mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-29 00:01:12 +00:00
632a6cbe44
This patch adds the narrowing divide functions from TS 18661-1 to glibc's libm: fdiv, fdivl, ddivl, f32divf64, f32divf32x, f32xdivf64 for all configurations; f32divf64x, f32divf128, f64divf64x, f64divf128, f32xdivf64x, f32xdivf128, f64xdivf128 for configurations with _Float64x and _Float128; __nldbl_ddivl for ldbl-opt. The changes are mostly essentially the same as for the other narrowing functions, so the description of those generally applies to this patch as well. Tested for x86_64, x86, mips64 (all three ABIs, both hard and soft float) and powerpc, and with build-many-glibcs.py. * math/Makefile (libm-narrow-fns): Add div. (libm-test-funcs-narrow): Likewise. * math/Versions (GLIBC_2.28): Add narrowing divide functions. * math/bits/mathcalls-narrow.h (div): Use __MATHCALL_NARROW. * math/gen-auto-libm-tests.c (test_functions): Add div. * math/math-narrow.h (CHECK_NARROW_DIV): New macro. (NARROW_DIV_ROUND_TO_ODD): Likewise. (NARROW_DIV_TRIVIAL): Likewise. * sysdeps/ieee754/float128/float128_private.h (__fdivl): New macro. (__ddivl): Likewise. * sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add fdiv and ddiv. (CFLAGS-nldbl-ddiv.c): New variable. (CFLAGS-nldbl-fdiv.c): Likewise. * sysdeps/ieee754/ldbl-opt/Versions (GLIBC_2.28): Add __nldbl_ddivl. * sysdeps/ieee754/ldbl-opt/nldbl-compat.h (__nldbl_ddivl): New prototype. * manual/arith.texi (Misc FP Arithmetic): Document fdiv, fdivl, ddivl, fMdivfN, fMdivfNx, fMxdivfN and fMxdivfNx. * math/auto-libm-test-in: Add tests of div. * math/auto-libm-test-out-narrow-div: New generated file. * math/libm-test-narrow-div.inc: New file. * sysdeps/i386/fpu/s_f32xdivf64.c: Likewise. * sysdeps/ieee754/dbl-64/s_f32xdivf64.c: Likewise. * sysdeps/ieee754/dbl-64/s_fdiv.c: Likewise. * sysdeps/ieee754/float128/s_f32divf128.c: Likewise. * sysdeps/ieee754/float128/s_f64divf128.c: Likewise. * sysdeps/ieee754/float128/s_f64xdivf128.c: Likewise. * sysdeps/ieee754/ldbl-128/s_ddivl.c: Likewise. * sysdeps/ieee754/ldbl-128/s_f64xdivf128.c: Likewise. * sysdeps/ieee754/ldbl-128/s_fdivl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_ddivl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_fdivl.c: Likewise. * sysdeps/ieee754/ldbl-96/s_ddivl.c: Likewise. * sysdeps/ieee754/ldbl-96/s_fdivl.c: Likewise. * sysdeps/ieee754/ldbl-opt/nldbl-ddiv.c: Likewise. * sysdeps/ieee754/ldbl-opt/nldbl-fdiv.c: Likewise. * sysdeps/ieee754/soft-fp/s_ddivl.c: Likewise. * sysdeps/ieee754/soft-fp/s_fdiv.c: Likewise. * sysdeps/ieee754/soft-fp/s_fdivl.c: Likewise. * sysdeps/powerpc/fpu/libm-test-ulps: Update. * sysdeps/mach/hurd/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist: Likewise. * sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/riscv/rv64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise. * sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
370 lines
12 KiB
C
370 lines
12 KiB
C
/* Helper macros for functions returning a narrower type.
