mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-08 02:10:18 +00:00
4b84e2471b
The ldbl-128 / ldbl-128ibm implementation of lgamma has problems with its handling of large arguments. It has an overflow threshold that is correct only for ldbl-128, despite being used for both types - with diagnostic control macros as a temporary measure to disable warnings about that constant overflowing for ldbl-128ibm - and it has a calculation that's roughly x * log(x) - x, resulting in overflows for arguments that are roughly at most a factor 1/log(threshold) below the overflow threshold. This patch fixes both issues, using an overflow threshold appropriate for the type in question and adding another case for large arguments that avoids the possible intermediate overflow. Tested for x86_64, x86, mips64 and powerpc. [BZ #16347] [BZ #19046] * sysdeps/ieee754/ldbl-128/e_lgammal_r.c: Do not include <libc-internal.h>. (MAXLGM): Do not use diagnostic control macros. [LDBL_MANT_DIG == 106] (MAXLGM): Change value to overflow threshold for ldbl-128ibm. (__ieee754_lgammal_r): For large arguments, multiply by log - 1 instead of multiplying by log then subtracting. * math/auto-libm-test-in: Add more tests of lgamma. * math/auto-libm-test-out: Regenerated.
1047 lines
32 KiB
C
1047 lines
32 KiB
C
/* lgammal
|
|
*
|
|
* Natural logarithm of gamma function
|
|
*
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* long double x, y, lgammal();
|
|
* extern int sgngam;
|
|
*
|
|
* y = lgammal(x);
|
|
*
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Returns the base e (2.718...) logarithm of the absolute
|
|
* value of the gamma function of the argument.
|
|
* The sign (+1 or -1) of the gamma function is returned in a
|
|
* global (extern) variable named sgngam.
|
|
*
|
|
* The positive domain is partitioned into numerous segments for approximation.
|
|
* For x > 10,
|
|
* log gamma(x) = (x - 0.5) log(x) - x + log sqrt(2 pi) + 1/x R(1/x^2)
|
|
* Near the minimum at x = x0 = 1.46... the approximation is
|
|
* log gamma(x0 + z) = log gamma(x0) + z^2 P(z)/Q(z)
|
|
* for small z.
|
|
* Elsewhere between 0 and 10,
|
|
* log gamma(n + z) = log gamma(n) + z P(z)/Q(z)
|
|
* for various selected n and small z.
|
|
*
|
|
* The cosecant reflection formula is employed for negative arguments.
|
|
*
|
|
*
|
|
*
|
|
* ACCURACY:
|
|
*
|
|
*
|
|
* arithmetic domain # trials peak rms
|
|
* Relative error:
|
|
* IEEE 10, 30 100000 3.9e-34 9.8e-35
|
|
* IEEE 0, 10 100000 3.8e-34 5.3e-35
|
|
* Absolute error:
|
|
* IEEE -10, 0 100000 8.0e-34 8.0e-35
|
|
* IEEE -30, -10 100000 4.4e-34 1.0e-34
|
|
* IEEE -100, 100 100000 1.0e-34
|
|
*
|
|
* The absolute error criterion is the same as relative error
|
|
* when the function magnitude is greater than one but it is absolute
|
|
* when the magnitude is less than one.
|
|
*
|
|
*/
|
|
|
|
/* Copyright 2001 by Stephen L. Moshier <moshier@na-net.ornl.gov>
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <float.h>
|
|
|
|
static const long double PIL = 3.1415926535897932384626433832795028841972E0L;
|
|
#if LDBL_MANT_DIG == 106
|
|
static const long double MAXLGM = 0x5.d53649e2d469dbc1f01e99fd66p+1012L;
|
|
#else
|
|
static const long double MAXLGM = 1.0485738685148938358098967157129705071571E4928L;
|
|
#endif
|
|
static const long double one = 1.0L;
|
|
static const long double huge = LDBL_MAX;
|
|
|
|
/* log gamma(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x P(1/x^2)
|
|
1/x <= 0.0741 (x >= 13.495...)
|
|
Peak relative error 1.5e-36 */
|
|
static const long double ls2pi = 9.1893853320467274178032973640561763986140E-1L;
|
|
#define NRASY 12
|
|
static const long double RASY[NRASY + 1] =
|
|
{
|
|
8.333333333333333333333333333310437112111E-2L,
|
|
-2.777777777777777777777774789556228296902E-3L,
|
|
7.936507936507936507795933938448586499183E-4L,
|
|
-5.952380952380952041799269756378148574045E-4L,
|
|
8.417508417507928904209891117498524452523E-4L,
|
|
-1.917526917481263997778542329739806086290E-3L,
|
|
6.410256381217852504446848671499409919280E-3L,
|
|
-2.955064066900961649768101034477363301626E-2L,
|
|
1.796402955865634243663453415388336954675E-1L,
|
|
-1.391522089007758553455753477688592767741E0L,
|
|
1.326130089598399157988112385013829305510E1L,
|
|
-1.420412699593782497803472576479997819149E2L,
|
|
1.218058922427762808938869872528846787020E3L
|
|
};
|
|
|
|
|
|
/* log gamma(x+13) = log gamma(13) + x P(x)/Q(x)
|
|
-0.5 <= x <= 0.5
|
|
12.5 <= x+13 <= 13.5
|
|
Peak relative error 1.1e-36 */
|
|
static const long double lgam13a = 1.9987213134765625E1L;
|
|
static const long double lgam13b = 1.3608962611495173623870550785125024484248E-6L;
|
|
