mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-26 20:51:11 +00:00
256 lines
6.1 KiB
ArmAsm
256 lines
6.1 KiB
ArmAsm
/* ix87 specific implementation of complex exponential function for double.
|
|
Copyright (C) 1997 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public
|
|
License along with the GNU C Library; see the file COPYING.LIB. If not,
|
|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include <sysdep.h>
|
|
|
|
#ifdef __ELF__
|
|
.section .rodata
|
|
#else
|
|
.text
|
|
#endif
|
|
.align ALIGNARG(4)
|
|
ASM_TYPE_DIRECTIVE(huge_nan_null_null,@object)
|
|
huge_nan_null_null:
|
|
.byte 0, 0, 0x80, 0x7f
|
|
.byte 0, 0, 0xc0, 0x7f
|
|
.float 0.0
|
|
zero: .float 0.0
|
|
infinity:
|
|
.byte 0, 0, 0x80, 0x7f
|
|
.byte 0, 0, 0xc0, 0x7f
|
|
.float 0.0
|
|
.byte 0, 0, 0, 0x80
|
|
ASM_SIZE_DIRECTIVE(huge_nan_null_null)
|
|
|
|
ASM_TYPE_DIRECTIVE(twopi,@object)
|
|
twopi:
|
|
.byte 0x35, 0xc2, 0x68, 0x21, 0xa2, 0xda, 0xf, 0xc9, 0x1, 0x40
|
|
.byte 0, 0, 0, 0, 0, 0
|
|
ASM_SIZE_DIRECTIVE(twopi)
|
|
|
|
ASM_TYPE_DIRECTIVE(l2e,@object)
|
|
l2e:
|
|
.byte 0xbc, 0xf0, 0x17, 0x5c, 0x29, 0x3b, 0xaa, 0xb8, 0xff, 0x3f
|
|
.byte 0, 0, 0, 0, 0, 0
|
|
ASM_SIZE_DIRECTIVE(l2e)
|
|
|
|
ASM_TYPE_DIRECTIVE(one,@object)
|
|
one: .double 1.0
|
|
ASM_SIZE_DIRECTIVE(one)
|
|
|
|
|
|
#ifdef PIC
|
|
#define MO(op) op##@GOTOFF(%ecx)
|
|
#define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
|
|
#else
|
|
#define MO(op) op
|
|
#define MOX(op,x,f) op(,x,f)
|
|
#endif
|
|
|
|
.text
|
|
ENTRY(__cexpf)
|
|
flds 4(%esp) /* x */
|
|
fxam
|
|
fnstsw
|
|
flds 8(%esp) /* y : x */
|
|
#ifdef PIC
|
|
call 1f
|
|
1: popl %ecx
|
|
addl $_GLOBAL_OFFSET_TABLE_+[.-1b], %ecx
|
|
#endif
|
|
movb %ah, %dh
|
|
andb $0x45, %ah
|
|
cmpb $0x05, %ah
|
|
je 1f /* Jump if real part is +-Inf */
|
|
cmpb $0x01, %ah
|
|
je 2f /* Jump if real part is NaN */
|
|
|
|
fxam /* y : x */
|
|
fnstsw
|
|
/* If the imaginary part is not finite we return NaN+i NaN, as
|
|
for the case when the real part is NaN. A test for +-Inf and
|
|
NaN would be necessary. But since we know the stack register
|
|
we applied `fxam' to is not empty we can simply use one test.
|
|
Check your FPU manual for more information. */
|
|
andb $0x01, %ah
|
|
cmpb $0x01, %ah
|
|
je 20f
|
|
|
|
/* We have finite numbers in the real and imaginary part. Do
|
|
the real work now. */
|
|
fxch /* x : y */
|
|
fldt MO(l2e) /* log2(e) : x : y */
|
|
fmulp /* x * log2(e) : y */
|
|
fld %st /* x * log2(e) : x * log2(e) : y */
|
|
frndint /* int(x * log2(e)) : x * log2(e) : y */
|
|
fsubr %st, %st(1) /* int(x * log2(e)) : frac(x * log2(e)) : y */
|
|
fxch /* frac(x * log2(e)) : int(x * log2(e)) : y */
|
|
f2xm1 /* 2^frac(x * log2(e))-1 : int(x * log2(e)) : y */
|
|
faddl MO(one) /* 2^frac(x * log2(e)) : int(x * log2(e)) : y */
|
|
fscale /* e^x : int(x * log2(e)) : y */
|
|
fst %st(1) /* e^x : e^x : y */
|
|
fxch %st(2) /* y : e^x : e^x */
|
|
fsincos /* cos(y) : sin(y) : e^x : e^x */
|
|
fnstsw
|
|
testl $0x400, %eax
|
|
jnz 7f
|
|
fmulp %st, %st(3) /* sin(y) : e^x : e^x * cos(y) */
|
|
fmulp %st, %st(1) /* e^x * sin(y) : e^x * cos(y) */
|
|
subl $8, %esp
|
|
fstps 4(%esp)
|