|
|
Copyright (C) 2018 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef _MATH_NARROW_H
|
|
#define _MATH_NARROW_H 1
|
|
|
|
#include <bits/floatn.h>
|
|
#include <bits/long-double.h>
|
|
#include <errno.h>
|
|
#include <fenv.h>
|
|
#include <ieee754.h>
|
|
#include <math-barriers.h>
|
|
#include <math_private.h>
|
|
|
|
/* Carry out a computation using round-to-odd. The computation is
|
|
EXPR; the union type in which to store the result is UNION and the
|
|
subfield of the "ieee" field of that union with the low part of the
|
|
mantissa is MANTISSA; SUFFIX is the suffix for the libc_fe* macros
|
|
to ensure that the correct rounding mode is used, for platforms
|
|
with multiple rounding modes where those macros set only the
|
|
relevant mode. This macro does not work correctly if the sign of
|
|
an exact zero result depends on the rounding mode, so that case
|
|
must be checked for separately. */
|
|
#define ROUND_TO_ODD(EXPR, UNION, SUFFIX, MANTISSA) \
|
|
({ \
|
|
fenv_t env; \
|
|
UNION u; \
|
|
\
|
|
libc_feholdexcept_setround ## SUFFIX (&env, FE_TOWARDZERO); \
|
|
u.d = (EXPR); \
|
|
math_force_eval (u.d); \
|
|
u.ieee.MANTISSA \
|
|
|= libc_feupdateenv_test ## SUFFIX (&env, FE_INEXACT) != 0; \
|
|
\
|
|
u.d; \
|
|
})
|
|
|
|
/* Check for error conditions from a narrowing add function returning
|
|
RET with arguments X and Y and set errno as needed. Overflow and
|
|
underflow can occur for finite arguments and a domain error for
|
|
infinite ones. */
|
|
#define CHECK_NARROW_ADD(RET, X, Y) \
|
|
do \
|
|
{ \
|
|
if (!isfinite (RET)) \
|
|
{ \
|
|
if (isnan (RET)) \
|
|
{ \
|
|
if (!isnan (X) && !isnan (Y)) \
|
|
__set_errno (EDOM); \
|
|
} \
|
|
else if (isfinite (X) && isfinite (Y)) \
|
|
__set_errno (ERANGE); \
|
|
} \
|
|
else if ((RET) == 0 && (X) != -(Y)) \
|
|
__set_errno (ERANGE); \
|
|
} \
|
|
while (0)
|
|
|
|
/* Implement narrowing add using round-to-odd. The arguments are X
|
|
and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are
|
|
as for ROUND_TO_ODD. */
|
|
#define NARROW_ADD_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \
|
|
do \
|
|
{ \
|
|
TYPE ret; \
|
|
\
|
|
/* Ensure a zero result is computed in the original rounding \
|
|
mode. */ \
|
|
if ((X) == -(Y)) \
|
|
ret = (TYPE) ((X) + (Y)); \
|
|
else \
|
|
ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) + (Y), \
|
|
UNION, SUFFIX, MANTISSA); \
|
|
\
|
|
CHECK_NARROW_ADD (ret, (X), (Y)); \
|
|
return ret; \
|
|
} \
|
|
while (0)
|
|
|
|
/* Implement a narrowing add function that is not actually narrowing
|
|
or where no attempt is made to be correctly rounding (the latter
|
|
only applies to IBM long double). The arguments are X and Y and
|
|
the return type is TYPE. */
|
|
#define NARROW_ADD_TRIVIAL(X, Y, TYPE) \
|
|
do \
|
|
{ \
|
|
TYPE ret; \
|
|
\
|
|
ret = (TYPE) ((X) + (Y)); \
|
|
CHECK_NARROW_ADD (ret, (X), (Y)); \
|
|
return ret; \
|
|
} \
|
|
while (0)
|
|
|
|
/* Check for error conditions from a narrowing subtract function
|
|
returning RET with arguments X and Y and set errno as needed.
|
|
Overflow and underflow can occur for finite arguments and a domain
|
|
error for infinite ones. */
|
|
#define CHECK_NARROW_SUB(RET, X, Y) \
|
|
do \
|
|
{ \
|
|
if (!isfinite (RET)) \
|
|
{ \
|
|
if (isnan (RET)) \
|
|
{ \
|
|
if (!isnan (X) && !isnan (Y)) \
|
|
__set_errno (EDOM); \
|
|
} \
|
|
else if (isfinite (X) && isfinite (Y)) \
|
|
__set_errno (ERANGE); \
|
|
} \
|
|
else if ((RET) == 0 && (X) != (Y)) \
|
|
__set_errno (ERANGE); \
|
|
} \
|
|
while (0)
|
|
|
|
/* Implement narrowing subtract using round-to-odd. The arguments are
|
|
X and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are
|
|
as for ROUND_TO_ODD. */
|
|
#define NARROW_SUB_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \
|
|
do \
|
|
{ \
|
|
TYPE ret; \
|
|
\
|
|
/* Ensure a zero result is computed in the original rounding \
|
|
mode. */ \
|
|
if ((X) == (Y)) \
|
|
ret = (TYPE) ((X) - (Y)); \
|
|
else \
|
|
ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) - (Y), \
|
|
UNION, SUFFIX, MANTISSA); \
|
|
\
|
|
CHECK_NARROW_SUB (ret, (X), (Y)); \
|
|
return ret; \
|
|
} \
|
|
while (0)
|
|
|
|
/* Implement a narrowing subtract function that is not actually
|
|
narrowing or where no attempt is made to be correctly rounding (the
|
|
latter only applies to IBM long double). The arguments are X and Y
|
|
and the return type is TYPE. */
|
|
#define NARROW_SUB_TRIVIAL(X, Y, TYPE) \
|
|
do \
|
|
{ \
|
|
TYPE ret; \
|
|
\
|
|
ret = (TYPE) ((X) - (Y)); \
|
|
CHECK_NARROW_SUB (ret, (X), (Y)); \
|
|
return ret; \
|
|
} \
|
|
while (0)
|
|
|
|
/* Check for error conditions from a narrowing multiply function
|
|
returning RET with arguments X and Y and set errno as needed.