#define NRN13 7
|
|
static const long double RN13[NRN13 + 1] =
|
|
{
|
|
8.591478354823578150238226576156275285700E11L,
|
|
2.347931159756482741018258864137297157668E11L,
|
|
2.555408396679352028680662433943000804616E10L,
|
|
1.408581709264464345480765758902967123937E9L,
|
|
4.126759849752613822953004114044451046321E7L,
|
|
6.133298899622688505854211579222889943778E5L,
|
|
3.929248056293651597987893340755876578072E3L,
|
|
6.850783280018706668924952057996075215223E0L
|
|
};
|
|
#define NRD13 6
|
|
static const long double RD13[NRD13 + 1] =
|
|
{
|
|
3.401225382297342302296607039352935541669E11L,
|
|
8.756765276918037910363513243563234551784E10L,
|
|
8.873913342866613213078554180987647243903E9L,
|
|
4.483797255342763263361893016049310017973E8L,
|
|
1.178186288833066430952276702931512870676E7L,
|
|
1.519928623743264797939103740132278337476E5L,
|
|
7.989298844938119228411117593338850892311E2L
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+12) = log gamma(12) + x P(x)/Q(x)
|
|
-0.5 <= x <= 0.5
|
|
11.5 <= x+12 <= 12.5
|
|
Peak relative error 4.1e-36 */
|
|
static const long double lgam12a = 1.75023040771484375E1L;
|
|
static const long double lgam12b = 3.7687254483392876529072161996717039575982E-6L;
|
|
#define NRN12 7
|
|
static const long double RN12[NRN12 + 1] =
|
|
{
|
|
4.709859662695606986110997348630997559137E11L,
|
|
1.398713878079497115037857470168777995230E11L,
|
|
1.654654931821564315970930093932954900867E10L,
|
|
9.916279414876676861193649489207282144036E8L,
|
|
3.159604070526036074112008954113411389879E7L,
|
|
5.109099197547205212294747623977502492861E5L,
|
|
3.563054878276102790183396740969279826988E3L,
|
|
6.769610657004672719224614163196946862747E0L
|
|
};
|
|
#define NRD12 6
|
|
static const long double RD12[NRD12 + 1] =
|
|
{
|
|
1.928167007860968063912467318985802726613E11L,
|
|
5.383198282277806237247492369072266389233E10L,
|
|
5.915693215338294477444809323037871058363E9L,
|
|
3.241438287570196713148310560147925781342E8L,
|
|
9.236680081763754597872713592701048455890E6L,
|
|
1.292246897881650919242713651166596478850E5L,
|
|
7.366532445427159272584194816076600211171E2L
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+11) = log gamma(11) + x P(x)/Q(x)
|
|
-0.5 <= x <= 0.5
|
|
10.5 <= x+11 <= 11.5
|
|
Peak relative error 1.8e-35 */
|
|
static const long double lgam11a = 1.5104400634765625E1L;
|
|
static const long double lgam11b = 1.1938309890295225709329251070371882250744E-5L;
|
|
#define NRN11 7
|
|
static const long double RN11[NRN11 + 1] =
|
|
{
|
|
2.446960438029415837384622675816736622795E11L,
|
|
7.955444974446413315803799763901729640350E10L,
|
|
1.030555327949159293591618473447420338444E10L,
|
|
6.765022131195302709153994345470493334946E8L,
|
|
2.361892792609204855279723576041468347494E7L,
|
|
4.186623629779479136428005806072176490125E5L,
|
|
3.202506022088912768601325534149383594049E3L,
|
|
6.681356101133728289358838690666225691363E0L
|
|
};
|
|
#define NRD11 6
|
|
static const long double RD11[NRD11 + 1] =
|
|
{
|
|
1.040483786179428590683912396379079477432E11L,
|
|
3.172251138489229497223696648369823779729E10L,
|
|
3.806961885984850433709295832245848084614E9L,
|
|
2.278070344022934913730015420611609620171E8L,
|
|
7.089478198662651683977290023829391596481E6L,
|
|
1.083246385105903533237139380509590158658E5L,
|
|
6.744420991491385145885727942219463243597E2L
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+10) = log gamma(10) + x P(x)/Q(x)
|
|
-0.5 <= x <= 0.5
|
|
9.5 <= x+10 <= 10.5
|
|
Peak relative error 5.4e-37 */
|
|
static const long double lgam10a = 1.280181884765625E1L;
|
|
static const long double lgam10b = 8.6324252196112077178745667061642811492557E-6L;
|
|
#define NRN10 7
|
|
static const long double RN10[NRN10 + 1] =
|
|
{
|
|
-1.239059737177249934158597996648808363783E14L,
|
|
-4.725899566371458992365624673357356908719E13L,
|
|
-7.283906268647083312042059082837754850808E12L,
|
|
-5.802855515464011422171165179767478794637E11L,
|
|
-2.532349691157548788382820303182745897298E10L,
|
|
-5.884260178023777312587193693477072061820E8L,
|
|
-6.437774864512125749845840472131829114906E6L,
|
|
-2.350975266781548931856017239843273049384E4L
|
|
};
|
|
#define NRD10 7
|
|
static const long double RD10[NRD10 + 1] =
|
|
{
|
|
-5.502645997581822567468347817182347679552E13L,
|
|
-1.970266640239849804162284805400136473801E13L,
|
|
-2.819677689615038489384974042561531409392E12L,
|
|
-2.056105863694742752589691183194061265094E11L,
|
|
-8.053670086493258693186307810815819662078E9L,
|
|
-1.632090155573373286153427982504851867131E8L,
|
|
-1.483575879240631280658077826889223634921E6L,
|
|
-4.002806669713232271615885826373550502510E3L
