mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-08 02:10:18 +00:00
137 lines
3.6 KiB
C
137 lines
3.6 KiB
C
/* e_hypotl.c -- long double version of e_hypot.c.
|
|
* Conversion to long double by Jakub Jelinek, jakub@redhat.com.
|
|
*/
|
|
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/* __ieee754_hypotl(x,y)
|
|
*
|
|
* Method :
|
|
* If (assume round-to-nearest) z=x*x+y*y
|
|
* has error less than sqrtl(2)/2 ulp, than
|
|
* sqrtl(z) has error less than 1 ulp (exercise).
|
|
*
|
|
* So, compute sqrtl(x*x+y*y) with some care as
|
|
* follows to get the error below 1 ulp:
|
|
*
|
|
* Assume x>y>0;
|
|
* (if possible, set rounding to round-to-nearest)
|
|
* 1. if x > 2y use
|
|
* x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
|
|
* where x1 = x with lower 64 bits cleared, x2 = x-x1; else
|
|
* 2. if x <= 2y use
|
|
* t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
|
|
* where t1 = 2x with lower 64 bits cleared, t2 = 2x-t1,
|
|
* y1= y with lower 64 bits chopped, y2 = y-y1.
|
|
*
|
|
* NOTE: scaling may be necessary if some argument is too
|
|
* large or too tiny
|
|
*
|
|
* Special cases:
|
|
* hypotl(x,y) is INF if x or y is +INF or -INF; else
|
|
* hypotl(x,y) is NAN if x or y is NAN.
|
|
*
|
|
* Accuracy:
|
|
* hypotl(x,y) returns sqrtl(x^2+y^2) with error less
|
|
* than 1 ulps (units in the last place)
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
|
|
long double
|
|
__ieee754_hypotl(long double x, long double y)
|
|
{
|
|
long double a,b,t1,t2,y1,y2,w;
|
|
int64_t j,k,ha,hb;
|
|
|
|
GET_LDOUBLE_MSW64(ha,x);
|
|
ha &= 0x7fffffffffffffffLL;
|
|
GET_LDOUBLE_MSW64(hb,y);
|
|
hb &= 0x7fffffffffffffffLL;
|
|
if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
|
|
SET_LDOUBLE_MSW64(a,ha); /* a <- |a| */
|
|
SET_LDOUBLE_MSW64(b,hb); /* b <- |b| */
|
|
if((ha-hb)>0x78000000000000LL) {return a+b;} /* x/y > 2**120 */
|
|
k=0;
|
|
if(ha > 0x5f3f000000000000LL) { /* a>2**8000 */
|
|
if(ha >= 0x7fff000000000000LL) { /* Inf or NaN */
|
|
u_int64_t low;
|
|
w = a+b; /* for sNaN */
|
|
GET_LDOUBLE_LSW64(low,a);
|
|
if(((ha&0xffffffffffffLL)|low)==0) w = a;
|
|
GET_LDOUBLE_LSW64(low,b);
|
|
if(((hb^0x7fff000000000000LL)|low)==0) w = b;
|
|
return w;
|
|
}
|
|
/* scale a and b by 2**-9600 */
|
|
ha -= 0x2580000000000000LL;
|
|
hb -= 0x2580000000000000LL; k += 9600;
|
|
SET_LDOUBLE_MSW64(a,ha);
|
|
SET_LDOUBLE_MSW64(b,hb);
|
|
}
|
|
if(hb < 0x20bf000000000000LL) { /* b < 2**-8000 */
|
|
if(hb <= 0x0000ffffffffffffLL) { /* subnormal b or 0 */
|
|
u_int64_t low;
|
|
GET_LDOUBLE_LSW64(low,b);
|
|
if((hb|low)==0) return a;
|
|
t1=0;
|
|
SET_LDOUBLE_MSW64(t1,0x7ffd000000000000LL); /* t1=2^16382 */
|
|
b *= t1;
|
|
a *= t1;
|
|
k -= 16382;
|
|
GET_LDOUBLE_MSW64 (ha, a);
|
|
GET_LDOUBLE_MSW64 (hb, b);
|
|
if (hb > ha)
|
|
{
|
|
t1 = a;
|
|
a = b;
|
|
b = t1;
|
|
j = ha;
|
|
ha = hb;
|
|
hb = j;
|
|
}
|
|
} else { /* scale a and b by 2^9600 */
|
|
ha += 0x2580000000000000LL; /* a *= 2^9600 */
|
|
hb += 0x2580000000000000LL; /* b *= 2^9600 */
|
|
k -= 9600;
|
|
SET_LDOUBLE_MSW64(a,ha);
|
|
SET_LDOUBLE_MSW64(b,hb);
|
|
}
|
|
}
|
|
/* medium size a and b */
|
|
w = a-b;
|
|
if (w>b) {
|
|
t1 = 0;
|
|
SET_LDOUBLE_MSW64(t1,ha);
|
|
t2 = a-t1;
|
|
w = __ieee754_sqrtl(t1*t1-(b*(-b)-t2*(a+t1)));
|
|
} else {
|
|
a = a+a;
|
|
y1 = 0;
|
|
SET_LDOUBLE_MSW64(y1,hb);
|
|
y2 = b - y1;
|
|
t1 = 0;
|
|
SET_LDOUBLE_MSW64(t1,ha+0x0001000000000000LL);
|
|
t2 = a - t1;
|
|
w = __ieee754_sqrtl(t1*y1-(w*(-w)-(t1*y2+t2*b)));
|
|
}
|
|
if(k!=0) {
|
|
u_int64_t high;
|
|
t1 = 1.0L;
|
|
GET_LDOUBLE_MSW64(high,t1);
|
|
SET_LDOUBLE_MSW64(t1,high+(k<<48));
|
|
return t1*w;
|
|
} else return w;
|
|
}
|
|
strong_alias (__ieee754_hypotl, __hypotl_finite)
|