mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-15 23:50:13 +00:00
31d3cc00b0
Move the FMA4 code into its own section. Avoid some of the duplication of data resulting from the double use of source files.
171 lines
8.4 KiB
C
171 lines
8.4 KiB
C
/*
|
|
* IBM Accurate Mathematical Library
|
|
* Written by International Business Machines Corp.
|
|
* Copyright (C) 2001, 2011 Free Software Foundation, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2.1 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
/******************************************************************/
|
|
/* */
|
|
/* MODULE_NAME:mpexp.h */
|
|
/* */
|
|
/* common data and variables prototype and definition */
|
|
/******************************************************************/
|
|
|
|
#ifndef MPEXP_H
|
|
#define MPEXP_H
|
|
|
|
extern const number __mpexp_twomm1[33] attribute_hidden;
|
|
extern const number __mpexp_nn[9] attribute_hidden;
|
|
extern const number __mpexp_radix attribute_hidden;
|
|
extern const number __mpexp_radixi attribute_hidden;
|
|
extern const number __mpexp_zero attribute_hidden;
|
|
extern const number __mpexp_one attribute_hidden;
|
|
extern const number __mpexp_two attribute_hidden;
|
|
extern const number __mpexp_half attribute_hidden;
|
|
|
|
|
|
#ifndef AVOID_MPEXP_H
|
|
#ifdef BIG_ENDI
|
|
const number
|
|
__mpexp_twomm1[33] = { /* 2**-m1 */
|
|
/**/ {{0x00000000, 0x00000000} }, /* 0 */
|
|
/**/ {{0x00000000, 0x00000000} }, /* 0 */
|
|
/**/ {{0x00000000, 0x00000000} }, /* 0 */
|
|
/**/ {{0x00000000, 0x00000000} }, /* 0 */
|
|
/**/ {{0x3ee00000, 0x00000000} }, /* 2**-17 */
|
|
/**/ {{0x3e800000, 0x00000000} }, /* 2**-23 */
|
|
/**/ {{0x3e800000, 0x00000000} }, /* 2**-23 */
|
|
/**/ {{0x3e300000, 0x00000000} }, /* 2**-28 */
|
|
/**/ {{0x3e400000, 0x00000000} }, /* 2**-27 */
|
|
/**/ {{0x3d900000, 0x00000000} }, /* 2**-38 */
|
|
/**/ {{0x3d500000, 0x00000000} }, /* 2**-42 */
|
|
/**/ {{0x3d800000, 0x00000000} }, /* 2**-39 */
|
|
/**/ {{0x3d400000, 0x00000000} }, /* 2**-43 */
|
|
/**/ {{0x3d000000, 0x00000000} }, /* 2**-47 */
|
|
/**/ {{0x3d400000, 0x00000000} }, /* 2**-43 */
|
|
/**/ {{0x3d000000, 0x00000000} }, /* 2**-47 */
|
|
/**/ {{0x3cd00000, 0x00000000} }, /* 2**-50 */
|
|
/**/ {{0x3c900000, 0x00000000} }, /* 2**-54 */
|
|
/**/ {{0x3c600000, 0x00000000} }, /* 2**-57 */
|
|
/**/ {{0x3c300000, 0x00000000} }, /* 2**-60 */
|
|
/**/ {{0x3bf00000, 0x00000000} }, /* 2**-64 */
|
|
/**/ {{0x3bc00000, 0x00000000} }, /* 2**-67 */
|
|
/**/ {{0x3b800000, 0x00000000} }, /* 2**-71 */
|
|
/**/ {{0x3b500000, 0x00000000} }, /* 2**-74 */
|
|
/**/ {{0x3bb00000, 0x00000000} }, /* 2**-68 */
|
|
/**/ {{0x3b800000, 0x00000000} }, /* 2**-71 */
|
|
/**/ {{0x3b500000, 0x00000000} }, /* 2**-74 */
|
|
/**/ {{0x3b200000, 0x00000000} }, /* 2**-77 */
|
|
/**/ {{0x3b900000, 0x00000000} }, /* 2**-70 */
|
|
/**/ {{0x3b600000, 0x00000000} }, /* 2**-73 */
|
|
/**/ {{0x3b300000, 0x00000000} }, /* 2**-76 */
|
|
/**/ {{0x3b100000, 0x00000000} }, /* 2**-78 */
|
|
/**/ {{0x3ae00000, 0x00000000} }, /* 2**-81 */
|
|
};
|
|
const number
|
|
__mpexp_nn[9]={ /* n */
|
|
/**/ {{0x00000000, 0x00000000} }, /* 0 */
|
|
/**/ {{0x3ff00000, 0x00000000} }, /* 1 */
|
|
/**/ {{0x40000000, 0x00000000} }, /* 2 */
|
|
/**/ {{0x40080000, 0x00000000} }, /* 3 */
|
|
/**/ {{0x40100000, 0x00000000} }, /* 4 */
|
|
/**/ {{0x40140000, 0x00000000} }, /* 5 */
|
|
/**/ {{0x40180000, 0x00000000} }, /* 6 */