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+9) = log gamma(9) + x P(x)/Q(x)
|
|
-0.5 <= x <= 0.5
|
|
8.5 <= x+9 <= 9.5
|
|
Peak relative error 3.6e-36 */
|
|
static const long double lgam9a = 1.06045989990234375E1L;
|
|
static const long double lgam9b = 3.9037218127284172274007216547549861681400E-6L;
|
|
#define NRN9 7
|
|
static const long double RN9[NRN9 + 1] =
|
|
{
|
|
-4.936332264202687973364500998984608306189E13L,
|
|
-2.101372682623700967335206138517766274855E13L,
|
|
-3.615893404644823888655732817505129444195E12L,
|
|
-3.217104993800878891194322691860075472926E11L,
|
|
-1.568465330337375725685439173603032921399E10L,
|
|
-4.073317518162025744377629219101510217761E8L,
|
|
-4.983232096406156139324846656819246974500E6L,
|
|
-2.036280038903695980912289722995505277253E4L
|
|
};
|
|
#define NRD9 7
|
|
static const long double RD9[NRD9 + 1] =
|
|
{
|
|
-2.306006080437656357167128541231915480393E13L,
|
|
-9.183606842453274924895648863832233799950E12L,
|
|
-1.461857965935942962087907301194381010380E12L,
|
|
-1.185728254682789754150068652663124298303E11L,
|
|
-5.166285094703468567389566085480783070037E9L,
|
|
-1.164573656694603024184768200787835094317E8L,
|
|
-1.177343939483908678474886454113163527909E6L,
|
|
-3.529391059783109732159524500029157638736E3L
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+8) = log gamma(8) + x P(x)/Q(x)
|
|
-0.5 <= x <= 0.5
|
|
7.5 <= x+8 <= 8.5
|
|
Peak relative error 2.4e-37 */
|
|
static const long double lgam8a = 8.525146484375E0L;
|
|
static const long double lgam8b = 1.4876690414300165531036347125050759667737E-5L;
|
|
#define NRN8 8
|
|
static const long double RN8[NRN8 + 1] =
|
|
{
|
|
6.600775438203423546565361176829139703289E11L,
|
|
3.406361267593790705240802723914281025800E11L,
|
|
7.222460928505293914746983300555538432830E10L,
|
|
8.102984106025088123058747466840656458342E9L,
|
|
5.157620015986282905232150979772409345927E8L,
|
|
1.851445288272645829028129389609068641517E7L,
|
|
3.489261702223124354745894067468953756656E5L,
|
|
2.892095396706665774434217489775617756014E3L,
|
|
6.596977510622195827183948478627058738034E0L
|
|
};
|
|
#define NRD8 7
|
|
static const long double RD8[NRD8 + 1] =
|
|
{
|
|
3.274776546520735414638114828622673016920E11L,
|
|
1.581811207929065544043963828487733970107E11L,
|
|
3.108725655667825188135393076860104546416E10L,
|
|
3.193055010502912617128480163681842165730E9L,
|
|
1.830871482669835106357529710116211541839E8L,
|
|
5.790862854275238129848491555068073485086E6L,
|
|
9.305213264307921522842678835618803553589E4L,
|
|
6.216974105861848386918949336819572333622E2L
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+7) = log gamma(7) + x P(x)/Q(x)
|
|
-0.5 <= x <= 0.5
|
|
6.5 <= x+7 <= 7.5
|
|
Peak relative error 3.2e-36 */
|
|
static const long double lgam7a = 6.5792388916015625E0L;
|
|
static const long double lgam7b = 1.2320408538495060178292903945321122583007E-5L;
|
|
#define NRN7 8
|
|
static const long double RN7[NRN7 + 1] =
|
|
{
|
|
2.065019306969459407636744543358209942213E11L,
|
|
1.226919919023736909889724951708796532847E11L,
|
|
2.996157990374348596472241776917953749106E10L,
|
|
3.873001919306801037344727168434909521030E9L,
|
|
2.841575255593761593270885753992732145094E8L,
|
|
1.176342515359431913664715324652399565551E7L,
|
|
2.558097039684188723597519300356028511547E5L,
|
|
2.448525238332609439023786244782810774702E3L,
|
|
6.460280377802030953041566617300902020435E0L
|
|
};
|
|
#define NRD7 7
|
|
static const long double RD7[NRD7 + 1] =
|
|
{
|
|
1.102646614598516998880874785339049304483E11L,
|
|
6.099297512712715445879759589407189290040E10L,
|
|
1.372898136289611312713283201112060238351E10L,
|
|
1.615306270420293159907951633566635172343E9L,
|
|
1.061114435798489135996614242842561967459E8L,
|
|
3.845638971184305248268608902030718674691E6L,
|
|
7.081730675423444975703917836972720495507E4L,
|
|
5.423122582741398226693137276201344096370E2L
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+6) = log gamma(6) + x P(x)/Q(x)
|
|
-0.5 <= x <= 0.5
|
|
5.5 <= x+6 <= 6.5
|
|
Peak relative error 6.2e-37 */
|
|
static const long double lgam6a = 4.7874908447265625E0L;
|
|
static const long double lgam6b = 8.9805548349424770093452324304839959231517E-7L;
|
|
#define NRN6 8
|
|
static const long double RN6[NRN6 + 1] =
|
|
{
|
|
-3.538412754670746879119162116819571823643E13L,
|
|
-2.613432593406849155765698121483394257148E13L,
|
|
-8.020670732770461579558867891923784753062E12L,
|
|
-1.322227822931250045347591780332435433420E12L,
|
|
-1.262809382777272476572558806855377129513E11L,
|
|
-7.015006277027660872284922325741197022467E9L,
|
|
-2.149320689089020841076532186783055727299E8L,
