mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-30 08:40:07 +00:00
fe6e95d717
http://sourceware.org/ml/libc-alpha/2013-08/msg00102.html This is a rather large patch due to formatting and renaming. The formatting changes were to make it possible to compare power7 and power4 versions of memcmp. Using different register defines came about while I was wrestling with the code, trying to find spare registers at one stage. I found it much simpler if we refer to a reg by the same name throughout a function, so it's better if short-term multiple use regs like rTMP are referred to using their register number. I made the cr field usage changes when attempting to reload rWORDn regs in the exit path to byte swap before comparing when little-endian. That proved a bad idea due to the pipelining involved in the main loop; Offsets to reload the regs were different first time around the loop.. Anyway, I left the cr field usage changes in place for consistency. Aside from these more-or-less cosmetic changes, I fixed a number of places where an early exit path restores regs unnecessarily, removed some dead code, and optimised one or two exits. * sysdeps/powerpc/powerpc64/power7/memcmp.S: Add little-endian support. Formatting. Consistently use rXXX register defines or rN defines. Use early exit labels that avoid restoring unused non-volatile regs. Make cr field use more consistent with rWORDn compares. Rename regs used as shift registers for unaligned loop, using rN defines for short lifetime/multiple use regs. * sysdeps/powerpc/powerpc64/power4/memcmp.S: Likewise. * sysdeps/powerpc/powerpc32/power7/memcmp.S: Likewise. Exit with addi 1,1,64 to pop stack frame. Simplify return value code. * sysdeps/powerpc/powerpc32/power4/memcmp.S: Likewise.
1366 lines
30 KiB
ArmAsm
1366 lines
30 KiB
ArmAsm
/* Optimized memcmp implementation for POWER7/PowerPC64.
|
|
Copyright (C) 2010-2013 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <sysdep.h>
|
|
|
|
/* int [r3] memcmp (const char *s1 [r3],
|
|
const char *s2 [r4],
|
|
size_t size [r5]) */
|
|
|
|
.machine power7
|
|
EALIGN (memcmp, 4, 0)
|
|
CALL_MCOUNT 3
|
|
|
|
#define rRTN r3
|
|
#define rSTR1 r3 /* first string arg */
|
|
#define rSTR2 r4 /* second string arg */
|
|
#define rN r5 /* max string length */
|
|
#define rWORD1 r6 /* current word in s1 */
|
|
#define rWORD2 r7 /* current word in s2 */
|
|
#define rWORD3 r8 /* next word in s1 */
|
|
#define rWORD4 r9 /* next word in s2 */
|
|
#define rWORD5 r10 /* next word in s1 */
|
|
#define rWORD6 r11 /* next word in s2 */
|
|
#define rWORD7 r30 /* next word in s1 */
|
|
#define rWORD8 r31 /* next word in s2 */
|
|
|
|
xor r0, rSTR2, rSTR1
|
|
cmpldi cr6, rN, 0
|
|
cmpldi cr1, rN, 12
|
|
clrldi. r0, r0, 61
|
|
clrldi r12, rSTR1, 61
|
|
cmpldi cr5, r12, 0
|
|
beq- cr6, L(zeroLength)
|
|
dcbt 0, rSTR1
|
|
dcbt 0, rSTR2
|
|
/* If less than 8 bytes or not aligned, use the unaligned
|
|
byte loop. */
|
|
blt cr1, L(bytealigned)
|
|
std rWORD8, -8(r1)
|
|
cfi_offset(rWORD8, -8)
|
|
std rWORD7, -16(r1)
|
|
cfi_offset(rWORD7, -16)
|
|
bne L(unaligned)
|
|
/* At this point we know both strings have the same alignment and the
|
|
compare length is at least 8 bytes. r12 contains the low order
|
|
3 bits of rSTR1 and cr5 contains the result of the logical compare
|
|
of r12 to 0. If r12 == 0 then we are already double word
|
|
aligned and can perform the DW aligned loop.