|
|
/**/ {{0x401c0000, 0x00000000} }, /* 7 */
|
|
/**/ {{0x40200000, 0x00000000} }, /* 8 */
|
|
};
|
|
|
|
const number
|
|
/**/ __mpexp_radix = {{0x41700000, 0x00000000} }, /* 2**24 */
|
|
/**/ __mpexp_radixi = {{0x3e700000, 0x00000000} }, /* 2**-24 */
|
|
/**/ __mpexp_zero = {{0x00000000, 0x00000000} }, /* 0 */
|
|
/**/ __mpexp_one = {{0x3ff00000, 0x00000000} }, /* 1 */
|
|
/**/ __mpexp_two = {{0x40000000, 0x00000000} }, /* 2 */
|
|
/**/ __mpexp_half = {{0x3fe00000, 0x00000000} }; /* 1/2 */
|
|
|
|
#else
|
|
#ifdef LITTLE_ENDI
|
|
const number
|
|
__mpexp_twomm1[33] = { /* 2**-m1 */
|
|
/**/ {{0x00000000, 0x00000000} }, /* 0 */
|
|
/**/ {{0x00000000, 0x00000000} }, /* 0 */
|
|
/**/ {{0x00000000, 0x00000000} }, /* 0 */
|
|
/**/ {{0x00000000, 0x00000000} }, /* 0 */
|
|
/**/ {{0x00000000, 0x3ee00000} }, /* 2**-17 */
|
|
/**/ {{0x00000000, 0x3e800000} }, /* 2**-23 */
|
|
/**/ {{0x00000000, 0x3e800000} }, /* 2**-23 */
|
|
/**/ {{0x00000000, 0x3e300000} }, /* 2**-28 */
|
|
/**/ {{0x00000000, 0x3e400000} }, /* 2**-27 */
|
|
/**/ {{0x00000000, 0x3d900000} }, /* 2**-38 */
|
|
/**/ {{0x00000000, 0x3d500000} }, /* 2**-42 */
|
|
/**/ {{0x00000000, 0x3d800000} }, /* 2**-39 */
|
|
/**/ {{0x00000000, 0x3d400000} }, /* 2**-43 */
|
|
/**/ {{0x00000000, 0x3d000000} }, /* 2**-47 */
|
|
/**/ {{0x00000000, 0x3d400000} }, /* 2**-43 */
|
|
/**/ {{0x00000000, 0x3d000000} }, /* 2**-47 */
|
|
/**/ {{0x00000000, 0x3cd00000} }, /* 2**-50 */
|
|
/**/ {{0x00000000, 0x3c900000} }, /* 2**-54 */
|
|
/**/ {{0x00000000, 0x3c600000} }, /* 2**-57 */
|
|
/**/ {{0x00000000, 0x3c300000} }, /* 2**-60 */
|
|
/**/ {{0x00000000, 0x3bf00000} }, /* 2**-64 */
|
|
/**/ {{0x00000000, 0x3bc00000} }, /* 2**-67 */
|
|
/**/ {{0x00000000, 0x3b800000} }, /* 2**-71 */
|
|
/**/ {{0x00000000, 0x3b500000} }, /* 2**-74 */
|
|
/**/ {{0x00000000, 0x3bb00000} }, /* 2**-68 */
|
|
/**/ {{0x00000000, 0x3b800000} }, /* 2**-71 */
|
|
/**/ {{0x00000000, 0x3b500000} }, /* 2**-74 */
|
|
/**/ {{0x00000000, 0x3b200000} }, /* 2**-77 */
|
|
/**/ {{0x00000000, 0x3b900000} }, /* 2**-70 */
|
|
/**/ {{0x00000000, 0x3b600000} }, /* 2**-73 */
|
|
/**/ {{0x00000000, 0x3b300000} }, /* 2**-76 */
|
|
/**/ {{0x00000000, 0x3b100000} }, /* 2**-78 */
|
|
/**/ {{0x00000000, 0x3ae00000} }, /* 2**-81 */
|
|
};
|
|
const number
|
|
__mpexp_nn[9]={ /* n */
|
|
/**/ {{0x00000000, 0x00000000} }, /* 0 */
|
|
/**/ {{0x00000000, 0x3ff00000} }, /* 1 */
|
|
/**/ {{0x00000000, 0x40000000} }, /* 2 */
|
|
/**/ {{0x00000000, 0x40080000} }, /* 3 */
|
|
/**/ {{0x00000000, 0x40100000} }, /* 4 */
|
|
/**/ {{0x00000000, 0x40140000} }, /* 5 */
|
|
/**/ {{0x00000000, 0x40180000} }, /* 6 */
|
|
/**/ {{0x00000000, 0x401c0000} }, /* 7 */
|
|
/**/ {{0x00000000, 0x40200000} }, /* 8 */
|
|
};
|
|
|
|
const number
|
|
/**/ __mpexp_radix = {{0x00000000, 0x41700000} }, /* 2**24 */
|
|
/**/ __mpexp_radixi = {{0x00000000, 0x3e700000} }, /* 2**-24 */
|
|
/**/ __mpexp_zero = {{0x00000000, 0x00000000} }, /* 0 */
|
|
/**/ __mpexp_one = {{0x00000000, 0x3ff00000} }, /* 1 */
|
|
/**/ __mpexp_two = {{0x00000000, 0x40000000} }, /* 2 */
|
|
/**/ __mpexp_half = {{0x00000000, 0x3fe00000} }; /* 1/2 */
|
|
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#define RADIX __mpexp_radix.d
|
|
#define RADIXI __mpexp_radixi.d
|
|
#define ZERO __mpexp_zero.d
|
|
#define ONE __mpexp_one.d
|
|
#define TWO __mpexp_two.d
|
|
#define HALF __mpexp_half.d
|
|
|
|
#endif
|