glibc/math/s_ctanl.c
Joseph Myers 61f8937898 Fix sign of zero part from ctan / ctanh when argument infinite (bug 17118).
C99/C11 Annex G specifies the sign of the zero part of the result of
ctan (x +/- i * Inf) and ctanh (+/-Inf + i * y).  This patch fixes glibc
to follow that specification, along the lines I described in my review
of Andreas's previous patch for this issue
<https://sourceware.org/ml/libc-alpha/2014-08/msg00142.html>.

Tested for x86_64.

2015-09-17  Joseph Myers  <joseph@codesourcery.com>
	    Andreas Schwab  <schwab@suse.de>

	[BZ #17118]
	* math/s_ctan.c (__ctan): Determine sign of zero real part of
	result when imaginary part of argument is infinite using sine and
	cosine.
	* math/s_ctanf.c (__ctanf): Likewise.
	* math/s_ctanl.c (__ctanl): Likewise.
	* math/s_ctanh.c (__ctanh): Determine sign of zero imaginary part
	of result when real part of argument is infinite using sine and
	cosine.
	* math/s_ctanhf.c (__ctanhf): Likewise.
	* math/s_ctanhl.c (__ctanhl): Likewise.
	* math/libm-test.inc (ctan_test_data): Add more tests of ctan.
	(ctanh_test_data): Add more tests of ctanh.
2015-09-17 21:21:39 +00:00

142 lines
3.8 KiB
C

/* Complex tangent function for long double.
Copyright (C) 1997-2015 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
/* To avoid spurious underflows, use this definition to treat IBM long
double as approximating an IEEE-style format. */
#if LDBL_MANT_DIG == 106
# undef LDBL_EPSILON
# define LDBL_EPSILON 0x1p-106L
#endif
__complex__ long double
__ctanl (__complex__ long double x)
{
__complex__ long double res;
if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x)))
{
if (__isinf_nsl (__imag__ x))
{
if (isfinite (__real__ x) && fabsl (__real__ x) > 1.0L)
{
long double sinrx, cosrx;
__sincosl (__real__ x, &sinrx, &cosrx);
__real__ res = __copysignl (0.0L, sinrx * cosrx);
}
else
__real__ res = __copysignl (0.0, __real__ x);
__imag__ res = __copysignl (1.0, __imag__ x);
}
else if (__real__ x == 0.0)
{
res = x;
}
else
{
__real__ res = __nanl ("");
__imag__ res = __nanl ("");
if (__isinf_nsl (__real__ x))
feraiseexcept (FE_INVALID);
}
}
else
{
long double sinrx, cosrx;
long double den;
const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l / 2);
/* tan(x+iy) = (sin(2x) + i*sinh(2y))/(cos(2x) + cosh(2y))
= (sin(x)*cos(x) + i*sinh(y)*cosh(y)/(cos(x)^2 + sinh(y)^2). */
if (__glibc_likely (fabsl (__real__ x) > LDBL_MIN))
{
__sincosl (__real__ x, &sinrx, &cosrx);
}
else
{
sinrx = __real__ x;
cosrx = 1.0;
}
if (fabsl (__imag__ x) > t)
{
/* Avoid intermediate overflow when the real part of the
result may be subnormal. Ignoring negligible terms, the
imaginary part is +/- 1, the real part is
sin(x)*cos(x)/sinh(y)^2 = 4*sin(x)*cos(x)/exp(2y). */
long double exp_2t = __ieee754_expl (2 * t);
__imag__ res = __copysignl (1.0, __imag__ x);
__real__ res = 4 * sinrx * cosrx;
__imag__ x = fabsl (__imag__ x);
__imag__ x -= t;
__real__ res /= exp_2t;
if (__imag__ x > t)
{
/* Underflow (original imaginary part of x has absolute
value > 2t). */
__real__ res /= exp_2t;
}
else
__real__ res /= __ieee754_expl (2 * __imag__ x);
}
else
{
long double sinhix, coshix;
if (fabsl (__imag__ x) > LDBL_MIN)
{
sinhix = __ieee754_sinhl (__imag__ x);
coshix = __ieee754_coshl (__imag__ x);
}
else
{
sinhix = __imag__ x;
coshix = 1.0L;
}
if (fabsl (sinhix) > fabsl (cosrx) * LDBL_EPSILON)
den = cosrx * cosrx + sinhix * sinhix;
else
den = cosrx * cosrx;
__real__ res = sinrx * cosrx / den;
__imag__ res = sinhix * coshix / den;
}
if (fabsl (__real__ res) < LDBL_MIN)
{
long double force_underflow = __real__ res * __real__ res;
math_force_eval (force_underflow);
}
if (fabsl (__imag__ res) < LDBL_MIN)
{
long double force_underflow = __imag__ res * __imag__ res;
math_force_eval (force_underflow);
}
}
return res;
}
weak_alias (__ctanl, ctanl)