mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-30 00:31:08 +00:00
438 lines
13 KiB
C
438 lines
13 KiB
C
/* One way encryption based on SHA256 sum.
|
|
Copyright (C) 2007-2013 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@redhat.com>, 2007.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <stdbool.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
#include <sys/param.h>
|
|
|
|
#include "sha256.h"
|
|
|
|
|
|
#ifdef USE_NSS
|
|
typedef int PRBool;
|
|
# include <hasht.h>
|
|
# include <nsslowhash.h>
|
|
|
|
# define sha256_init_ctx(ctxp, nss_ctxp) \
|
|
do \
|
|
{ \
|
|
if (((nss_ctxp = NSSLOWHASH_NewContext (nss_ictx, HASH_AlgSHA256)) \
|
|
== NULL)) \
|
|
{ \
|
|
if (nss_ctx != NULL) \
|
|
NSSLOWHASH_Destroy (nss_ctx); \
|
|
if (nss_alt_ctx != NULL) \
|
|
NSSLOWHASH_Destroy (nss_alt_ctx); \
|
|
return NULL; \
|
|
} \
|
|
NSSLOWHASH_Begin (nss_ctxp); \
|
|
} \
|
|
while (0)
|
|
|
|
# define sha256_process_bytes(buf, len, ctxp, nss_ctxp) \
|
|
NSSLOWHASH_Update (nss_ctxp, (const unsigned char *) buf, len)
|
|
|
|
# define sha256_finish_ctx(ctxp, nss_ctxp, result) \
|
|
do \
|
|
{ \
|
|
unsigned int ret; \
|
|
NSSLOWHASH_End (nss_ctxp, result, &ret, sizeof (result)); \
|
|
assert (ret == sizeof (result)); \
|
|
NSSLOWHASH_Destroy (nss_ctxp); \
|
|
nss_ctxp = NULL; \
|
|
} \
|
|
while (0)
|
|
#else
|
|
# define sha256_init_ctx(ctxp, nss_ctxp) \
|
|
__sha256_init_ctx (ctxp)
|
|
|
|
# define sha256_process_bytes(buf, len, ctxp, nss_ctxp) \
|
|
__sha256_process_bytes(buf, len, ctxp)
|
|
|
|
# define sha256_finish_ctx(ctxp, nss_ctxp, result) \
|
|
__sha256_finish_ctx (ctxp, result)
|
|
#endif
|
|
|
|
|
|
/* Define our magic string to mark salt for SHA256 "encryption"
|
|
replacement. */
|
|
static const char sha256_salt_prefix[] = "$5$";
|
|
|
|
/* Prefix for optional rounds specification. */
|
|
static const char sha256_rounds_prefix[] = "rounds=";
|
|
|
|
/* Maximum salt string length. */
|
|
#define SALT_LEN_MAX 16
|
|
/* Default number of rounds if not explicitly specified. */
|
|
#define ROUNDS_DEFAULT 5000
|
|
/* Minimum number of rounds. */
|
|
#define ROUNDS_MIN 1000
|
|
/* Maximum number of rounds. */
|
|
#define ROUNDS_MAX 999999999
|
|
|
|
/* Table with characters for base64 transformation. */
|
|
static const char b64t[64] =
|
|
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
|
|
|
|
|
/* Prototypes for local functions. */
|
|
extern char *__sha256_crypt_r (const char *key, const char *salt,
|
|
char *buffer, int buflen);
|
|
extern char *__sha256_crypt (const char *key, const char *salt);
|
|
|
|
|
|
char *
|
|
__sha256_crypt_r (key, salt, buffer, buflen)
|
|
const char *key;
|
|
const char *salt;
|
|
char *buffer;
|
|
int buflen;
|
|
{
|
|
unsigned char alt_result[32]
|
|
__attribute__ ((__aligned__ (__alignof__ (uint32_t))));
|
|
unsigned char temp_result[32]
|
|
__attribute__ ((__aligned__ (__alignof__ (uint32_t))));
|
|
size_t salt_len;
|
|
size_t key_len;
|
|
size_t cnt;
|
|
char *cp;
|
|
char *copied_key = NULL;
|
|
char *copied_salt = NULL;
|
|
char *p_bytes;
|
|
char *s_bytes;
|
|
/* Default number of rounds. */
|
|
size_t rounds = ROUNDS_DEFAULT;
|
|
bool rounds_custom = false;
|
|
size_t alloca_used = 0;
|
|
char *free_key = NULL;