|
|
|
|
Otherwise we know the two strings have the same alignment (but not
|
|
yet DW). So we force the string addresses to the next lower DW
|
|
boundary and special case this first DW using shift left to
|
|
eliminate bits preceding the first byte. Since we want to join the
|
|
normal (DW aligned) compare loop, starting at the second double word,
|
|
we need to adjust the length (rN) and special case the loop
|
|
versioning for the first DW. This ensures that the loop count is
|
|
correct and the first DW (shifted) is in the expected register pair. */
|
|
.align 4
|
|
L(samealignment):
|
|
clrrdi rSTR1, rSTR1, 3
|
|
clrrdi rSTR2, rSTR2, 3
|
|
beq cr5, L(DWaligned)
|
|
add rN, rN, r12
|
|
sldi rWORD6, r12, 3
|
|
srdi r0, rN, 5 /* Divide by 32 */
|
|
andi. r12, rN, 24 /* Get the DW remainder */
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD1, 0, rSTR1
|
|
ldbrx rWORD2, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD1, 0(rSTR1)
|
|
ld rWORD2, 0(rSTR2)
|
|
#endif
|
|
cmpldi cr1, r12, 16
|
|
cmpldi cr7, rN, 32
|
|
clrldi rN, rN, 61
|
|
beq L(dPs4)
|
|
mtctr r0
|
|
bgt cr1, L(dPs3)
|
|
beq cr1, L(dPs2)
|
|
|
|
/* Remainder is 8 */
|
|
.align 3
|
|
L(dsP1):
|
|
sld rWORD5, rWORD1, rWORD6
|
|
sld rWORD6, rWORD2, rWORD6
|
|
cmpld cr5, rWORD5, rWORD6
|
|
blt cr7, L(dP1x)
|
|
/* Do something useful in this cycle since we have to branch anyway. */
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD1, 0, rSTR1
|
|
ldbrx rWORD2, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD1, 8(rSTR1)
|
|
ld rWORD2, 8(rSTR2)
|
|
#endif
|
|
cmpld cr7, rWORD1, rWORD2
|
|
b L(dP1e)
|
|
/* Remainder is 16 */
|
|
.align 4
|
|
L(dPs2):
|
|
sld rWORD5, rWORD1, rWORD6
|
|
sld rWORD6, rWORD2, rWORD6
|
|
cmpld cr6, rWORD5, rWORD6
|
|
blt cr7, L(dP2x)
|
|
/* Do something useful in this cycle since we have to branch anyway. */
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD7, 0, rSTR1
|
|
ldbrx rWORD8, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD7, 8(rSTR1)
|
|
ld rWORD8, 8(rSTR2)
|
|
#endif
|
|
cmpld cr5, rWORD7, rWORD8
|
|
b L(dP2e)
|
|
/* Remainder is 24 */
|
|
.align 4
|
|
L(dPs3):
|
|
sld rWORD3, rWORD1, rWORD6
|
|
sld rWORD4, rWORD2, rWORD6
|
|
cmpld cr1, rWORD3, rWORD4
|
|
b L(dP3e)
|
|
/* Count is a multiple of 32, remainder is 0 */
|
|
.align 4
|
|
L(dPs4):
|
|
mtctr r0
|
|
sld rWORD1, rWORD1, rWORD6
|
|
sld rWORD2, rWORD2, rWORD6
|
|
cmpld cr7, rWORD1, rWORD2
|
|
b L(dP4e)
|
|
|
|
/* At this point we know both strings are double word aligned and the
|
|
compare length is at least 8 bytes. */
|
|
.align 4
|
|
L(DWaligned):
|
|
andi. r12, rN, 24 /* Get the DW remainder */
|
|
srdi r0, rN, 5 /* Divide by 32 */
|
|
cmpldi cr1, r12, 16
|
|
cmpldi cr7, rN, 32
|
|
clrldi rN, rN, 61
|
|
beq L(dP4)
|
|
bgt cr1, L(dP3)
|
|
beq cr1, L(dP2)
|
|
|
|
/* Remainder is 8 */
|
|
.align 4
|
|
L(dP1):
|
|
mtctr r0
|
|
/* Normally we'd use rWORD7/rWORD8 here, but since we might exit early
|
|
(8-15 byte compare), we want to use only volatile registers. This
|
|
means we can avoid restoring non-volatile registers since we did not
|
|
change any on the early exit path. The key here is the non-early
|
|
exit path only cares about the condition code (cr5), not about which
