glibc/math/s_cexpl.c
Joseph Myers a67894c505 Fix cexp, ccos, ccosh, csin, csinh spurious underflows (bug 18594).
cexp, ccos, ccosh, csin and csinh have spurious underflows in cases
where they compute sin of the smallest normal, that produces an
underflow exception (depending on which sin implementation is in use)
but the final result does not underflow.  ctan and ctanh may also have
such underflows, or they may be latent (the issue there is that
e.g. ctan (DBL_MIN) should, rounded upwards, be the next double value
above DBL_MIN, which under glibc's accuracy goals may not have an
underflow exception, but the intermediate computation of sin (DBL_MIN)
would legitimately underflow on before-rounding architectures).

This patch fixes all those functions so they use plain comparisons (>
DBL_MIN etc.) instead of comparing the result of fpclassify with
FP_SUBNORMAL (in all these cases, we already know the number being
compared is finite).  Note that in the case of csin / csinf / csinl,
there is no need for fabs calls in the comparison because the real
part has already been reduced to its absolute value.

As the patch fixes the failures that previously obstructed moving
tests of cexp to use ALL_RM_TEST, those tests are moved to ALL_RM_TEST
by the patch (two functions remain yet to be converted).

Tested for x86_64 and x86 and ulps updated accordingly.

	[BZ #18594]
	* math/s_ccosh.c (__ccosh): Compare with least normal value
	instead of comparing class with FP_SUBNORMAL.
	* math/s_ccoshf.c (__ccoshf): Likewise.
	* math/s_ccoshl.c (__ccoshl): Likewise.
	* math/s_cexp.c (__cexp): Likewise.
	* math/s_cexpf.c (__cexpf): Likewise.
	* math/s_cexpl.c (__cexpl): Likewise.
	* math/s_csin.c (__csin): Likewise.
	* math/s_csinf.c (__csinf): Likewise.
	* math/s_csinh.c (__csinh): Likewise.
	* math/s_csinhf.c (__csinhf): Likewise.
	* math/s_csinhl.c (__csinhl): Likewise.
	* math/s_csinl.c (__csinl): Likewise.
	* math/s_ctan.c (__ctan): Likewise.
	* math/s_ctanf.c (__ctanf): Likewise.
	* math/s_ctanh.c (__ctanh): Likewise.
	* math/s_ctanhf.c (__ctanhf): Likewise.
	* math/s_ctanhl.c (__ctanhl): Likewise.
	* math/s_ctanl.c (__ctanl): Likewise.
	* math/auto-libm-test-in: Add more tests of ccos, ccosh, cexp,
	csin, csinh, ctan and ctanh.
	* math/auto-libm-test-out: Regenerated.
	* math/libm-test.inc (cexp_test): Use ALL_RM_TEST.
	* sysdeps/i386/fpu/libm-test-ulps: Update.
	* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2015-06-24 21:04:51 +00:00

165 lines
4.1 KiB
C

/* Return value of complex exponential function for long double complex value.
Copyright (C) 1997-2015 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ long double
__cexpl (__complex__ long double x)
{
__complex__ long double retval;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_likely (rcls >= FP_ZERO))
{
/* Real part is finite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l);
long double sinix, cosix;
if (__glibc_likely (fabsl (__imag__ x) > LDBL_MIN))
{
__sincosl (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
}
if (__real__ x > t)
{
long double exp_t = __ieee754_expl (t);
__real__ x -= t;
sinix *= exp_t;
cosix *= exp_t;
if (__real__ x > t)
{
__real__ x -= t;
sinix *= exp_t;
cosix *= exp_t;
}
}
if (__real__ x > t)
{
/* Overflow (original real part of x > 3t). */
__real__ retval = LDBL_MAX * cosix;
__imag__ retval = LDBL_MAX * sinix;
}
else
{
long double exp_val = __ieee754_expl (__real__ x);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
if (fabsl (__real__ retval) < LDBL_MIN)
{
volatile long double force_underflow
= __real__ retval * __real__ retval;
(void) force_underflow;
}
if (fabsl (__imag__ retval) < LDBL_MIN)
{
volatile long double force_underflow
= __imag__ retval * __imag__ retval;
(void) force_underflow;
}
}
else
{
/* If the imaginary part is +-inf or NaN and the real part
is not +-inf the result is NaN + iNaN. */
__real__ retval = __nanl ("");
__imag__ retval = __nanl ("");
feraiseexcept (FE_INVALID);
}
}
else if (__glibc_likely (rcls == FP_INFINITE))
{
/* Real part is infinite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
long double value = signbit (__real__ x) ? 0.0 : HUGE_VALL;
if (icls == FP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = value;
__imag__ retval = __imag__ x;
}
else
{
long double sinix, cosix;
if (__glibc_likely (fabsl (__imag__ x) > LDBL_MIN))
{
__sincosl (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
}
__real__ retval = __copysignl (value, cosix);
__imag__ retval = __copysignl (value, sinix);
}
}
else if (signbit (__real__ x) == 0)
{
__real__ retval = HUGE_VALL;
__imag__ retval = __nanl ("");
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
else
{
__real__ retval = 0.0;
__imag__ retval = __copysignl (0.0, __imag__ x);
}
}
else
{
/* If the real part is NaN the result is NaN + iNaN unless the
imaginary part is zero. */
__real__ retval = __nanl ("");
if (icls == FP_ZERO)
__imag__ retval = __imag__ x;
else
{
__imag__ retval = __nanl ("");
if (rcls != FP_NAN || icls != FP_NAN)
feraiseexcept (FE_INVALID);
}
}
return retval;
}
weak_alias (__cexpl, cexpl)