mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-06 01:21:08 +00:00
330881763e
Optimizations are: 1. Use the fact that tzcnt(0) -> VEC_SIZE for memchr to save a branch in short string case. 2. Restructure code so that small strings are given the hot path. - This is a net-zero on the benchmark suite but in general makes sense as smaller sizes are far more common. 3. Use more code-size efficient instructions. - tzcnt ... -> bsf ... - vpcmpb $0 ... -> vpcmpeq ... 4. Align labels less aggressively, especially if it doesn't save fetch blocks / causes the basic-block to span extra cache-lines. The optimizations (especially for point 2) make the memchr and rawmemchr code essentially incompatible so split rawmemchr-evex to a new file. Code Size Changes: memchr-evex.S : -107 bytes rawmemchr-evex.S : -53 bytes Net perf changes: Reported as geometric mean of all improvements / regressions from N=10 runs of the benchtests. Value as New Time / Old Time so < 1.0 is improvement and 1.0 is regression. memchr-evex.S : 0.928 rawmemchr-evex.S : 0.986 (Less targets cross cache lines) Full results attached in email. Full check passes on x86-64.
309 lines
7.6 KiB
ArmAsm
309 lines
7.6 KiB
ArmAsm
/* rawmemchr optimized with 256-bit EVEX instructions.
|
|
Copyright (C) 2022 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include <isa-level.h>
|
|
#include <sysdep.h>
|
|
|
|
#if ISA_SHOULD_BUILD (4)
|
|
|
|
# ifndef VEC_SIZE
|
|
# include "x86-evex256-vecs.h"
|
|
# endif
|
|
|
|
# ifndef RAWMEMCHR
|
|
# define RAWMEMCHR __rawmemchr_evex
|
|
# endif
|
|
|
|
|
|
# define PC_SHIFT_GPR rdi
|
|
# define REG_WIDTH VEC_SIZE
|
|
# define VPTESTN vptestnmb
|
|
# define VPBROADCAST vpbroadcastb
|
|
# define VPMINU vpminub
|
|
# define VPCMP vpcmpb
|
|
# define VPCMPEQ vpcmpeqb
|
|
# define CHAR_SIZE 1
|
|
|
|
# include "reg-macros.h"
|
|
|
|
/* If not in an RTM and VEC_SIZE != 64 (the VEC_SIZE = 64
|
|
doesn't have VEX encoding), use VEX encoding in loop so we
|
|
can use vpcmpeqb + vptern which is more efficient than the
|
|
EVEX alternative. */
|
|
# if defined USE_IN_RTM || VEC_SIZE == 64
|
|
# undef COND_VZEROUPPER
|
|
# undef VZEROUPPER_RETURN
|
|
# undef VZEROUPPER
|
|
|
|
|
|
# define COND_VZEROUPPER
|
|
# define VZEROUPPER_RETURN ret
|
|
# define VZEROUPPER
|
|
|
|
# define USE_TERN_IN_LOOP 0
|
|
# else
|
|
# define USE_TERN_IN_LOOP 1
|
|
# undef VZEROUPPER
|
|
# define VZEROUPPER vzeroupper
|
|
# endif
|
|
|
|
# define CHAR_PER_VEC VEC_SIZE
|
|
|
|
# if CHAR_PER_VEC == 64
|
|
|
|
# define TAIL_RETURN_LBL first_vec_x2
|
|
# define TAIL_RETURN_OFFSET (CHAR_PER_VEC * 2)
|
|
|
|
# define FALLTHROUGH_RETURN_LBL first_vec_x3
|
|
# define FALLTHROUGH_RETURN_OFFSET (CHAR_PER_VEC * 3)
|
|
|
|
# else /* !(CHAR_PER_VEC == 64) */
|
|
|
|
# define TAIL_RETURN_LBL first_vec_x3
|
|
# define TAIL_RETURN_OFFSET (CHAR_PER_VEC * 3)
|
|
|
|
# define FALLTHROUGH_RETURN_LBL first_vec_x2
|
|
# define FALLTHROUGH_RETURN_OFFSET (CHAR_PER_VEC * 2)
|
|
# endif /* !(CHAR_PER_VEC == 64) */
|
|
|
|
|
|
# define VMATCH VMM(0)
|
|
# define VMATCH_LO VMM_lo(0)
|
|
|
|
# define PAGE_SIZE 4096
|
|
|
|
.section SECTION(.text), "ax", @progbits
|
|
