glibc/math/s_csqrtl.c
Joseph Myers 948e12a238 Fix csqrt missing underflows (bug 18370).
The csqrt implementations in glibc can miss underflow exceptions when
the real or imaginary part of the result becomes tiny in the course of
scaling down (in particular, multiplication by 0.5) and that scaling
is exact although the relevant part of the mathematical result isn't.
This patch forces the exception in a similar way to previous fixes.

Tested for x86_64 and x86.

	[BZ #18370]
	* math/s_csqrt.c (__csqrt): Force underflow exception for results
	whose real or imaginary part has small absolute value.
	* math/s_csqrtf.c (__csqrtf): Likewise.
	* math/s_csqrtl.c (__csqrtl): Likewise.
	* math/auto-libm-test-in: Add more tests of csqrt.
	* math/auto-libm-test-out: Regenerated.
	* sysdeps/i386/fpu/libm-test-ulps: Update.
2015-08-19 22:42:01 +00:00

170 lines
4.4 KiB
C

/* Complex square root of long double value.
Copyright (C) 1997-2015 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Based on an algorithm by Stephen L. Moshier <moshier@world.std.com>.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ long double
__csqrtl (__complex__ long double x)
{
__complex__ long double res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
{
if (icls == FP_INFINITE)
{
__real__ res = HUGE_VALL;
__imag__ res = __imag__ x;
}
else if (rcls == FP_INFINITE)
{
if (__real__ x < 0.0)
{
__real__ res = icls == FP_NAN ? __nanl ("") : 0;
__imag__ res = __copysignl (HUGE_VALL, __imag__ x);
}
else
{
__real__ res = __real__ x;
__imag__ res = (icls == FP_NAN
? __nanl ("") : __copysignl (0.0, __imag__ x));
}
}
else
{
__real__ res = __nanl ("");
__imag__ res = __nanl ("");
}
}
else
{
if (__glibc_unlikely (icls == FP_ZERO))
{
if (__real__ x < 0.0)
{
__real__ res = 0.0;
__imag__ res = __copysignl (__ieee754_sqrtl (-__real__ x),
__imag__ x);
}
else
{
__real__ res = fabsl (__ieee754_sqrtl (__real__ x));
__imag__ res = __copysignl (0.0, __imag__ x);
}
}
else if (__glibc_unlikely (rcls == FP_ZERO))
{
long double r;
if (fabsl (__imag__ x) >= 2.0L * LDBL_MIN)
r = __ieee754_sqrtl (0.5L * fabsl (__imag__ x));
else
r = 0.5L * __ieee754_sqrtl (2.0L * fabsl (__imag__ x));
__real__ res = r;
__imag__ res = __copysignl (r, __imag__ x);
}
else
{
long double d, r, s;
int scale = 0;
if (fabsl (__real__ x) > LDBL_MAX / 4.0L)
{
scale = 1;
__real__ x = __scalbnl (__real__ x, -2 * scale);
__imag__ x = __scalbnl (__imag__ x, -2 * scale);
}
else if (fabsl (__imag__ x) > LDBL_MAX / 4.0L)
{
scale = 1;
if (fabsl (__real__ x) >= 4.0L * LDBL_MIN)
__real__ x = __scalbnl (__real__ x, -2 * scale);
else
__real__ x = 0.0L;
__imag__ x = __scalbnl (__imag__ x, -2 * scale);
}
else if (fabsl (__real__ x) < 2.0L * LDBL_MIN
&& fabsl (__imag__ x) < 2.0L * LDBL_MIN)
{
scale = -((LDBL_MANT_DIG + 1) / 2);
__real__ x = __scalbnl (__real__ x, -2 * scale);
__imag__ x = __scalbnl (__imag__ x, -2 * scale);
}
d = __ieee754_hypotl (__real__ x, __imag__ x);
/* Use the identity 2 Re res Im res = Im x
to avoid cancellation error in d +/- Re x. */
if (__real__ x > 0)
{
r = __ieee754_sqrtl (0.5L * (d + __real__ x));
if (scale == 1 && fabsl (__imag__ x) < 1.0L)
{
/* Avoid possible intermediate underflow. */
s = __imag__ x / r;
r = __scalbnl (r, scale);
scale = 0;
}
else
s = 0.5L * (__imag__ x / r);
}
else
{
s = __ieee754_sqrtl (0.5L * (d - __real__ x));
if (scale == 1 && fabsl (__imag__ x) < 1.0L)
{
/* Avoid possible intermediate underflow. */
r = fabsl (__imag__ x / s);
s = __scalbnl (s, scale);
scale = 0;
}
else
r = fabsl (0.5L * (__imag__ x / s));
}
if (scale)
{
r = __scalbnl (r, scale);
s = __scalbnl (s, scale);
}
if (fabsl (r) < LDBL_MIN)
{
long double force_underflow = r * r;
math_force_eval (force_underflow);
}
if (fabsl (s) < LDBL_MIN)
{
long double force_underflow = s * s;
math_force_eval (force_underflow);
}
__real__ res = r;
__imag__ res = __copysignl (s, __imag__ x);
}
}
return res;
}
weak_alias (__csqrtl, csqrtl)