|
|
-3.167210585700002703820077565539658995316E6L,
|
|
-1.576834867378554185210279285358586385266E4L
|
|
};
|
|
#define NRD6 8
|
|
static const long double RD6[NRD6 + 1] =
|
|
{
|
|
-2.073955870771283609792355579558899389085E13L,
|
|
-1.421592856111673959642750863283919318175E13L,
|
|
-4.012134994918353924219048850264207074949E12L,
|
|
-6.013361045800992316498238470888523722431E11L,
|
|
-5.145382510136622274784240527039643430628E10L,
|
|
-2.510575820013409711678540476918249524123E9L,
|
|
-6.564058379709759600836745035871373240904E7L,
|
|
-7.861511116647120540275354855221373571536E5L,
|
|
-2.821943442729620524365661338459579270561E3L
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+5) = log gamma(5) + x P(x)/Q(x)
|
|
-0.5 <= x <= 0.5
|
|
4.5 <= x+5 <= 5.5
|
|
Peak relative error 3.4e-37 */
|
|
static const long double lgam5a = 3.17803955078125E0L;
|
|
static const long double lgam5b = 1.4279566695619646941601297055408873990961E-5L;
|
|
#define NRN5 9
|
|
static const long double RN5[NRN5 + 1] =
|
|
{
|
|
2.010952885441805899580403215533972172098E11L,
|
|
1.916132681242540921354921906708215338584E11L,
|
|
7.679102403710581712903937970163206882492E10L,
|
|
1.680514903671382470108010973615268125169E10L,
|
|
2.181011222911537259440775283277711588410E9L,
|
|
1.705361119398837808244780667539728356096E8L,
|
|
7.792391565652481864976147945997033946360E6L,
|
|
1.910741381027985291688667214472560023819E5L,
|
|
2.088138241893612679762260077783794329559E3L,
|
|
6.330318119566998299106803922739066556550E0L
|
|
};
|
|
#define NRD5 8
|
|
static const long double RD5[NRD5 + 1] =
|
|
{
|
|
1.335189758138651840605141370223112376176E11L,
|
|
1.174130445739492885895466097516530211283E11L,
|
|
4.308006619274572338118732154886328519910E10L,
|
|
8.547402888692578655814445003283720677468E9L,
|
|
9.934628078575618309542580800421370730906E8L,
|
|
6.847107420092173812998096295422311820672E7L,
|
|
2.698552646016599923609773122139463150403E6L,
|
|
5.526516251532464176412113632726150253215E4L,
|
|
4.772343321713697385780533022595450486932E2L
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+4) = log gamma(4) + x P(x)/Q(x)
|
|
-0.5 <= x <= 0.5
|
|
3.5 <= x+4 <= 4.5
|
|
Peak relative error 6.7e-37 */
|
|
static const long double lgam4a = 1.791748046875E0L;
|
|
static const long double lgam4b = 1.1422353055000812477358380702272722990692E-5L;
|
|
#define NRN4 9
|
|
static const long double RN4[NRN4 + 1] =
|
|
{
|
|
-1.026583408246155508572442242188887829208E13L,
|
|
-1.306476685384622809290193031208776258809E13L,
|
|
-7.051088602207062164232806511992978915508E12L,
|
|
-2.100849457735620004967624442027793656108E12L,
|
|
-3.767473790774546963588549871673843260569E11L,
|
|
-4.156387497364909963498394522336575984206E10L,
|
|
-2.764021460668011732047778992419118757746E9L,
|
|
-1.036617204107109779944986471142938641399E8L,
|
|
-1.895730886640349026257780896972598305443E6L,
|
|
-1.180509051468390914200720003907727988201E4L
|
|
};
|
|
#define NRD4 9
|
|
static const long double RD4[NRD4 + 1] =
|
|
{
|
|
-8.172669122056002077809119378047536240889E12L,
|
|
-9.477592426087986751343695251801814226960E12L,
|
|
-4.629448850139318158743900253637212801682E12L,
|
|
-1.237965465892012573255370078308035272942E12L,
|
|
-1.971624313506929845158062177061297598956E11L,
|
|
-1.905434843346570533229942397763361493610E10L,
|
|
-1.089409357680461419743730978512856675984E9L,
|
|
-3.416703082301143192939774401370222822430E7L,
|
|
-4.981791914177103793218433195857635265295E5L,
|
|
-2.192507743896742751483055798411231453733E3L
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+3) = log gamma(3) + x P(x)/Q(x)
|
|
-0.25 <= x <= 0.5
|
|
2.75 <= x+3 <= 3.5
|
|
Peak relative error 6.0e-37 */
|
|
static const long double lgam3a = 6.93145751953125E-1L;
|
|
static const long double lgam3b = 1.4286068203094172321214581765680755001344E-6L;
|
|
|
|
#define NRN3 9
|
|
static const long double RN3[NRN3 + 1] =
|
|
{
|
|
-4.813901815114776281494823863935820876670E11L,
|
|
-8.425592975288250400493910291066881992620E11L,
|
|
-6.228685507402467503655405482985516909157E11L,
|
|
-2.531972054436786351403749276956707260499E11L,
|
|
-6.170200796658926701311867484296426831687E10L,
|
|
-9.211477458528156048231908798456365081135E9L,
|
|
-8.251806236175037114064561038908691305583E8L,
|
|
-4.147886355917831049939930101151160447495E7L,
|
|
-1.010851868928346082547075956946476932162E6L,
|
|
-8.333374463411801009783402800801201603736E3L
|
|
};
|
|
#define NRD3 9
|
|
static const long double RD3[NRD3 + 1] =
|
|
{
|
|
-5.216713843111675050627304523368029262450E11L,
|
|
-8.014292925418308759369583419234079164391E11L,
|
|