|
fstps (%esp)
|
|
popl %eax
|
|
popl %edx
|
|
ret
|
|
|
|
/* We have to reduce the argument to fsincos. */
|
|
.align ALIGNARG(4)
|
|
7: fldt MO(twopi) /* 2*pi : y : e^x : e^x */
|
|
fxch /* y : 2*pi : e^x : e^x */
|
|
8: fprem1 /* y%(2*pi) : 2*pi : e^x : e^x */
|
|
fnstsw
|
|
testl $0x400, %eax
|
|
jnz 8b
|
|
fstp %st(1) /* y%(2*pi) : e^x : e^x */
|
|
fsincos /* cos(y) : sin(y) : e^x : e^x */
|
|
fmulp %st, %st(3)
|
|
fmulp %st, %st(1)
|
|
subl $8, %esp
|
|
fstps 4(%esp)
|
|
fstps (%esp)
|
|
popl %eax
|
|
popl %edx
|
|
ret
|
|
|
|
/* The real part is +-inf. We must make further differences. */
|
|
.align ALIGNARG(4)
|
|
1: fxam /* y : x */
|
|
fnstsw
|
|
movb %ah, %dl
|
|
testb $0x01, %ah /* See above why 0x01 is usable here. */
|
|
jne 3f
|
|
|
|
|
|
/* The real part is +-Inf and the imaginary part is finite. */
|
|
andl $0x245, %edx
|
|
cmpb $0x40, %dl /* Imaginary part == 0? */
|
|
je 4f /* Yes -> */
|
|
|
|
fxch /* x : y */
|
|
shrl $6, %edx
|
|
fstp %st(0) /* y */ /* Drop the real part. */
|
|
andl $8, %edx /* This puts the sign bit of the real part
|
|
in bit 3. So we can use it to index a
|
|
small array to select 0 or Inf. */
|
|
fsincos /* cos(y) : sin(y) */
|
|
fnstsw
|
|
testl $0x0400, %eax
|
|
jnz 5f
|
|
fxch
|
|
ftst
|
|
fnstsw
|
|
fstp %st(0)
|
|
shll $23, %eax
|
|
andl $0x80000000, %eax
|
|
orl MOX(huge_nan_null_null,%edx,1), %eax
|
|
movl MOX(huge_nan_null_null,%edx,1), %ecx
|
|
movl %eax, %edx
|
|
ftst
|
|
fnstsw
|
|
fstp %st(0)
|
|
shll $23, %eax
|
|
andl $0x80000000, %eax
|
|
orl %ecx, %eax
|
|
ret
|
|
/* We must reduce the argument to fsincos. */
|
|
.align ALIGNARG(4)
|
|
5: fldt MO(twopi)
|
|
fxch
|
|
6: fprem1
|
|
fnstsw
|
|
testl $0x400, %eax
|
|
jnz 6b
|
|
fstp %st(1)
|
|
fsincos
|
|
fxch
|
|
ftst
|
|
fnstsw
|
|
fstp %st(0)
|
|
shll $23, %eax
|
|
andl $0x80000000, %eax
|
|
orl MOX(huge_nan_null_null,%edx,1), %eax
|
|
movl MOX(huge_nan_null_null,%edx,1), %ecx
|
|
movl %eax, %edx
|
|
ftst
|
|
fnstsw
|
|
fstp %st(0)
|
|
shll $23, %eax
|
|
andl $0x80000000, %eax
|
|
orl %ecx, %eax
|
|
ret
|
|
|
|
/* The real part is +-Inf and the imaginary part is +-0. So return
|
|
+-Inf+-0i. */
|
|
.align ALIGNARG(4)
|
|
4: subl $4, %esp
|
|
fstps (%esp)
|
|
shrl $6, %edx
|
|
fstp %st(0)
|
|
andl $8, %edx
|
|
movl MOX(huge_nan_null_null,%edx,1), %eax
|
|
popl %edx
|
|
ret
|
|
|
|
/* The real part is +-Inf, the imaginary is also is not finite. */
|
|
.align ALIGNARG(4)
|
|
3: fstp %st(0)
|
|
fstp %st(0) /* <empty> */
|
|
andb $0x45, %ah
|
|
andb $0x47, %dh
|
|
xorb %dh, %ah
|
|
jnz 30f
|
|
flds MO(infinity) /* Raise invalid exception. */
|
|
fmuls MO(zero)
|
|
fstp %st(0)
|
|
30: movl %edx, %eax
|
|
shrl $6, %edx
|
|
shll $3, %eax
|
|
andl $8, %edx
|
|
andl $16, %eax
|
|
orl %eax, %edx
|
|
|
|
movl MOX(huge_nan_null_null,%edx,1), %eax
|
|
movl MOX(huge_nan_null_null+4,%edx,1), %edx
|
|
ret
|
|
|
|
/* The real part is NaN. */
|
|
.align ALIGNARG(4)
|
|
20: flds MO(infinity) /* Raise invalid exception. */
|
|
fmuls MO(zero)
|
|
fstp %st(0)
|
|
2: fstp %st(0)
|
|
fstp %st(0)
|
|
movl MO(huge_nan_null_null+4), %eax
|
|
movl %eax, %edx
|
|
ret
|
|
|
|
END(__cexpf)
|
|
weak_alias (__cexpf, cexpf)
|