|
|
register pair was used. */
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD5, 0, rSTR1
|
|
ldbrx rWORD6, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD5, 0(rSTR1)
|
|
ld rWORD6, 0(rSTR2)
|
|
#endif
|
|
cmpld cr5, rWORD5, rWORD6
|
|
blt cr7, L(dP1x)
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD1, 0, rSTR1
|
|
ldbrx rWORD2, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD1, 8(rSTR1)
|
|
ld rWORD2, 8(rSTR2)
|
|
#endif
|
|
cmpld cr7, rWORD1, rWORD2
|
|
L(dP1e):
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD3, 0, rSTR1
|
|
ldbrx rWORD4, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD3, 16(rSTR1)
|
|
ld rWORD4, 16(rSTR2)
|
|
#endif
|
|
cmpld cr1, rWORD3, rWORD4
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD5, 0, rSTR1
|
|
ldbrx rWORD6, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD5, 24(rSTR1)
|
|
ld rWORD6, 24(rSTR2)
|
|
#endif
|
|
cmpld cr6, rWORD5, rWORD6
|
|
bne cr5, L(dLcr5x)
|
|
bne cr7, L(dLcr7x)
|
|
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD7, 0, rSTR1
|
|
ldbrx rWORD8, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ldu rWORD7, 32(rSTR1)
|
|
ldu rWORD8, 32(rSTR2)
|
|
#endif
|
|
bne cr1, L(dLcr1)
|
|
cmpld cr5, rWORD7, rWORD8
|
|
bdnz L(dLoop)
|
|
bne cr6, L(dLcr6)
|
|
ld rWORD8, -8(r1)
|
|
ld rWORD7, -16(r1)
|
|
.align 3
|
|
L(dP1x):
|
|
sldi. r12, rN, 3
|
|
bne cr5, L(dLcr5x)
|
|
subfic rN, r12, 64 /* Shift count is 64 - (rN * 8). */
|
|
bne L(d00)
|
|
li rRTN, 0
|
|
blr
|
|
|
|
/* Remainder is 16 */
|
|
.align 4
|
|
L(dP2):
|
|
mtctr r0
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD5, 0, rSTR1
|
|
ldbrx rWORD6, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD5, 0(rSTR1)
|
|
ld rWORD6, 0(rSTR2)
|
|
#endif
|
|
cmpld cr6, rWORD5, rWORD6
|
|
blt cr7, L(dP2x)
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD7, 0, rSTR1
|
|
ldbrx rWORD8, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD7, 8(rSTR1)
|
|
ld rWORD8, 8(rSTR2)
|
|
#endif
|
|
cmpld cr5, rWORD7, rWORD8
|
|
L(dP2e):
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD1, 0, rSTR1
|
|
ldbrx rWORD2, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD1, 16(rSTR1)
|
|
ld rWORD2, 16(rSTR2)
|
|
#endif
|
|
cmpld cr7, rWORD1, rWORD2
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD3, 0, rSTR1
|
|
ldbrx rWORD4, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD3, 24(rSTR1)
|
|
ld rWORD4, 24(rSTR2)
|
|
#endif
|
|
cmpld cr1, rWORD3, rWORD4
|
|
#ifndef __LITTLE_ENDIAN__
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#endif
|
|
bne cr6, L(dLcr6)
|
|
bne cr5, L(dLcr5)
|
|
b L(dLoop2)
|
|
/* Again we are on a early exit path (16-23 byte compare), we want to
|
|
only use volatile registers and avoid restoring non-volatile
|
|
registers. */
|
|
.align 4
|
|
L(dP2x):
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD3, 0, rSTR1
|
|
ldbrx rWORD4, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD3, 8(rSTR1)
|
|
ld rWORD4, 8(rSTR2)
|
|
#endif
|
|
cmpld cr1, rWORD3, rWORD4
|
|
sldi. r12, rN, 3
|
|
bne cr6, L(dLcr6x)
|
|
#ifndef __LITTLE_ENDIAN__
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#endif
|
|
bne cr1, L(dLcr1x)
|
|
subfic rN, r12, 64 /* Shift count is 64 - (rN * 8). */