-5.180106858220030014546267824392678611990E11L,
|
|
-1.830406975497439003897734969120997840011E11L,
|
|
-3.845274631904879621945745960119924118925E10L,
|
|
-4.891033385370523863288908070309417710903E9L,
|
|
-3.670172254411328640353855768698287474282E8L,
|
|
-1.505316381525727713026364396635522516989E7L,
|
|
-2.856327162923716881454613540575964890347E5L,
|
|
-1.622140448015769906847567212766206894547E3L
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+2.5) = log gamma(2.5) + x P(x)/Q(x)
|
|
-0.125 <= x <= 0.25
|
|
2.375 <= x+2.5 <= 2.75 */
|
|
static const long double lgam2r5a = 2.8466796875E-1L;
|
|
static const long double lgam2r5b = 1.4901722919159632494669682701924320137696E-5L;
|
|
#define NRN2r5 8
|
|
static const long double RN2r5[NRN2r5 + 1] =
|
|
{
|
|
-4.676454313888335499356699817678862233205E9L,
|
|
-9.361888347911187924389905984624216340639E9L,
|
|
-7.695353600835685037920815799526540237703E9L,
|
|
-3.364370100981509060441853085968900734521E9L,
|
|
-8.449902011848163568670361316804900559863E8L,
|
|
-1.225249050950801905108001246436783022179E8L,
|
|
-9.732972931077110161639900388121650470926E6L,
|
|
-3.695711763932153505623248207576425983573E5L,
|
|
-4.717341584067827676530426007495274711306E3L
|
|
};
|
|
#define NRD2r5 8
|
|
static const long double RD2r5[NRD2r5 + 1] =
|
|
{
|
|
-6.650657966618993679456019224416926875619E9L,
|
|
-1.099511409330635807899718829033488771623E10L,
|
|
-7.482546968307837168164311101447116903148E9L,
|
|
-2.702967190056506495988922973755870557217E9L,
|
|
-5.570008176482922704972943389590409280950E8L,
|
|
-6.536934032192792470926310043166993233231E7L,
|
|
-4.101991193844953082400035444146067511725E6L,
|
|
-1.174082735875715802334430481065526664020E5L,
|
|
-9.932840389994157592102947657277692978511E2L
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+2) = x P(x)/Q(x)
|
|
-0.125 <= x <= +0.375
|
|
1.875 <= x+2 <= 2.375
|
|
Peak relative error 4.6e-36 */
|
|
#define NRN2 9
|
|
static const long double RN2[NRN2 + 1] =
|
|
{
|
|
-3.716661929737318153526921358113793421524E9L,
|
|
-1.138816715030710406922819131397532331321E10L,
|
|
-1.421017419363526524544402598734013569950E10L,
|
|
-9.510432842542519665483662502132010331451E9L,
|
|
-3.747528562099410197957514973274474767329E9L,
|
|
-8.923565763363912474488712255317033616626E8L,
|
|
-1.261396653700237624185350402781338231697E8L,
|
|
-9.918402520255661797735331317081425749014E6L,
|
|
-3.753996255897143855113273724233104768831E5L,
|
|
-4.778761333044147141559311805999540765612E3L
|
|
};
|
|
#define NRD2 9
|
|
static const long double RD2[NRD2 + 1] =
|
|
{
|
|
-8.790916836764308497770359421351673950111E9L,
|
|
-2.023108608053212516399197678553737477486E10L,
|
|
-1.958067901852022239294231785363504458367E10L,
|
|
-1.035515043621003101254252481625188704529E10L,
|
|
-3.253884432621336737640841276619272224476E9L,
|
|
-6.186383531162456814954947669274235815544E8L,
|
|
-6.932557847749518463038934953605969951466E7L,
|
|
-4.240731768287359608773351626528479703758E6L,
|
|
-1.197343995089189188078944689846348116630E5L,
|
|
-1.004622911670588064824904487064114090920E3L
|
|
/* 1.0E0 */
|
|
};
|
|
|
|
|
|
/* log gamma(x+1.75) = log gamma(1.75) + x P(x)/Q(x)
|
|
-0.125 <= x <= +0.125
|
|
1.625 <= x+1.75 <= 1.875
|
|
Peak relative error 9.2e-37 */
|
|
static const long double lgam1r75a = -8.441162109375E-2L;
|
|
static const long double lgam1r75b = 1.0500073264444042213965868602268256157604E-5L;
|
|
#define NRN1r75 8
|
|
static const long double RN1r75[NRN1r75 + 1] =
|
|
{
|
|
-5.221061693929833937710891646275798251513E7L,
|
|
-2.052466337474314812817883030472496436993E8L,
|
|
-2.952718275974940270675670705084125640069E8L,
|
|
-2.132294039648116684922965964126389017840E8L,
|
|
-8.554103077186505960591321962207519908489E7L,
|
|
-1.940250901348870867323943119132071960050E7L,
|
|
-2.379394147112756860769336400290402208435E6L,
|
|
-1.384060879999526222029386539622255797389E5L,
|
|
-2.698453601378319296159355612094598695530E3L
|
|
};
|
|
#define NRD1r75 8
|
|
static const long double RD1r75[NRD1r75 + 1] =
|
|
{
|
|
-2.109754689501705828789976311354395393605E8L,
|
|
-5.036651829232895725959911504899241062286E8L,
|
|
-4.954234699418689764943486770327295098084E8L,
|
|
-2.589558042412676610775157783898195339410E8L,
|
|
-7.731476117252958268044969614034776883031E7L,
|
|
-1.316721702252481296030801191240867486965E7L,
|
|
-1.201296501404876774861190604303728810836E6L,
|
|
-5.007966406976106636109459072523610273928E4L,
|
|
-6.155817990560743422008969155276229018209E2L
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+x0) = y0 + x^2 P(x)/Q(x)
|
|
-0.0867 <= x <= +0.1634
|
|
1.374932... <= x+x0 <= 1.625032...