|
|
char *free_pbytes = NULL;
|
|
|
|
/* Find beginning of salt string. The prefix should normally always
|
|
be present. Just in case it is not. */
|
|
if (strncmp (sha256_salt_prefix, salt, sizeof (sha256_salt_prefix) - 1) == 0)
|
|
/* Skip salt prefix. */
|
|
salt += sizeof (sha256_salt_prefix) - 1;
|
|
|
|
if (strncmp (salt, sha256_rounds_prefix, sizeof (sha256_rounds_prefix) - 1)
|
|
== 0)
|
|
{
|
|
const char *num = salt + sizeof (sha256_rounds_prefix) - 1;
|
|
char *endp;
|
|
unsigned long int srounds = strtoul (num, &endp, 10);
|
|
if (*endp == '$')
|
|
{
|
|
salt = endp + 1;
|
|
rounds = MAX (ROUNDS_MIN, MIN (srounds, ROUNDS_MAX));
|
|
rounds_custom = true;
|
|
}
|
|
}
|
|
|
|
salt_len = MIN (strcspn (salt, "$"), SALT_LEN_MAX);
|
|
key_len = strlen (key);
|
|
|
|
if ((key - (char *) 0) % __alignof__ (uint32_t) != 0)
|
|
{
|
|
char *tmp;
|
|
|
|
if (__libc_use_alloca (alloca_used + key_len + __alignof__ (uint32_t)))
|
|
tmp = alloca_account (key_len + __alignof__ (uint32_t), alloca_used);
|
|
else
|
|
{
|
|
free_key = tmp = (char *) malloc (key_len + __alignof__ (uint32_t));
|
|
if (tmp == NULL)
|
|
return NULL;
|
|
}
|
|
|
|
key = copied_key =
|
|
memcpy (tmp + __alignof__ (uint32_t)
|
|
- (tmp - (char *) 0) % __alignof__ (uint32_t),
|
|
key, key_len);
|
|
assert ((key - (char *) 0) % __alignof__ (uint32_t) == 0);
|
|
}
|
|
|
|
if ((salt - (char *) 0) % __alignof__ (uint32_t) != 0)
|
|
{
|
|
char *tmp = (char *) alloca (salt_len + __alignof__ (uint32_t));
|
|
alloca_used += salt_len + __alignof__ (uint32_t);
|
|
salt = copied_salt =
|
|
memcpy (tmp + __alignof__ (uint32_t)
|
|
- (tmp - (char *) 0) % __alignof__ (uint32_t),
|
|
salt, salt_len);
|
|
assert ((salt - (char *) 0) % __alignof__ (uint32_t) == 0);
|
|
}
|
|
|
|
#ifdef USE_NSS
|
|
/* Initialize libfreebl3. */
|
|
NSSLOWInitContext *nss_ictx = NSSLOW_Init ();
|
|
if (nss_ictx == NULL)
|
|
{
|
|
free (free_key);
|
|
return NULL;
|
|
}
|
|
NSSLOWHASHContext *nss_ctx = NULL;
|
|
NSSLOWHASHContext *nss_alt_ctx = NULL;
|
|
#else
|
|
struct sha256_ctx ctx;
|
|
struct sha256_ctx alt_ctx;
|
|
#endif
|
|
|
|
/* Prepare for the real work. */
|
|
sha256_init_ctx (&ctx, nss_ctx);
|
|
|
|
/* Add the key string. */
|
|
sha256_process_bytes (key, key_len, &ctx, nss_ctx);
|
|
|
|
/* The last part is the salt string. This must be at most 16
|
|
characters and it ends at the first `$' character. */
|
|
sha256_process_bytes (salt, salt_len, &ctx, nss_ctx);
|
|
|
|
|
|
/* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
|
|
final result will be added to the first context. */
|
|
sha256_init_ctx (&alt_ctx, nss_alt_ctx);
|
|
|
|
/* Add key. */
|
|
sha256_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);
|
|
|
|
/* Add salt. */
|
|
sha256_process_bytes (salt, salt_len, &alt_ctx, nss_alt_ctx);
|
|
|
|
/* Add key again. */
|
|
sha256_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);
|
|
|
|
/* Now get result of this (32 bytes) and add it to the other
|
|
context. */
|
|
sha256_finish_ctx (&alt_ctx, nss_alt_ctx, alt_result);
|
|
|
|
/* Add for any character in the key one byte of the alternate sum. */
|
|
for (cnt = key_len; cnt > 32; cnt -= 32)
|
|
sha256_process_bytes (alt_result, 32, &ctx, nss_ctx);
|
|
