glibc/math/tgmath.h
Ulrich Drepper 4360eafdd2 Update.
1999-06-18  Zack Weinberg  <zack@rabi.columbia.edu>

	* include/features.h: Define new macros __GNUC_PREREQ and
	__GLIBC_PREREQ which can be used to test the version of gcc
	and glibc respectively.

	* assert/assert.h: Use __GNUC_PREREQ.
	* intl/libintl.h: Likewise.
	* math/complex.h: Likewise.
	* math/tgmath.h: Likewise.
	* misc/sys/cdefs.h: Likewise.
	* posix/sys/types.h: Likewise.
	* socket/sys/socket.h: Likewise.
	* string/bits/string2.h: Likewise.
	* sysdeps/alpha/fpu/bits/mathinline.h: Likewise.
	* sysdeps/i386/fpu/bits/mathinline.h: Likewise.

1999-06-18  Zack Weinberg  <zack@rabi.columbia.edu>

	* include/libintl.h: Declare _libc_intl_domainname here.
	Define _ and N_ here.
	* include/libc-symbols.h: Don't include <libintl.h>.  Don't
	define _ and N_.  Don't declare _libc_intl_domainname.
	* Makeconfig (CPPFLAGS): Use -imacros to read libc-symbols.h.

	* db2/config.h: Don't include sys/stat.h or define
	HAVE_ST_BLKSIZE here...
	* db2/compat.h: ...do it here.

	* linuxthreads/internals.h: Include bits/libc-tsd.h after all
	other headers.
	* linuxthreads/no-tsd.c: Include sys/cdefs.h for __P.
	* iconv/iconv.c: Include stddef.h for NULL.
	* malloc/malloc.h: Include features.h.
	* sysdeps/generic/morecore.c: Use __malloc_ptr_t not __ptr_t.

	* sysdeps/unix/make_errlist.c: Write an "#include <libintl.h>"
	into the generated file.
	* sysdeps/gnu/errlist.awk: Likewise.
	* sysdeps/gnu/errlist.c: Rebuilt.

	* assert/assert-perr.c: Include libintl.h.
	* assert/assert.c: Likewise.
	* elf/dl-open.c: Likewise.
	* elf/dlsym.c: Likewise.
	* elf/dlvsym.c: Likewise.
	* iconv/iconv_prog.c: Likewise.
	* inet/rcmd.c: Likewise.
	* inet/ruserpass.c: Likewise.
	* locale/programs/charset.c: Likewise.
	* locale/programs/ld-collate.c: Likewise.
	* locale/programs/ld-ctype.c: Likewise.
	* locale/programs/ld-messages.c: Likewise.
	* locale/programs/ld-monetary.c: Likewise.
	* locale/programs/ld-numeric.c: Likewise.
	* locale/programs/ld-time.c: Likewise.
	* locale/programs/locfile.c: Likewise.
	* locale/programs/repertoire.c: Likewise.
	* login/programs/database.c: Likewise.
	* login/programs/request.c: Likewise.
	* malloc/mcheck.c: Likewise.
	* misc/error.c: Likewise.
	* nis/nis_call.c: Likewise.
	* nis/nis_callback.c: Likewise.
	* nis/nis_error.c: Likewise.
	* nis/nis_local_names.c: Likewise.
	* nis/nis_print.c: Likewise.
	* nis/nis_print_group_entry.c: Likewise.
	* nis/ypclnt.c: Likewise.
	* nis/nss_nisplus/nisplus-publickey.c: Likewise.
	* nscd/cache.c: Likewise.
	* nscd/connections.c: Likewise.
	* nscd/grpcache.c: Likewise.
	* nscd/hstcache.c: Likewise.
	* nscd/nscd_conf.c: Likewise.
	* nscd/nscd_stat.c: Likewise.
	* nscd/pwdcache.c: Likewise.
	* posix/id.c: Likewise.
	* resolv/herror.c: Likewise.
	* stdio-common/psignal.c: Likewise.
	* string/strsignal.c: Likewise.
	* sunrpc/auth_unix.c: Likewise.
	* sunrpc/clnt_perr.c: Likewise.
	* sunrpc/clnt_raw.c: Likewise.
	* sunrpc/clnt_tcp.c: Likewise.
	* sunrpc/clnt_udp.c: Likewise.
	* sunrpc/clnt_unix.c: Likewise.
	* sunrpc/get_myaddr.c: Likewise.
	* sunrpc/pm_getmaps.c: Likewise.
	* sunrpc/pmap_clnt.c: Likewise.
	* sunrpc/pmap_rmt.c: Likewise.
	* sunrpc/rpc_main.c: Likewise.
	* sunrpc/rpc_scan.c: Likewise.
	* sunrpc/svc_run.c: Likewise.
	* sunrpc/svc_simple.c: Likewise.
	* sunrpc/svc_tcp.c: Likewise.
	* sunrpc/svc_udp.c: Likewise.
	* sunrpc/svc_unix.c: Likewise.
	* sunrpc/xdr_rec.c: Likewise.
	* sunrpc/xdr_ref.c: Likewise.
	* sysdeps/mach/hurd/mips/dl-machine.c: Likewise.
	* sysdeps/posix/gai_strerror.c: Likewise.
	* sysdeps/unix/siglist.c: Likewise.
	* sysdeps/unix/sysv/linux/siglist.c: Likewise.
	* sysdeps/unix/sysv/linux/arm/siglist.c: Likewise.
	* sysdeps/unix/sysv/sysv4/solaris2/sparc/errlist.c: Likewise.
	* timezone/zic.c: Likewise.
1999-06-19 09:58:37 +00:00