|
|
Peak relative error 4.0e-36 */
|
|
static const long double x0a = 1.4616241455078125L;
|
|
static const long double x0b = 7.9994605498412626595423257213002588621246E-6L;
|
|
static const long double y0a = -1.21490478515625E-1L;
|
|
static const long double y0b = 4.1879797753919044854428223084178486438269E-6L;
|
|
#define NRN1r5 8
|
|
static const long double RN1r5[NRN1r5 + 1] =
|
|
{
|
|
6.827103657233705798067415468881313128066E5L,
|
|
1.910041815932269464714909706705242148108E6L,
|
|
2.194344176925978377083808566251427771951E6L,
|
|
1.332921400100891472195055269688876427962E6L,
|
|
4.589080973377307211815655093824787123508E5L,
|
|
8.900334161263456942727083580232613796141E4L,
|
|
9.053840838306019753209127312097612455236E3L,
|
|
4.053367147553353374151852319743594873771E2L,
|
|
5.040631576303952022968949605613514584950E0L
|
|
};
|
|
#define NRD1r5 8
|
|
static const long double RD1r5[NRD1r5 + 1] =
|
|
{
|
|
1.411036368843183477558773688484699813355E6L,
|
|
4.378121767236251950226362443134306184849E6L,
|
|
5.682322855631723455425929877581697918168E6L,
|
|
3.999065731556977782435009349967042222375E6L,
|
|
1.653651390456781293163585493620758410333E6L,
|
|
4.067774359067489605179546964969435858311E5L,
|
|
5.741463295366557346748361781768833633256E4L,
|
|
4.226404539738182992856094681115746692030E3L,
|
|
1.316980975410327975566999780608618774469E2L,
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+1.25) = log gamma(1.25) + x P(x)/Q(x)
|
|
-.125 <= x <= +.125
|
|
1.125 <= x+1.25 <= 1.375
|
|
Peak relative error = 4.9e-36 */
|
|
static const long double lgam1r25a = -9.82818603515625E-2L;
|
|
static const long double lgam1r25b = 1.0023929749338536146197303364159774377296E-5L;
|
|
#define NRN1r25 9
|
|
static const long double RN1r25[NRN1r25 + 1] =
|
|
{
|
|
-9.054787275312026472896002240379580536760E4L,
|
|
-8.685076892989927640126560802094680794471E4L,
|
|
2.797898965448019916967849727279076547109E5L,
|
|
6.175520827134342734546868356396008898299E5L,
|
|
5.179626599589134831538516906517372619641E5L,
|
|
2.253076616239043944538380039205558242161E5L,
|
|
5.312653119599957228630544772499197307195E4L,
|
|
6.434329437514083776052669599834938898255E3L,
|
|
3.385414416983114598582554037612347549220E2L,
|
|
4.907821957946273805080625052510832015792E0L
|
|
};
|
|
#define NRD1r25 8
|
|
static const long double RD1r25[NRD1r25 + 1] =
|
|
{
|
|
3.980939377333448005389084785896660309000E5L,
|
|
1.429634893085231519692365775184490465542E6L,
|
|
2.145438946455476062850151428438668234336E6L,
|
|
1.743786661358280837020848127465970357893E6L,
|
|
8.316364251289743923178092656080441655273E5L,
|
|
2.355732939106812496699621491135458324294E5L,
|
|
3.822267399625696880571810137601310855419E4L,
|
|
3.228463206479133236028576845538387620856E3L,
|
|
1.152133170470059555646301189220117965514E2L
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x + 1) = x P(x)/Q(x)
|
|
0.0 <= x <= +0.125
|
|
1.0 <= x+1 <= 1.125
|
|
Peak relative error 1.1e-35 */
|
|
#define NRN1 8
|
|
static const long double RN1[NRN1 + 1] =
|
|
{
|
|
-9.987560186094800756471055681088744738818E3L,
|
|
-2.506039379419574361949680225279376329742E4L,
|
|
-1.386770737662176516403363873617457652991E4L,
|
|
1.439445846078103202928677244188837130744E4L,
|
|
2.159612048879650471489449668295139990693E4L,
|
|
1.047439813638144485276023138173676047079E4L,
|
|
2.250316398054332592560412486630769139961E3L,
|
|
1.958510425467720733041971651126443864041E2L,
|
|
4.516830313569454663374271993200291219855E0L
|
|
};
|
|
#define NRD1 7
|
|
static const long double RD1[NRD1 + 1] =
|
|
{
|
|
1.730299573175751778863269333703788214547E4L,
|
|
6.807080914851328611903744668028014678148E4L,
|
|
1.090071629101496938655806063184092302439E5L,
|
|
9.124354356415154289343303999616003884080E4L,
|
|
4.262071638655772404431164427024003253954E4L,
|
|
1.096981664067373953673982635805821283581E4L,
