glibc/sysdeps/ieee754/ldbl-128ibm/s_cbrtl.c
Gabriel F. T. Gomes d50b9bf1cc ldbl-128ibm: Automatic replacing of _Float128 and L()
The ldbl-128ibm implementation of j0l, j1l, lgammal_r, and cbrtl, as
well as the tables used by expl were copied from ldbl-128.  However, the
original files used _Float128 for the type and L() for the literal
suffix.  This patch uses the following sed command to rewrite _Float128
as long double and L(x) as xL (for e_expl.c, e_j0l.c, e_j1l.c,
e_lgammal_r.c, and t_expl.h):

  sed -i <filename> \
    -e "/^#define _Float128 long double/d" \
    -e "/^#define L(x) x ## L/d" \
    -e "/L(/s/)/L/" \
    -e "/L(/s/L(//" \
    -e "s/_Float128/long double/g"

For sysdeps/ieee754/ldbl-128ibm/s_cbrtl.c, this sed command incorrectly
replaces a few occurrences of L(), so the following command is used
instead:

  sed -i sysdeps/ieee754/ldbl-128ibm/s_cbrtl.c \
    -e "/^#define _Float128 long double/d" \
    -e "/^#define L(x) x ## L/d" \
    -e "s/L(0\.3\{40\})/0.3333333333333333333333333333333333333333L/" \
    -e "s/L(3\.7568280825958912391243e-1)/3.7568280825958912391243e-1L/" \
    -e "/L(/s/)/L/" \
    -e "/L(/s/L(//" \
    -e "s/_Float128/long double/g"

Tested for powerpc64le with patched [1] and unpatched gcc.

[1] https://gcc.gnu.org/ml/gcc-patches/2017-08/msg01028.html

	* sysdeps/ieee754/ldbl-128ibm/e_expl.c: Remove definitions of
	_Float128 and L().
	* sysdeps/ieee754/ldbl-128ibm/e_j0l.c: Remove definitions of
	_Float128 and L(). Replace _Float128 with long double and L(x)
	with xL, throughout the file.
	* sysdeps/ieee754/ldbl-128ibm/e_j1l.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_lgammal_r.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_cbrtl.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/t_expl.h: Likewise.

(cherry picked from commit d2f0ed09f8)
2017-10-10 10:15:16 -03:00

103 lines
2.7 KiB
C

/* Implementation of cbrtl. IBM Extended Precision version.
Cephes Math Library Release 2.2: January, 1991
Copyright 1984, 1991 by Stephen L. Moshier
Adapted for glibc October, 2001.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/>. */
/* This file was copied from sysdeps/ieee754/ldbl-128/e_j0l.c. */
#include <math_ldbl_opt.h>
#include <math.h>
#include <math_private.h>
static const long double CBRT2 = 1.259921049894873164767210607278228350570251L;
static const long double CBRT4 = 1.587401051968199474751705639272308260391493L;
static const long double CBRT2I = 0.7937005259840997373758528196361541301957467L;
static const long double CBRT4I = 0.6299605249474365823836053036391141752851257L;
long double
__cbrtl (long double x)
{
int e, rem, sign;
long double z;
if (!isfinite (x))
return x + x;
if (x == 0)
return (x);
if (x > 0)
sign = 1;
else
{
sign = -1;
x = -x;
}
z = x;
/* extract power of 2, leaving mantissa between 0.5 and 1 */
x = __frexpl (x, &e);
/* Approximate cube root of number between .5 and 1,
peak relative error = 1.2e-6 */
x = ((((1.3584464340920900529734e-1L * x
- 6.3986917220457538402318e-1L) * x
+ 1.2875551670318751538055e0L) * x
- 1.4897083391357284957891e0L) * x
+ 1.3304961236013647092521e0L) * x + 3.7568280825958912391243e-1L;
/* exponent divided by 3 */
if (e >= 0)
{
rem = e;
e /= 3;
rem -= 3 * e;
if (rem == 1)
x *= CBRT2;
else if (rem == 2)
x *= CBRT4;
}
else
{ /* argument less than 1 */
e = -e;
rem = e;
e /= 3;
rem -= 3 * e;
if (rem == 1)
x *= CBRT2I;
else if (rem == 2)
x *= CBRT4I;
e = -e;
}
/* multiply by power of 2 */
x = __ldexpl (x, e);
/* Newton iteration */
x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333L;
x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333L;
x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333L;
if (sign < 0)
x = -x;
return (x);
}
long_double_symbol (libm, __cbrtl, cbrtl);