383 lines
14 KiB
C

/* Copyright (C) 1997, 1998, 1999 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/*
* ISO C 9X Standard: 7.9 Type-generic math <tgmath.h>
*/
#ifndef _TGMATH_H
#define _TGMATH_H 1
/* Include the needed headers. */
#include <math.h>
#include <complex.h>
/* Since `complex' is currently not really implemented in most C compilers
and if it is implemented, the implementations differ. This makes it
quite difficult to write a generic implementation of this header. We
do not try this for now and instead concentrate only on GNU CC. Once
we have more information support for other compilers might follow. */
#if __GNUC_PREREQ (2, 7)
/* We have two kinds of generic macros: to support functions which are
only defined on real valued parameters and those which are defined
for complex functions as well. */
# define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \
(__extension__ ({ __typeof__ (Val) __tgmres; \
if (sizeof (Val) == sizeof (double)) \
__tgmres = Fct (Val); \
else if (sizeof (Val) == sizeof (float)) \
__tgmres = Fct##f (Val); \
else \
__tgmres = Fct##l (Val); \
__tgmres; }))
# define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
(__extension__ ({ __typeof__ (Val1) __tgmres; \
if (sizeof (Val1) == sizeof (double)) \
__tgmres = Fct (Val1, Val2); \
else if (sizeof (Val1) == sizeof (float)) \
__tgmres = Fct##f (Val1, Val2); \
else \
__tgmres = Fct##l (Val1, Val2); \
__tgmres; }))
# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
(__extension__ ({ __typeof__ ((Val1) + (Val2)) __tgmres; \
if (sizeof (Val1) > sizeof (double) \
|| sizeof (Val2) > sizeof (double)) \
__tgmres = Fct##l (Val1, Val2); \
else if (sizeof (Val1) == sizeof (double) \
|| sizeof (Val2) == sizeof (double)) \
__tgmres = Fct (Val1, Val2); \
else \
__tgmres = Fct (Val1, Val2); \
__tgmres; }))
# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
(__extension__ ({ __typeof__ ((Val1) + (Val2)) __tgmres; \
if (sizeof (Val1) > sizeof (double) \
|| sizeof (Val2) > sizeof (double)) \
__tgmres = Fct##l (Val1, Val2, Val3); \
else if (sizeof (Val1) == sizeof (double) \
|| sizeof (Val2) == sizeof (double)) \
__tgmres = Fct (Val1, Val2, Val3); \
else \
__tgmres = Fct (Val1, Val2, Val3); \
__tgmres; }))
# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
(__extension__ ({ __typeof__ ((Val1) + (Val2) + (Val3)) __tgmres; \
if (sizeof (Val1) > sizeof (double) \
|| sizeof (Val2) > sizeof (double) \
|| sizeof (Val3) > sizeof (double)) \
__tgmres = Fct##l (Val1, Val2, Val3); \
else if (sizeof (Val1) == sizeof (double) \
|| sizeof (Val2) == sizeof (double) \
|| sizeof (Val3) == sizeof (double)) \
__tgmres = Fct (Val1, Val2, Val3); \
else \
__tgmres = Fct (Val1, Val2, Val3); \
__tgmres; }))
/* XXX This definition has to be changed as soon as the compiler understands
the imaginary keyword. */
# define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
(__extension__ ({ __typeof__ (Val) __tgmres; \
if (sizeof (__real__ (Val)) > sizeof (double)) \
{ \
if (sizeof (__real__ (Val)) == sizeof (Val)) \
__tgmres = Fct##l (Val); \
else \
__tgmres = Cfct##l (Val); \
} \
else if (sizeof (__real__ (Val)) == sizeof (double)) \
{ \
if (sizeof (__real__ (Val)) == sizeof (Val)) \
__tgmres = Fct (Val); \
else \
__tgmres = Cfct (Val); \
} \
else \
{ \
if (sizeof (__real__ (Val)) == sizeof (Val)) \
__tgmres = Fct##f (Val); \
else \
__tgmres = Cfct##f (Val); \
} \
__tgmres; }))
/* XXX This definition has to be changed as soon as the compiler understands
the imaginary keyword. */
# define __TGMATH_UNARY_IMAG_ONLY(Val, Fct) \
(__extension__ ({ __typeof__ (Val) __tgmres; \
if (sizeof (Val) == sizeof (__complex__ double)) \
__tgmres = Fct (Val); \
else if (sizeof (Val) == sizeof (__complex__ float)) \
__tgmres = Fct##f (Val); \
else \
__tgmres = Fct##l (Val); \
__tgmres; }))
/* XXX This definition has to be changed as soon as the compiler understands
the imaginary keyword. */
# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