|
|
1.431229503796575892151252708527595787588E3L,
|
|
7.734110684303689320830401788262295992921E1L
|
|
/* 1.0E0 */
|
|
};
|
|
|
|
|
|
/* log gamma(x + 1) = x P(x)/Q(x)
|
|
-0.125 <= x <= 0
|
|
0.875 <= x+1 <= 1.0
|
|
Peak relative error 7.0e-37 */
|
|
#define NRNr9 8
|
|
static const long double RNr9[NRNr9 + 1] =
|
|
{
|
|
4.441379198241760069548832023257571176884E5L,
|
|
1.273072988367176540909122090089580368732E6L,
|
|
9.732422305818501557502584486510048387724E5L,
|
|
-5.040539994443998275271644292272870348684E5L,
|
|
-1.208719055525609446357448132109723786736E6L,
|
|
-7.434275365370936547146540554419058907156E5L,
|
|
-2.075642969983377738209203358199008185741E5L,
|
|
-2.565534860781128618589288075109372218042E4L,
|
|
-1.032901669542994124131223797515913955938E3L,
|
|
};
|
|
#define NRDr9 8
|
|
static const long double RDr9[NRDr9 + 1] =
|
|
{
|
|
-7.694488331323118759486182246005193998007E5L,
|
|
-3.301918855321234414232308938454112213751E6L,
|
|
-5.856830900232338906742924836032279404702E6L,
|
|
-5.540672519616151584486240871424021377540E6L,
|
|
-3.006530901041386626148342989181721176919E6L,
|
|
-9.350378280513062139466966374330795935163E5L,
|
|
-1.566179100031063346901755685375732739511E5L,
|
|
-1.205016539620260779274902967231510804992E4L,
|
|
-2.724583156305709733221564484006088794284E2L
|
|
/* 1.0E0 */
|
|
};
|
|
|
|
|
|
/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
|
|
|
|
static long double
|
|
neval (long double x, const long double *p, int n)
|
|
{
|
|
long double y;
|
|
|
|
p += n;
|
|
y = *p--;
|
|
do
|
|
{
|
|
y = y * x + *p--;
|
|
}
|
|
while (--n > 0);
|
|
return y;
|
|
}
|
|
|
|
|
|
/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
|
|
|
|
static long double
|
|
deval (long double x, const long double *p, int n)
|
|
{
|
|
long double y;
|
|
|
|
p += n;
|
|
y = x + *p--;
|
|
do
|
|
{
|
|
y = y * x + *p--;
|
|
}
|
|
while (--n > 0);
|
|
return y;
|
|
}
|
|
|
|
|
|
long double
|
|
__ieee754_lgammal_r (long double x, int *signgamp)
|
|
{
|
|
long double p, q, w, z, nx;
|
|
int i, nn;
|
|
|
|
*signgamp = 1;
|
|
|
|
if (! isfinite (x))
|
|
return x * x;
|
|
|
|
if (x == 0.0L)
|
|
{
|
|
if (signbit (x))
|
|
*signgamp = -1;
|
|
}
|
|
|
|
if (x < 0.0L)
|
|
{
|
|
if (x < -2.0L && x > (LDBL_MANT_DIG == 106 ? -48.0L : -50.0L))
|
|
return __lgamma_negl (x, signgamp);
|
|
q = -x;
|
|
p = __floorl (q);
|
|
if (p == q)
|
|
return (one / (p - p));
|
|
long double halfp = p * 0.5L;
|
|
if (halfp == __floorl (halfp))
|
|
*signgamp = -1;
|
|
else
|
|
*signgamp = 1;
|
|
if (q < 0x1p-120L)
|
|
return -__logl (q);
|
|
z = q - p;
|
|
if (z > 0.5L)
|
|
{
|
|
p += 1.0L;
|
|
z = p - q;
|
|
}
|
|
z = q * __sinl (PIL * z);
|
|
w = __ieee754_lgammal_r (q, &i);
|
|
z = __logl (PIL / z) - w;
|
|
return (z);
|
|
}
|
|
|
|
if (x < 13.5L)
|
|
{
|
|
p = 0.0L;
|
|
nx = __floorl (x + 0.5L);
|
|
nn = nx;
|
|
switch (nn)
|
|
{
|
|
case 0:
|
|
/* log gamma (x + 1) = log(x) + log gamma(x) */
|
|
if (x < 0x1p-120L)
|
|
return -__logl (x);
|
|
else if (x <= 0.125)
|
|
{
|
|
p = x * neval (x, RN1, NRN1) / deval (x, RD1, NRD1);
|
|
}
|
|
else if (x <= 0.375)
|
|
{
|
|
z = x - 0.25L;
|
|
p = z * neval (z, RN1r25, NRN1r25) / deval (z, RD1r25, NRD1r25);
|
|
p += lgam1r25b;
|
|
p += lgam1r25a;
|
|
}
|
|
else if (x <= 0.625)
|
|
{
|
|
z = x + (1.0L - x0a);
|
|
z = z - x0b;
|
|
p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
|
|
p = p * z * z;
|
|
p = p + y0b;
|
|
p = p + y0a;
|
|
}
|
|
else if (x <= 0.875)
|
|
{
|
|
z = x - 0.75L;
|
|
p = z * neval (z, RN1r75, NRN1r75) / deval (z, RD1r75, NRD1r75);
|
|
p += lgam1r75b;
|
|
p += lgam1r75a;
|
|
}
|
|
else
|
|
{
|
|
z = x - 1.0L;
|
|
p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2);
|
|
}
|
|
p = p - __logl (x);
|
|
break;
|
|
|
|
case 1:
|
|
if (x < 0.875L)
|
|
{
|
|
if (x <= 0.625)
|
|
{
|
|
z = x + (1.0L - x0a);
|
|
z = z - x0b;