ENTRY_P2ALIGN (RAWMEMCHR, 6)
|
|
VPBROADCAST %esi, %VMATCH
|
|
/* Check if we may cross page boundary with one vector load. */
|
|
movl %edi, %eax
|
|
andl $(PAGE_SIZE - 1), %eax
|
|
cmpl $(PAGE_SIZE - VEC_SIZE), %eax
|
|
ja L(page_cross)
|
|
|
|
VPCMPEQ (%rdi), %VMATCH, %k0
|
|
KMOV %k0, %VRAX
|
|
|
|
test %VRAX, %VRAX
|
|
jz L(aligned_more)
|
|
L(first_vec_x0):
|
|
bsf %VRAX, %VRAX
|
|
addq %rdi, %rax
|
|
ret
|
|
|
|
.p2align 4,, 4
|
|
L(first_vec_x4):
|
|
bsf %VRAX, %VRAX
|
|
leaq (VEC_SIZE * 4)(%rdi, %rax), %rax
|
|
ret
|
|
|
|
/* For VEC_SIZE == 32 we can fit this in aligning bytes so might
|
|
as well place it more locally. For VEC_SIZE == 64 we reuse
|
|
return code at the end of loop's return. */
|
|
# if VEC_SIZE == 32
|
|
.p2align 4,, 4
|
|
L(FALLTHROUGH_RETURN_LBL):
|
|
bsf %VRAX, %VRAX
|
|
leaq (FALLTHROUGH_RETURN_OFFSET)(%rdi, %rax), %rax
|
|
ret
|
|
# endif
|
|
|
|
.p2align 4,, 6
|
|
L(page_cross):
|
|
/* eax has lower page-offset bits of rdi so xor will zero them
|
|
out. */
|
|
xorq %rdi, %rax
|
|
VPCMPEQ (PAGE_SIZE - VEC_SIZE)(%rax), %VMATCH, %k0
|
|
KMOV %k0, %VRAX
|
|
|
|
/* Shift out out-of-bounds matches. */
|
|
shrx %VRDI, %VRAX, %VRAX
|
|
test %VRAX, %VRAX
|
|
jnz L(first_vec_x0)
|
|
|
|
.p2align 4,, 10
|
|
L(aligned_more):
|
|
L(page_cross_continue):
|
|
/* Align pointer. */
|
|
andq $(VEC_SIZE * -1), %rdi
|
|
|
|
VPCMPEQ VEC_SIZE(%rdi), %VMATCH, %k0
|
|
KMOV %k0, %VRAX
|
|
test %VRAX, %VRAX
|
|
jnz L(first_vec_x1)
|
|
|
|
VPCMPEQ (VEC_SIZE * 2)(%rdi), %VMATCH, %k0
|
|
KMOV %k0, %VRAX
|
|
test %VRAX, %VRAX
|
|
jnz L(first_vec_x2)
|
|
|
|
VPCMPEQ (VEC_SIZE * 3)(%rdi), %VMATCH, %k0
|
|
KMOV %k0, %VRAX
|
|
test %VRAX, %VRAX
|
|
jnz L(first_vec_x3)
|
|
|
|
VPCMPEQ (VEC_SIZE * 4)(%rdi), %VMATCH, %k0
|
|
KMOV %k0, %VRAX
|
|
test %VRAX, %VRAX
|
|
jnz L(first_vec_x4)
|
|
|
|
subq $-(VEC_SIZE * 1), %rdi
|
|
# if VEC_SIZE == 64
|
|
/* Saves code size. No evex512 processor has partial register
|
|
stalls. If that change this can be replaced with `andq
|
|
$-(VEC_SIZE * 4), %rdi`. */
|
|
xorb %dil, %dil
|
|
# else
|
|
andq $-(VEC_SIZE * 4), %rdi
|
|
# endif
|
|
|
|
# if USE_TERN_IN_LOOP
|
|
/* copy VMATCH to low ymm so we can use vpcmpeq which is not
|
|
encodable with EVEX registers. NB: this is VEC_SIZE == 32
|
|
only as there is no way to encode vpcmpeq with zmm0-15. */
|
|
vmovdqa64 %VMATCH, %VMATCH_LO
|
|
# endif
|
|
|
|
.p2align 4
|
|
L(loop_4x_vec):
|
|
/* Two versions of the loop. One that does not require
|
|
vzeroupper by not using ymm0-15 and another does that
|
|
require vzeroupper because it uses ymm0-15. The reason why
|
|
ymm0-15 is used at all is because there is no EVEX encoding
|
|
vpcmpeq and with vpcmpeq this loop can be performed more
|
|
efficiently. The non-vzeroupper version is safe for RTM
|
|
while the vzeroupper version should be prefered if RTM are
|
|
not supported. Which loop version we use is determined by
|
|
USE_TERN_IN_LOOP. */
|
|
|
|
# if USE_TERN_IN_LOOP
|
|
/* Since vptern can only take 3x vectors fastest to do 1 vec
|
|
seperately with EVEX vpcmp. */
|
|
VPCMPEQ (VEC_SIZE * 4)(%rdi), %VMATCH, %k1
|
|
/* Compare 3x with vpcmpeq and or them all together with vptern.
