X = f8,f8 // Save x for error call
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
.pred.rel "mutex",p6,p7
|
|
{ .mfb
|
|
nop.m 999
|
|
(p6) fma.s0 FR_RESULT = FR_small, FR_small, f0 // If exp, set I,U, tiny result
|
|
(p6) br.cond.sptk __libm_error_region // If exp, go to error handling
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p7) fms.s0 f8 = FR_small, FR_small, f1 // If expm1, set I, result -1.0
|
|
(p7) br.ret.sptk b0 // If expm1, exit
|
|
}
|
|
;;
|
|
|
|
|
|
EXP_OVERFLOW:
|
|
// Here if x >= min_oflow_x
|
|
{ .mmi
|
|
alloc GR_SAVE_PFS = ar.pfs,0,3,4,0
|
|
mov GR_huge_exp = 0x1fffe
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
mov GR_huge_signif = -0x1
|
|
nop.f 999
|
|
(p6) mov GR_Parameter_TAG = 12 // Error tag for exp overflow
|
|
}
|
|
;;
|
|
|
|
{ .mmf
|
|
setf.exp FR_huge_exp = GR_huge_exp // Create huge value
|
|
setf.sig FR_huge_signif = GR_huge_signif // Create huge value
|
|
fmerge.s FR_X = f8,f8 // Save x for error call
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmerge.se FR_huge = FR_huge_exp, FR_huge_signif
|
|
(p7) mov GR_Parameter_TAG = 39 // Error tag for expm1 overflow
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
fma.s0 FR_RESULT = FR_huge, FR_huge, FR_huge // Force I, O, and Inf
|
|
br.cond.sptk __libm_error_region // Branch to error handling
|
|
}
|
|
;;
|
|
|
|
|
|
|
|
EXP_POSSIBLE_UNDERFLOW:
|
|
// Here if exp and zero_uflow_x < x < about -11356 [where k < -16381]
|
|
// Here if expm1 and |x| < 2^-16381
|
|
{ .mfi
|
|
alloc GR_SAVE_PFS = ar.pfs,0,3,4,0
|
|
fsetc.s2 0x7F,0x41 // Set FTZ and disable traps
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s2 FR_ftz = FR_Y_hi, FR_scale, FR_result_lo // Result with FTZ
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fsetc.s2 0x7F,0x40 // Disable traps (set s2 default)
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fclass.m.unc p11, p0 = FR_ftz, 0x00F // If exp, FTZ result denorm or zero?
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
(p11) mov GR_Parameter_TAG = 13 // exp underflow
|
|
fmerge.s FR_X = f8,f8 // Save x for error call
|
|
(p11) br.cond.spnt __libm_error_region // Branch on exp underflow
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
mov f8 = FR_RESULT // Was safe after all
|
|
br.ret.sptk b0
|
|
}
|
|
;;
|
|
|
|
|
|
EXP_64_SPECIAL:
|
|
// Here if x natval, nan, inf, zero
|
|
// If x natval, +inf, or if expm1 and x zero, just return x.
|
|
// The other cases must be tested for, and results set.
|
|
// These cases do not generate exceptions.
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p8, p0 = f8, 0x0c3 // Is x nan?
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fclass.m.unc p13, p0 = f8, 0x007 // If exp, is x zero?
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fclass.m.unc p11, p0 = f8, 0x022 // If exp, is x -inf?
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fadd.s0 f8 = f8, f1 // If x nan, result quietized x
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fclass.m.unc p10, p0 = f8, 0x022 // If expm1, is x -inf?
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p13) fadd.s0 f8 = f0, f1 // If exp and x zero, result 1.0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) mov f8 = f0 // If exp and x -inf, result 0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
(p10) fsub.s1 f8 = f0, f1 // If expm1, x -inf, result -1.0
|
|
br.ret.sptk b0 // Exit special cases
|
|
}
|
|
;;
|
|
|
|
|
|
EXP_64_UNSUPPORTED:
|
|
// Here if x unsupported type
|
|
{ .mfb
|
|
nop.m 999
|
|
fmpy.s0 f8 = f8, f0 // Return nan
|
|
br.ret.sptk b0
|
|
}
|
|
;;
|
|
|
|
GLOBAL_IEEE754_END(expl)
|
|
libm_alias_ldouble_other (__exp, exp)
|
|
|
|
LOCAL_LIBM_ENTRY(__libm_error_region)
|
|
.prologue
|
|
{ .mfi
|
|
add GR_Parameter_Y=-32,sp // Parameter 2 value
|
|
nop.f 0
|
|
.save ar.pfs,GR_SAVE_PFS
|
|
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
|
|
}
|
|
{ .mfi
|
|
.fframe 64
|
|
add sp=-64,sp // Create new stack
|
|
nop.f 0
|
|
mov GR_SAVE_GP=gp // Save gp
|
|
};;
|
|
{ .mmi
|
|
stfe [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
|
|
add GR_Parameter_X = 16,sp // Parameter 1 address
|
|
.save b0, GR_SAVE_B0
|
|
mov GR_SAVE_B0=b0 // Save b0
|
|
};;
|
|
.body
|
|
{ .mib
|
|
stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
|
|
add GR_Parameter_RESULT = 0,GR_Parameter_Y
|
|
nop.b 0 // Parameter 3 address
|
|
}
|
|
{ .mib
|
|
stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
|
|
add GR_Parameter_Y = -16,GR_Parameter_Y
|
|
br.call.sptk b0=__libm_error_support# // Call error handling function
|
|
};;
|
|
{ .mmi
|
|
add GR_Parameter_RESULT = 48,sp
|
|
nop.m 0
|
|
nop.i 0
|
|
};;
|
|
{ .mmi
|
|
ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
|
|
.restore sp
|
|
add sp = 64,sp // Restore stack pointer
|
|
mov b0 = GR_SAVE_B0 // Restore return address
|
|
};;
|
|
{ .mib
|
|
mov gp = GR_SAVE_GP // Restore gp
|
|
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
|
|
br.ret.sptk b0 // Return
|
|
};;
|
|
LOCAL_LIBM_END(__libm_error_region#)
|
|
|
|
.type __libm_error_support#,@function
|
|
.global __libm_error_support#
|