glibc/sysdeps/ieee754/dbl-64/e_hypot.c
2013-10-17 16:03:24 +02:00

147 lines
3.6 KiB
C

/* @(#)e_hypot.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_hypot(x,y)
*
* Method :
* If (assume round-to-nearest) z=x*x+y*y
* has error less than sqrt(2)/2 ulp, than
* sqrt(z) has error less than 1 ulp (exercise).
*
* So, compute sqrt(x*x+y*y) with some care as
* follows to get the error below 1 ulp:
*
* Assume x>y>0;
* (if possible, set rounding to round-to-nearest)
* 1. if x > 2y use
* x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
* where x1 = x with lower 32 bits cleared, x2 = x-x1; else
* 2. if x <= 2y use
* t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
* where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
* y1= y with lower 32 bits chopped, y2 = y-y1.
*
* NOTE: scaling may be necessary if some argument is too
* large or too tiny
*
* Special cases:
* hypot(x,y) is INF if x or y is +INF or -INF; else
* hypot(x,y) is NAN if x or y is NAN.
*
* Accuracy:
* hypot(x,y) returns sqrt(x^2+y^2) with error less
* than 1 ulps (units in the last place)
*/
#include <math.h>
#include <math_private.h>
double
__ieee754_hypot (double x, double y)
{
double a, b, t1, t2, y1, y2, w;
int32_t j, k, ha, hb;
GET_HIGH_WORD (ha, x);
ha &= 0x7fffffff;
GET_HIGH_WORD (hb, y);
hb &= 0x7fffffff;
if (hb > ha)
{
a = y; b = x; j = ha; ha = hb; hb = j;
}
else
{
a = x; b = y;
}
SET_HIGH_WORD (a, ha); /* a <- |a| */
SET_HIGH_WORD (b, hb); /* b <- |b| */
if ((ha - hb) > 0x3c00000)
{
return a + b;
} /* x/y > 2**60 */
k = 0;
if (__builtin_expect (ha > 0x5f300000, 0)) /* a>2**500 */
{
if (ha >= 0x7ff00000) /* Inf or NaN */
{
u_int32_t low;
w = a + b; /* for sNaN */
GET_LOW_WORD (low, a);
if (((ha & 0xfffff) | low) == 0)
w = a;
GET_LOW_WORD (low, b);
if (((hb ^ 0x7ff00000) | low) == 0)
w = b;
return w;
}
/* scale a and b by 2**-600 */
ha -= 0x25800000; hb -= 0x25800000; k += 600;
SET_HIGH_WORD (a, ha);
SET_HIGH_WORD (b, hb);
}
if (__builtin_expect (hb < 0x20b00000, 0)) /* b < 2**-500 */
{
if (hb <= 0x000fffff) /* subnormal b or 0 */
{
u_int32_t low;
GET_LOW_WORD (low, b);
if ((hb | low) == 0)
return a;
t1 = 0;
SET_HIGH_WORD (t1, 0x7fd00000); /* t1=2^1022 */
b *= t1;
a *= t1;
k -= 1022;
}
else /* scale a and b by 2^600 */
{
ha += 0x25800000; /* a *= 2^600 */
hb += 0x25800000; /* b *= 2^600 */
k -= 600;
SET_HIGH_WORD (a, ha);
SET_HIGH_WORD (b, hb);
}
}
/* medium size a and b */
w = a - b;
if (w > b)
{
t1 = 0;
SET_HIGH_WORD (t1, ha);
t2 = a - t1;
w = __ieee754_sqrt (t1 * t1 - (b * (-b) - t2 * (a + t1)));
}
else
{
a = a + a;
y1 = 0;
SET_HIGH_WORD (y1, hb);
y2 = b - y1;
t1 = 0;
SET_HIGH_WORD (t1, ha + 0x00100000);
t2 = a - t1;
w = __ieee754_sqrt (t1 * y1 - (w * (-w) - (t1 * y2 + t2 * b)));
}
if (k != 0)
{
u_int32_t high;
t1 = 1.0;
GET_HIGH_WORD (high, t1);
SET_HIGH_WORD (t1, high + (k << 20));
return t1 * w;
}
else
return w;
}
strong_alias (__ieee754_hypot, __hypot_finite)