|
|
*/
|
|
|
|
VPCMPEQ (VEC_SIZE * 5)(%rdi), %VMATCH_LO, %VMM_lo(2)
|
|
subq $(VEC_SIZE * -4), %rdi
|
|
VPCMPEQ (VEC_SIZE * 2)(%rdi), %VMATCH_LO, %VMM_lo(3)
|
|
VPCMPEQ (VEC_SIZE * 3)(%rdi), %VMATCH_LO, %VMM_lo(4)
|
|
|
|
/* 254 is mask for oring VEC_lo(2), VEC_lo(3), VEC_lo(4) into
|
|
VEC_lo(4). */
|
|
vpternlogd $254, %VMM_lo(2), %VMM_lo(3), %VMM_lo(4)
|
|
vpmovmskb %VMM_lo(4), %VRCX
|
|
|
|
KMOV %k1, %eax
|
|
|
|
/* NB: rax has match from first VEC and rcx has matches from
|
|
VEC 2-4. If rax is non-zero we will return that match. If
|
|
rax is zero adding won't disturb the bits in rcx. */
|
|
add %rax, %rcx
|
|
# else
|
|
/* Loop version that uses EVEX encoding. */
|
|
VPCMP $4, (VEC_SIZE * 4)(%rdi), %VMATCH, %k1
|
|
vpxorq (VEC_SIZE * 5)(%rdi), %VMATCH, %VMM(2)
|
|
vpxorq (VEC_SIZE * 6)(%rdi), %VMATCH, %VMM(3)
|
|
VPCMPEQ (VEC_SIZE * 7)(%rdi), %VMATCH, %k3
|
|
VPMINU %VMM(2), %VMM(3), %VMM(3){%k1}{z}
|
|
VPTESTN %VMM(3), %VMM(3), %k2
|
|
subq $(VEC_SIZE * -4), %rdi
|
|
KORTEST %k2, %k3
|
|
# endif
|
|
jz L(loop_4x_vec)
|
|
|
|
# if USE_TERN_IN_LOOP
|
|
test %VRAX, %VRAX
|
|
# else
|
|
KMOV %k1, %VRAX
|
|
inc %VRAX
|
|
# endif
|
|
jnz L(last_vec_x0)
|
|
|
|
|
|
# if USE_TERN_IN_LOOP
|
|
vpmovmskb %VMM_lo(2), %VRAX
|
|
# else
|
|
VPTESTN %VMM(2), %VMM(2), %k1
|
|
KMOV %k1, %VRAX
|
|
# endif
|
|
test %VRAX, %VRAX
|
|
jnz L(last_vec_x1)
|
|
|
|
|
|
# if USE_TERN_IN_LOOP
|
|
vpmovmskb %VMM_lo(3), %VRAX
|
|
# else
|
|
KMOV %k2, %VRAX
|
|
# endif
|
|
|
|
/* No longer need any of the lo vecs (ymm0-15) so vzeroupper
|
|
(only if used VEX encoded loop). */
|
|
COND_VZEROUPPER
|
|
|
|
/* Seperate logic for VEC_SIZE == 64 and VEC_SIZE == 32 for
|
|
returning last 2x VEC. For VEC_SIZE == 64 we test each VEC
|
|
individually, for VEC_SIZE == 32 we combine them in a single
|
|
64-bit GPR. */
|
|
# if CHAR_PER_VEC == 64
|
|
# if USE_TERN_IN_LOOP
|
|
# error "Unsupported"
|
|
# endif
|
|
|
|
|
|
/* If CHAR_PER_VEC == 64 we can't combine the last two VEC. */
|
|
test %VRAX, %VRAX
|
|
jnz L(first_vec_x2)
|
|
KMOV %k3, %VRAX
|
|
L(FALLTHROUGH_RETURN_LBL):
|
|
# else
|
|
/* CHAR_PER_VEC <= 32 so we can combine the results from the
|
|
last 2x VEC. */
|
|
# if !USE_TERN_IN_LOOP
|
|
KMOV %k3, %VRCX
|
|
# endif
|
|
salq $CHAR_PER_VEC, %rcx
|
|
addq %rcx, %rax
|
|
# endif
|
|
bsf %rax, %rax
|
|
leaq (FALLTHROUGH_RETURN_OFFSET)(%rdi, %rax), %rax
|
|
ret
|
|
|
|
.p2align 4,, 8
|
|
L(TAIL_RETURN_LBL):
|
|
bsf %rax, %rax
|
|
leaq (TAIL_RETURN_OFFSET)(%rdi, %rax), %rax
|
|
ret
|
|
|
|
.p2align 4,, 8
|
|
L(last_vec_x1):
|
|
COND_VZEROUPPER
|
|
L(first_vec_x1):
|
|
bsf %VRAX, %VRAX
|
|
leaq (VEC_SIZE * 1)(%rdi, %rax), %rax
|
|
ret
|
|
|
|
.p2align 4,, 8
|
|
L(last_vec_x0):
|
|
COND_VZEROUPPER
|
|
bsf %VRAX, %VRAX
|
|
addq %rdi, %rax
|
|
ret
|
|
END (RAWMEMCHR)
|
|
#endif
|