sha256_process_bytes (alt_result, cnt, &ctx, nss_ctx);
|
|
|
|
/* Take the binary representation of the length of the key and for every
|
|
1 add the alternate sum, for every 0 the key. */
|
|
for (cnt = key_len; cnt > 0; cnt >>= 1)
|
|
if ((cnt & 1) != 0)
|
|
sha256_process_bytes (alt_result, 32, &ctx, nss_ctx);
|
|
else
|
|
sha256_process_bytes (key, key_len, &ctx, nss_ctx);
|
|
|
|
/* Create intermediate result. */
|
|
sha256_finish_ctx (&ctx, nss_ctx, alt_result);
|
|
|
|
/* Start computation of P byte sequence. */
|
|
sha256_init_ctx (&alt_ctx, nss_alt_ctx);
|
|
|
|
/* For every character in the password add the entire password. */
|
|
for (cnt = 0; cnt < key_len; ++cnt)
|
|
sha256_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);
|
|
|
|
/* Finish the digest. */
|
|
sha256_finish_ctx (&alt_ctx, nss_alt_ctx, temp_result);
|
|
|
|
/* Create byte sequence P. */
|
|
if (__libc_use_alloca (alloca_used + key_len))
|
|
cp = p_bytes = (char *) alloca (key_len);
|
|
else
|
|
{
|
|
free_pbytes = cp = p_bytes = (char *)malloc (key_len);
|
|
if (free_pbytes == NULL)
|
|
{
|
|
free (free_key);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
for (cnt = key_len; cnt >= 32; cnt -= 32)
|
|
cp = mempcpy (cp, temp_result, 32);
|
|
memcpy (cp, temp_result, cnt);
|
|
|
|
/* Start computation of S byte sequence. */
|
|
sha256_init_ctx (&alt_ctx, nss_alt_ctx);
|
|
|
|
/* For every character in the password add the entire password. */
|
|
for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
|
|
sha256_process_bytes (salt, salt_len, &alt_ctx, nss_alt_ctx);
|
|
|
|
/* Finish the digest. */
|
|
sha256_finish_ctx (&alt_ctx, nss_alt_ctx, temp_result);
|
|
|
|
/* Create byte sequence S. */
|
|
cp = s_bytes = alloca (salt_len);
|
|
for (cnt = salt_len; cnt >= 32; cnt -= 32)
|
|
cp = mempcpy (cp, temp_result, 32);
|
|
memcpy (cp, temp_result, cnt);
|
|
|
|
/* Repeatedly run the collected hash value through SHA256 to burn
|
|
CPU cycles. */
|
|
for (cnt = 0; cnt < rounds; ++cnt)
|
|
{
|
|
/* New context. */
|
|
sha256_init_ctx (&ctx, nss_ctx);
|
|
|
|
/* Add key or last result. */
|
|
if ((cnt & 1) != 0)
|
|
sha256_process_bytes (p_bytes, key_len, &ctx, nss_ctx);
|
|
else
|
|
sha256_process_bytes (alt_result, 32, &ctx, nss_ctx);
|
|
|
|
/* Add salt for numbers not divisible by 3. */
|
|
if (cnt % 3 != 0)
|
|
sha256_process_bytes (s_bytes, salt_len, &ctx, nss_ctx);
|
|
|
|
/* Add key for numbers not divisible by 7. */
|
|
if (cnt % 7 != 0)
|
|
sha256_process_bytes (p_bytes, key_len, &ctx, nss_ctx);
|
|
|
|
/* Add key or last result. */
|
|
if ((cnt & 1) != 0)
|
|
sha256_process_bytes (alt_result, 32, &ctx, nss_ctx);
|
|
else
|
|
sha256_process_bytes (p_bytes, key_len, &ctx, nss_ctx);
|
|
|
|
/* Create intermediate result. */
|
|
sha256_finish_ctx (&ctx, nss_ctx, alt_result);
|
|
}
|
|
|
|
#ifdef USE_NSS
|
|
/* Free libfreebl3 resources. */
|
|
NSSLOW_Shutdown (nss_ictx);
|
|
#endif
|
|
|
|
/* Now we can construct the result string. It consists of three
|
|
parts. */
|
|
cp = __stpncpy (buffer, sha256_salt_prefix, MAX (0, buflen));
|
|
buflen -= sizeof (sha256_salt_prefix) - 1;
|
|
|
|
if (rounds_custom)
|
|
{
|
|
int n = snprintf (cp, MAX (0, buflen), "%s%zu$",
|
|
sha256_rounds_prefix, rounds);