|
|
bne L(d00)
|
|
li rRTN, 0
|
|
blr
|
|
|
|
/* Remainder is 24 */
|
|
.align 4
|
|
L(dP3):
|
|
mtctr r0
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD3, 0, rSTR1
|
|
ldbrx rWORD4, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD3, 0(rSTR1)
|
|
ld rWORD4, 0(rSTR2)
|
|
#endif
|
|
cmpld cr1, rWORD3, rWORD4
|
|
L(dP3e):
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD5, 0, rSTR1
|
|
ldbrx rWORD6, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD5, 8(rSTR1)
|
|
ld rWORD6, 8(rSTR2)
|
|
#endif
|
|
cmpld cr6, rWORD5, rWORD6
|
|
blt cr7, L(dP3x)
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD7, 0, rSTR1
|
|
ldbrx rWORD8, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD7, 16(rSTR1)
|
|
ld rWORD8, 16(rSTR2)
|
|
#endif
|
|
cmpld cr5, rWORD7, rWORD8
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD1, 0, rSTR1
|
|
ldbrx rWORD2, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD1, 24(rSTR1)
|
|
ld rWORD2, 24(rSTR2)
|
|
#endif
|
|
cmpld cr7, rWORD1, rWORD2
|
|
#ifndef __LITTLE_ENDIAN__
|
|
addi rSTR1, rSTR1, 16
|
|
addi rSTR2, rSTR2, 16
|
|
#endif
|
|
bne cr1, L(dLcr1)
|
|
bne cr6, L(dLcr6)
|
|
b L(dLoop1)
|
|
/* Again we are on a early exit path (24-31 byte compare), we want to
|
|
only use volatile registers and avoid restoring non-volatile
|
|
registers. */
|
|
.align 4
|
|
L(dP3x):
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD1, 0, rSTR1
|
|
ldbrx rWORD2, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD1, 16(rSTR1)
|
|
ld rWORD2, 16(rSTR2)
|
|
#endif
|
|
cmpld cr7, rWORD1, rWORD2
|
|
sldi. r12, rN, 3
|
|
bne cr1, L(dLcr1x)
|
|
#ifndef __LITTLE_ENDIAN__
|
|
addi rSTR1, rSTR1, 16
|
|
addi rSTR2, rSTR2, 16
|
|
#endif
|
|
bne cr6, L(dLcr6x)
|
|
subfic rN, r12, 64 /* Shift count is 64 - (rN * 8). */
|
|
bne cr7, L(dLcr7x)
|
|
bne L(d00)
|
|
li rRTN, 0
|
|
blr
|
|
|
|
/* Count is a multiple of 32, remainder is 0 */
|
|
.align 4
|
|
L(dP4):
|
|
mtctr r0
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD1, 0, rSTR1
|
|
ldbrx rWORD2, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD1, 0(rSTR1)
|
|
ld rWORD2, 0(rSTR2)
|
|
#endif
|
|
cmpld cr7, rWORD1, rWORD2
|
|
L(dP4e):
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD3, 0, rSTR1
|
|
ldbrx rWORD4, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD3, 8(rSTR1)
|
|
ld rWORD4, 8(rSTR2)
|
|
#endif
|
|
cmpld cr1, rWORD3, rWORD4
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD5, 0, rSTR1
|
|
ldbrx rWORD6, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD5, 16(rSTR1)
|
|
ld rWORD6, 16(rSTR2)
|
|
#endif
|
|
cmpld cr6, rWORD5, rWORD6
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD7, 0, rSTR1
|
|
ldbrx rWORD8, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ldu rWORD7, 24(rSTR1)
|
|
ldu rWORD8, 24(rSTR2)
|
|
#endif
|
|
cmpld cr5, rWORD7, rWORD8
|
|
bne cr7, L(dLcr7)
|
|
bne cr1, L(dLcr1)
|
|
bdz- L(d24) /* Adjust CTR as we start with +4 */
|
|
/* This is the primary loop */
|
|
.align 4
|
|
L(dLoop):
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD1, 0, rSTR1
|
|
ldbrx rWORD2, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD1, 8(rSTR1)
|
|
ld rWORD2, 8(rSTR2)
|
|
#endif
|
|
cmpld cr1, rWORD3, rWORD4
|