|
|
p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
|
|
p = p * z * z;
|
|
p = p + y0b;
|
|
p = p + y0a;
|
|
}
|
|
else if (x <= 0.875)
|
|
{
|
|
z = x - 0.75L;
|
|
p = z * neval (z, RN1r75, NRN1r75)
|
|
/ deval (z, RD1r75, NRD1r75);
|
|
p += lgam1r75b;
|
|
p += lgam1r75a;
|
|
}
|
|
else
|
|
{
|
|
z = x - 1.0L;
|
|
p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2);
|
|
}
|
|
p = p - __logl (x);
|
|
}
|
|
else if (x < 1.0L)
|
|
{
|
|
z = x - 1.0L;
|
|
p = z * neval (z, RNr9, NRNr9) / deval (z, RDr9, NRDr9);
|
|
}
|
|
else if (x == 1.0L)
|
|
p = 0.0L;
|
|
else if (x <= 1.125L)
|
|
{
|
|
z = x - 1.0L;
|
|
p = z * neval (z, RN1, NRN1) / deval (z, RD1, NRD1);
|
|
}
|
|
else if (x <= 1.375)
|
|
{
|
|
z = x - 1.25L;
|
|
p = z * neval (z, RN1r25, NRN1r25) / deval (z, RD1r25, NRD1r25);
|
|
p += lgam1r25b;
|
|
p += lgam1r25a;
|
|
}
|
|
else
|
|
{
|
|
/* 1.375 <= x+x0 <= 1.625 */
|
|
z = x - x0a;
|
|
z = z - x0b;
|
|
p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
|
|
p = p * z * z;
|
|
p = p + y0b;
|
|
p = p + y0a;
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
if (x < 1.625L)
|
|
{
|
|
z = x - x0a;
|
|
z = z - x0b;
|
|
p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
|
|
p = p * z * z;
|
|
p = p + y0b;
|
|
p = p + y0a;
|
|
}
|
|
else if (x < 1.875L)
|
|
{
|
|
z = x - 1.75L;
|
|
p = z * neval (z, RN1r75, NRN1r75) / deval (z, RD1r75, NRD1r75);
|
|
p += lgam1r75b;
|
|
p += lgam1r75a;
|
|
}
|
|
else if (x == 2.0L)
|
|
p = 0.0L;
|
|
else if (x < 2.375L)
|
|
{
|
|
z = x - 2.0L;
|
|
p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2);
|
|
}
|
|
else
|
|
{
|
|
z = x - 2.5L;
|
|
p = z * neval (z, RN2r5, NRN2r5) / deval (z, RD2r5, NRD2r5);
|
|
p += lgam2r5b;
|
|
p += lgam2r5a;
|
|
}
|
|
break;
|
|
|
|
case 3:
|
|
if (x < 2.75)
|
|
{
|
|
z = x - 2.5L;
|
|
p = z * neval (z, RN2r5, NRN2r5) / deval (z, RD2r5, NRD2r5);
|
|
p += lgam2r5b;
|
|
p += lgam2r5a;
|
|
}
|
|
else
|
|
{
|
|
z = x - 3.0L;
|
|
p = z * neval (z, RN3, NRN3) / deval (z, RD3, NRD3);
|
|
p += lgam3b;
|
|
p += lgam3a;
|
|
}
|
|
break;
|
|
|
|
case 4:
|
|
z = x - 4.0L;
|
|
p = z * neval (z, RN4, NRN4) / deval (z, RD4, NRD4);
|
|
p += lgam4b;
|
|
p += lgam4a;
|
|
break;
|
|
|
|
case 5:
|
|
z = x - 5.0L;
|
|
p = z * neval (z, RN5, NRN5) / deval (z, RD5, NRD5);
|
|
p += lgam5b;
|
|
p += lgam5a;
|
|
break;
|
|
|
|
case 6:
|
|
z = x - 6.0L;
|
|
p = z * neval (z, RN6, NRN6) / deval (z, RD6, NRD6);
|
|
p += lgam6b;
|
|
p += lgam6a;
|
|
break;
|
|
|
|
case 7:
|
|
z = x - 7.0L;
|
|
p = z * neval (z, RN7, NRN7) / deval (z, RD7, NRD7);
|
|
p += lgam7b;
|
|
p += lgam7a;
|
|
break;
|
|
|
|
case 8:
|
|
z = x - 8.0L;
|
|
p = z * neval (z, RN8, NRN8) / deval (z, RD8, NRD8);
|
|
p += lgam8b;
|
|
p += lgam8a;
|
|
break;
|
|
|
|
case 9:
|
|
z = x - 9.0L;
|
|
p = z * neval (z, RN9, NRN9) / deval (z, RD9, NRD9);
|
|
p += lgam9b;
|
|
p += lgam9a;
|
|
break;
|
|
|
|
case 10:
|
|
z = x - 10.0L;
|
|
p = z * neval (z, RN10, NRN10) / deval (z, RD10, NRD10);
|
|
p += lgam10b;
|
|
p += lgam10a;
|
|
break;
|
|
|
|
case 11:
|
|
z = x - 11.0L;
|
|
p = z * neval (z, RN11, NRN11) / deval (z, RD11, NRD11);
|
|
p += lgam11b;
|
|
p += lgam11a;
|
|
break;
|
|
|
|
case 12:
|
|
z = x - 12.0L;
|
|
p = z * neval (z, RN12, NRN12) / deval (z, RD12, NRD12);
|
|
p += lgam12b;
|
|
p += lgam12a;
|
|
break;
|
|
|
|
case 13:
|
|
z = x - 13.0L;
|
|
p = z * neval (z, RN13, NRN13) / deval (z, RD13, NRD13);
|
|
p += lgam13b;
|
|
p += lgam13a;
|
|
break;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
if (x > MAXLGM)
|
|
return (*signgamp * huge * huge);
|
|
|
|
if (x > 0x1p120L)
|
|
return x * (__logl (x) - 1.0L);
|
|
q = ls2pi - x;
|
|
q = (x - 0.5L) * __logl (x) + q;
|
|
if (x > 1.0e18L)
|
|
return (q);
|
|
|
|
p = 1.0L / (x * x);
|
|
q += neval (p, RASY, NRASY) / x;
|
|
return (q);
|
|
}
|
|
strong_alias (__ieee754_lgammal_r, __lgammal_r_finite)
|