(__extension__ ({ __typeof__ ((Val1) + (Val2)) __tgmres; \
if (sizeof (__real__ (Val1)) > sizeof (double) \
|| sizeof (__real__ (Val2)) > sizeof (double)) \
{ \
if (sizeof (__real__ (Val1)) == sizeof (Val1) \
&& sizeof (__real__ (Val2)) == sizeof (Val2)) \
__tgmres = Fct##l (Val1, Val2); \
else \
__tgmres = Cfct##l (Val1, Val2); \
} \
else if (sizeof (__real__ (Val1)) == sizeof (double) \
|| sizeof (__real__ (Val2)) == sizeof(double))\
{ \
if (sizeof (__real__ (Val1)) == sizeof (Val1) \
&& sizeof (__real__ (Val2)) == sizeof (Val2)) \
__tgmres = Fct (Val1, Val2); \
else \
__tgmres = Cfct (Val1, Val2); \
} \
else \
{ \
if (sizeof (__real__ (Val1)) == sizeof (Val1) \
&& sizeof (__real__ (Val2)) == sizeof (Val2)) \
__tgmres = Fct##f (Val1, Val2); \
else \
__tgmres = Cfct##f (Val1, Val2); \
} \
__tgmres; }))
#else
# error "Unsupported compiler; you cannot use <tgmath.h>"
#endif
/* Unary functions defined for real and complex values. */
/* Trigonometric functions. */
/* Arc cosine of X. */
#define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos)
/* Arc sine of X. */
#define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin)
/* Arc tangent of X. */
#define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan)
/* Arc tangent of Y/X. */
#define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2)
/* Cosine of X. */
#define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos)
/* Sine of X. */
#define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin)
/* Tangent of X. */
#define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)
/* Hyperbolic functions. */
/* Hyperbolic arc cosine of X. */
#define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh)
/* Hyperbolic arc sine of X. */
#define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh)
/* Hyperbolic arc tangent of X. */
#define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)
/* Hyperbolic cosine of X. */
#define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh)
/* Hyperbolic sine of X. */
#define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh)
/* Hyperbolic tangent of X. */
#define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)
/* Exponential and logarithmic functions. */
/* Exponential function of X. */
#define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)
/* Break VALUE into a normalized fraction and an integral power of 2. */
#define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)
/* X times (two to the EXP power). */
#define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)
/* Natural logarithm of X. */
#define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)
/* Base-ten logarithm of X. */
#ifdef __USE_GNU
# define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, __clog10)
#else
# define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10)
#endif
/* Return exp(X) - 1. */
#define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)
/* Return log(1 + X). */
#define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)
/* Return the base 2 signed integral exponent of X. */
#define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)
/* Compute base-2 exponential of X. */
#define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)
/* Compute base-2 logarithm of X. */
#define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)
/* Power functions. */
/* Return X to the Y power. */
#define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)
/* Return the square root of X. */
#define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)
/* Return `sqrt(X*X + Y*Y)'. */
#define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)
/* Return the cube root of X. */
#define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)
/* Nearest integer, absolute value, and remainder functions. */
/* Smallest integral value not less than X. */
#define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)
/* Absolute value of X. */