|
|
cp += n;
|
|
buflen -= n;
|
|
}
|
|
|
|
cp = __stpncpy (cp, salt, MIN ((size_t) MAX (0, buflen), salt_len));
|
|
buflen -= MIN ((size_t) MAX (0, buflen), salt_len);
|
|
|
|
if (buflen > 0)
|
|
{
|
|
*cp++ = '$';
|
|
--buflen;
|
|
}
|
|
|
|
void b64_from_24bit (unsigned int b2, unsigned int b1, unsigned int b0,
|
|
int n)
|
|
{
|
|
unsigned int w = (b2 << 16) | (b1 << 8) | b0;
|
|
while (n-- > 0 && buflen > 0)
|
|
{
|
|
*cp++ = b64t[w & 0x3f];
|
|
--buflen;
|
|
w >>= 6;
|
|
}
|
|
}
|
|
|
|
b64_from_24bit (alt_result[0], alt_result[10], alt_result[20], 4);
|
|
b64_from_24bit (alt_result[21], alt_result[1], alt_result[11], 4);
|
|
b64_from_24bit (alt_result[12], alt_result[22], alt_result[2], 4);
|
|
b64_from_24bit (alt_result[3], alt_result[13], alt_result[23], 4);
|
|
b64_from_24bit (alt_result[24], alt_result[4], alt_result[14], 4);
|
|
b64_from_24bit (alt_result[15], alt_result[25], alt_result[5], 4);
|
|
b64_from_24bit (alt_result[6], alt_result[16], alt_result[26], 4);
|
|
b64_from_24bit (alt_result[27], alt_result[7], alt_result[17], 4);
|
|
b64_from_24bit (alt_result[18], alt_result[28], alt_result[8], 4);
|
|
b64_from_24bit (alt_result[9], alt_result[19], alt_result[29], 4);
|
|
b64_from_24bit (0, alt_result[31], alt_result[30], 3);
|
|
if (buflen <= 0)
|
|
{
|
|
__set_errno (ERANGE);
|
|
buffer = NULL;
|
|
}
|
|
else
|
|
*cp = '\0'; /* Terminate the string. */
|
|
|
|
/* Clear the buffer for the intermediate result so that people
|
|
attaching to processes or reading core dumps cannot get any
|
|
information. We do it in this way to clear correct_words[]
|
|
inside the SHA256 implementation as well. */
|
|
#ifndef USE_NSS
|
|
__sha256_init_ctx (&ctx);
|
|
__sha256_finish_ctx (&ctx, alt_result);
|
|
memset (&ctx, '\0', sizeof (ctx));
|
|
memset (&alt_ctx, '\0', sizeof (alt_ctx));
|
|
#endif
|
|
memset (temp_result, '\0', sizeof (temp_result));
|
|
memset (p_bytes, '\0', key_len);
|
|
memset (s_bytes, '\0', salt_len);
|
|
if (copied_key != NULL)
|
|
memset (copied_key, '\0', key_len);
|
|
if (copied_salt != NULL)
|
|
memset (copied_salt, '\0', salt_len);
|
|
|
|
free (free_key);
|
|
free (free_pbytes);
|
|
return buffer;
|
|
}
|
|
|
|
#ifndef _LIBC
|
|
# define libc_freeres_ptr(decl) decl
|
|
#endif
|
|
libc_freeres_ptr (static char *buffer);
|
|
|
|
/* This entry point is equivalent to the `crypt' function in Unix
|
|
libcs. */
|
|
char *
|
|
__sha256_crypt (const char *key, const char *salt)
|
|
{
|
|
/* We don't want to have an arbitrary limit in the size of the
|
|
password. We can compute an upper bound for the size of the
|
|
result in advance and so we can prepare the buffer we pass to
|
|
`sha256_crypt_r'. */
|
|
static int buflen;
|
|
int needed = (sizeof (sha256_salt_prefix) - 1
|
|
+ sizeof (sha256_rounds_prefix) + 9 + 1
|
|
+ strlen (salt) + 1 + 43 + 1);
|
|
|
|
if (buflen < needed)
|
|
{
|
|
char *new_buffer = (char *) realloc (buffer, needed);
|
|
if (new_buffer == NULL)
|
|
return NULL;
|
|
|
|
buffer = new_buffer;
|
|
buflen = needed;
|
|
}
|
|
|
|
return __sha256_crypt_r (key, salt, buffer, buflen);
|
|
}
|
|
|
|
#ifndef _LIBC
|
|
static void
|
|
__attribute__ ((__destructor__))
|
|
free_mem (void)
|
|
{
|
|
free (buffer);
|
|
}
|
|
#endif
|