|
|
Overflow and underflow can occur for finite arguments and a domain
|
|
error for Inf * 0. */
|
|
#define CHECK_NARROW_MUL(RET, X, Y) \
|
|
do \
|
|
{ \
|
|
if (!isfinite (RET)) \
|
|
{ \
|
|
if (isnan (RET)) \
|
|
{ \
|
|
if (!isnan (X) && !isnan (Y)) \
|
|
__set_errno (EDOM); \
|
|
} \
|
|
else if (isfinite (X) && isfinite (Y)) \
|
|
__set_errno (ERANGE); \
|
|
} \
|
|
else if ((RET) == 0 && (X) != 0 && (Y) != 0) \
|
|
__set_errno (ERANGE); \
|
|
} \
|
|
while (0)
|
|
|
|
/* Implement narrowing multiply using round-to-odd. The arguments are
|
|
X and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are
|
|
as for ROUND_TO_ODD. */
|
|
#define NARROW_MUL_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \
|
|
do \
|
|
{ \
|
|
TYPE ret; \
|
|
\
|
|
ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) * (Y), \
|
|
UNION, SUFFIX, MANTISSA); \
|
|
\
|
|
CHECK_NARROW_MUL (ret, (X), (Y)); \
|
|
return ret; \
|
|
} \
|
|
while (0)
|
|
|
|
/* Implement a narrowing multiply function that is not actually
|
|
narrowing or where no attempt is made to be correctly rounding (the
|
|
latter only applies to IBM long double). The arguments are X and Y
|
|
and the return type is TYPE. */
|
|
#define NARROW_MUL_TRIVIAL(X, Y, TYPE) \
|
|
do \
|
|
{ \
|
|
TYPE ret; \
|
|
\
|
|
ret = (TYPE) ((X) * (Y)); \
|
|
CHECK_NARROW_MUL (ret, (X), (Y)); \
|
|
return ret; \
|
|
} \
|
|
while (0)
|
|
|
|
/* Check for error conditions from a narrowing divide function
|
|
returning RET with arguments X and Y and set errno as needed.
|
|
Overflow, underflow and divide-by-zero can occur for finite
|
|
arguments and a domain error for Inf / Inf and 0 / 0. */
|
|
#define CHECK_NARROW_DIV(RET, X, Y) \
|
|
do \
|
|
{ \
|
|
if (!isfinite (RET)) \
|
|
{ \
|
|
if (isnan (RET)) \
|
|
{ \
|
|
if (!isnan (X) && !isnan (Y)) \
|
|
__set_errno (EDOM); \
|
|
} \
|
|
else if (isfinite (X)) \
|
|
__set_errno (ERANGE); \
|
|
} \
|
|
else if ((RET) == 0 && (X) != 0 && !isinf (Y)) \
|
|
__set_errno (ERANGE); \
|
|
} \
|
|
while (0)
|
|
|
|
/* Implement narrowing divide using round-to-odd. The arguments are
|
|
X and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are
|
|
as for ROUND_TO_ODD. */
|
|
#define NARROW_DIV_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \
|
|
do \
|
|
{ \
|
|
TYPE ret; \
|
|
\
|
|
ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) / (Y), \
|
|
UNION, SUFFIX, MANTISSA); \
|
|
\
|
|
CHECK_NARROW_DIV (ret, (X), (Y)); \
|
|
return ret; \
|
|
} \
|
|
while (0)
|
|
|
|
/* Implement a narrowing divide function that is not actually
|
|
narrowing or where no attempt is made to be correctly rounding (the
|
|
latter only applies to IBM long double). The arguments are X and Y
|
|
and the return type is TYPE. */
|
|
#define NARROW_DIV_TRIVIAL(X, Y, TYPE) \
|
|
do \
|
|
{ \
|
|
TYPE ret; \
|
|
\
|
|
ret = (TYPE) ((X) / (Y)); \
|
|
CHECK_NARROW_DIV (ret, (X), (Y)); \
|
|
return ret; \
|
|
} \
|
|
while (0)
|
|
|
|
/* The following macros declare aliases for a narrowing function. The
|
|
sole argument is the base name of a family of functions, such as
|
|
"add". If any platform changes long double format after the
|
|
introduction of narrowing functions, in a way requiring symbol
|
|
versioning compatibility, additional variants of these macros will
|
|
be needed. */
|
|
|
|
#define libm_alias_float_double_main(func) \