#define fabs(Val) __TGMATH_UNARY_REAL_IMAG (Val, fabs, cabs)
/* Largest integer not greater than X. */
#define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)
/* Floating-point modulo remainder of X/Y. */
#define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)
/* Round X to integral valuein floating-point format using current
rounding direction, but do not raise inexact exception. */
#define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)
/* Round X to nearest integral value, rounding halfway cases away from
zero. */
#define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)
/* Round X to the integral value in floating-point format nearest but
not larger in magnitude. */
#define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)
/* Compute remainder of X and Y and put in *QUO a value with sign of x/y
and magnitude congruent `mod 2^n' to the magnitude of the integral
quotient x/y, with n >= 3. */
#define remquo(Val1, Val2, Val3) \
__TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)
/* Round X to nearest integral value according to current rounding
direction. */
#define lrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, lrint)
#define llrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, llrint)
/* Round X to nearest integral value, rounding halfway cases away from
zero. */
#define lround(Val) __TGMATH_UNARY_REAL_ONLY (Val, lround)
#define llround(Val) __TGMATH_UNARY_REAL_ONLY (Val, llround)
/* Return X with its signed changed to Y's. */
#define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)
/* Error and gamma functions. */
#define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf)
#define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc)
#define gamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, gamma)
#define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)
/* Return the integer nearest X in the direction of the
prevailing rounding mode. */
#define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)
/* Return X + epsilon if X < Y, X - epsilon if X > Y. */
#define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter)
#define nexttoward(Val1, Val2) \
__TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, nexttoward)
/* Return the remainder of integer divison X / Y with infinite precision. */
#define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)
/* Return X times (2 to the Nth power). */
#if defined __USE_MISC || defined __USE_XOPEN_EXTENDED
#define scalb(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, scalb)
#endif
/* Return X times (2 to the Nth power). */
#define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)
/* Return X times (2 to the Nth power). */
#define scalbln(Val1, Val2) \
__TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)
/* Return the binary exponent of X, which must be nonzero. */
#define ilogb(Val) __TGMATH_UNARY_REAL_ONLY (Val, ilogb)
/* Return positive difference between X and Y. */
#define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)
/* Return maximum numeric value from X and Y. */
#define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)
/* Return minimum numeric value from X and Y. */
#define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)
/* Multiply-add function computed as a ternary operation. */
#define fma(Vat1, Val2, Val3) \
__TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)
/* Absolute value, conjugates, and projection. */
/* Argument value of Z. */
#define carg(Val) __TGMATH_UNARY_IMAG_ONLY (Val, carg)
/* Complex conjugate of Z. */
#define conj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, conj)
/* Projection of Z onto the Riemann sphere. */
#define cproj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cproj)
/* Decomposing complex values. */
/* Imaginary part of Z. */
#define cimag(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cimag)
/* Real part of Z. */
#define creal(Val) __TGMATH_UNARY_IMAG_ONLY (Val, creal)
#endif /* tgmath.h */