|
|
weak_alias (__f ## func, f ## func) \
|
|
weak_alias (__f ## func, f32 ## func ## f64) \
|
|
weak_alias (__f ## func, f32 ## func ## f32x)
|
|
|
|
#ifdef NO_LONG_DOUBLE
|
|
# define libm_alias_float_double(func) \
|
|
libm_alias_float_double_main (func) \
|
|
weak_alias (__f ## func, f ## func ## l)
|
|
#else
|
|
# define libm_alias_float_double(func) \
|
|
libm_alias_float_double_main (func)
|
|
#endif
|
|
|
|
#define libm_alias_float32x_float64_main(func) \
|
|
weak_alias (__f32x ## func ## f64, f32x ## func ## f64)
|
|
|
|
#ifdef NO_LONG_DOUBLE
|
|
# define libm_alias_float32x_float64(func) \
|
|
libm_alias_float32x_float64_main (func) \
|
|
weak_alias (__f32x ## func ## f64, d ## func ## l)
|
|
#elif defined __LONG_DOUBLE_MATH_OPTIONAL
|
|
# define libm_alias_float32x_float64(func) \
|
|
libm_alias_float32x_float64_main (func) \
|
|
weak_alias (__f32x ## func ## f64, __nldbl_d ## func ## l)
|
|
#else
|
|
# define libm_alias_float32x_float64(func) \
|
|
libm_alias_float32x_float64_main (func)
|
|
#endif
|
|
|
|
#if __HAVE_FLOAT128 && !__HAVE_DISTINCT_FLOAT128
|
|
# define libm_alias_float_ldouble_f128(func) \
|
|
weak_alias (__f ## func ## l, f32 ## func ## f128)
|
|
# define libm_alias_double_ldouble_f128(func) \
|
|
weak_alias (__d ## func ## l, f32x ## func ## f128) \
|
|
weak_alias (__d ## func ## l, f64 ## func ## f128)
|
|
#else
|
|
# define libm_alias_float_ldouble_f128(func)
|
|
# define libm_alias_double_ldouble_f128(func)
|
|
#endif
|
|
|
|
#if __HAVE_FLOAT64X_LONG_DOUBLE
|
|
# define libm_alias_float_ldouble_f64x(func) \
|
|
weak_alias (__f ## func ## l, f32 ## func ## f64x)
|
|
# define libm_alias_double_ldouble_f64x(func) \
|
|
weak_alias (__d ## func ## l, f32x ## func ## f64x) \
|
|
weak_alias (__d ## func ## l, f64 ## func ## f64x)
|
|
#else
|
|
# define libm_alias_float_ldouble_f64x(func)
|
|
# define libm_alias_double_ldouble_f64x(func)
|
|
#endif
|
|
|
|
#define libm_alias_float_ldouble(func) \
|
|
weak_alias (__f ## func ## l, f ## func ## l) \
|
|
libm_alias_float_ldouble_f128 (func) \
|
|
libm_alias_float_ldouble_f64x (func)
|
|
|
|
#define libm_alias_double_ldouble(func) \
|
|
weak_alias (__d ## func ## l, d ## func ## l) \
|
|
libm_alias_double_ldouble_f128 (func) \
|
|
libm_alias_double_ldouble_f64x (func)
|
|
|
|
#define libm_alias_float64x_float128(func) \
|
|
weak_alias (__f64x ## func ## f128, f64x ## func ## f128)
|
|
|
|
#define libm_alias_float32_float128_main(func) \
|
|
weak_alias (__f32 ## func ## f128, f32 ## func ## f128)
|
|
|
|
#define libm_alias_float64_float128_main(func) \
|
|
weak_alias (__f64 ## func ## f128, f64 ## func ## f128) \
|
|
weak_alias (__f64 ## func ## f128, f32x ## func ## f128)
|
|
|
|
#if __HAVE_FLOAT64X_LONG_DOUBLE
|
|
# define libm_alias_float32_float128(func) \
|
|
libm_alias_float32_float128_main (func)
|
|
# define libm_alias_float64_float128(func) \
|
|
libm_alias_float64_float128_main (func)
|
|
#else
|
|
# define libm_alias_float32_float128(func) \
|
|
libm_alias_float32_float128_main (func) \
|
|
weak_alias (__f32 ## func ## f128, f32 ## func ## f64x)
|
|
# define libm_alias_float64_float128(func) \
|
|
libm_alias_float64_float128_main (func) \
|
|
weak_alias (__f64 ## func ## f128, f64 ## func ## f64x) \
|
|
weak_alias (__f64 ## func ## f128, f32x ## func ## f64x)
|
|
#endif
|
|
|
|
#endif /* math-narrow.h. */
|