|
bne cr6, L(dLcr6)
|
|
L(dLoop1):
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD3, 0, rSTR1
|
|
ldbrx rWORD4, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD3, 16(rSTR1)
|
|
ld rWORD4, 16(rSTR2)
|
|
#endif
|
|
cmpld cr6, rWORD5, rWORD6
|
|
bne cr5, L(dLcr5)
|
|
L(dLoop2):
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD5, 0, rSTR1
|
|
ldbrx rWORD6, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD5, 24(rSTR1)
|
|
ld rWORD6, 24(rSTR2)
|
|
#endif
|
|
cmpld cr5, rWORD7, rWORD8
|
|
bne cr7, L(dLcr7)
|
|
L(dLoop3):
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD7, 0, rSTR1
|
|
ldbrx rWORD8, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ldu rWORD7, 32(rSTR1)
|
|
ldu rWORD8, 32(rSTR2)
|
|
#endif
|
|
bne cr1, L(dLcr1)
|
|
cmpld cr7, rWORD1, rWORD2
|
|
bdnz L(dLoop)
|
|
|
|
L(dL4):
|
|
cmpld cr1, rWORD3, rWORD4
|
|
bne cr6, L(dLcr6)
|
|
cmpld cr6, rWORD5, rWORD6
|
|
bne cr5, L(dLcr5)
|
|
cmpld cr5, rWORD7, rWORD8
|
|
L(d44):
|
|
bne cr7, L(dLcr7)
|
|
L(d34):
|
|
bne cr1, L(dLcr1)
|
|
L(d24):
|
|
bne cr6, L(dLcr6)
|
|
L(d14):
|
|
sldi. r12, rN, 3
|
|
bne cr5, L(dLcr5)
|
|
L(d04):
|
|
ld rWORD8, -8(r1)
|
|
ld rWORD7, -16(r1)
|
|
subfic rN, r12, 64 /* Shift count is 64 - (rN * 8). */
|
|
beq L(zeroLength)
|
|
/* At this point we have a remainder of 1 to 7 bytes to compare. Since
|
|
we are aligned it is safe to load the whole double word, and use
|
|
shift right double to eliminate bits beyond the compare length. */
|
|
L(d00):
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD1, 0, rSTR1
|
|
ldbrx rWORD2, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD1, 8(rSTR1)
|
|
ld rWORD2, 8(rSTR2)
|
|
#endif
|
|
srd rWORD1, rWORD1, rN
|
|
srd rWORD2, rWORD2, rN
|
|
cmpld cr7, rWORD1, rWORD2
|
|
bne cr7, L(dLcr7x)
|
|
li rRTN, 0
|
|
blr
|
|
|
|
.align 4
|
|
L(dLcr7):
|
|
ld rWORD8, -8(r1)
|
|
ld rWORD7, -16(r1)
|
|
L(dLcr7x):
|
|
li rRTN, 1
|
|
bgtlr cr7
|
|
li rRTN, -1
|
|
blr
|
|
.align 4
|
|
L(dLcr1):
|
|
ld rWORD8, -8(r1)
|
|
ld rWORD7, -16(r1)
|
|
L(dLcr1x):
|
|
li rRTN, 1
|
|
bgtlr cr1
|
|
li rRTN, -1
|
|
blr
|
|
.align 4
|
|
L(dLcr6):
|
|
ld rWORD8, -8(r1)
|
|
ld rWORD7, -16(r1)
|
|
L(dLcr6x):
|
|
li rRTN, 1
|
|
bgtlr cr6
|
|
li rRTN, -1
|
|
blr
|
|
.align 4
|
|
L(dLcr5):
|
|
ld rWORD8, -8(r1)
|
|
ld rWORD7, -16(r1)
|
|
L(dLcr5x):
|
|
li rRTN, 1
|
|
bgtlr cr5
|
|
li rRTN, -1
|
|
blr
|
|
|
|
.align 4
|
|
L(bytealigned):
|
|
mtctr rN
|
|
#if 0
|
|
/* Huh? We've already branched on cr6! */
|
|
beq cr6, L(zeroLength)
|
|
#endif
|
|
|
|
/* We need to prime this loop. This loop is swing modulo scheduled
|
|
to avoid pipe delays. The dependent instruction latencies (load to
|
|
compare to conditional branch) is 2 to 3 cycles. In this loop each
|
|
dispatch group ends in a branch and takes 1 cycle. Effectively
|
|
the first iteration of the loop only serves to load operands and
|
|
branches based on compares are delayed until the next loop.
|
|
|
|
So we must precondition some registers and condition codes so that
|
|
we don't exit the loop early on the first iteration. */
|
|
|
|
lbz rWORD1, 0(rSTR1)
|
|
lbz rWORD2, 0(rSTR2)
|
|
bdz L(b11)
|
|
cmpld cr7, rWORD1, rWORD2
|
|
lbz rWORD3, 1(rSTR1)
|
|
lbz rWORD4, 1(rSTR2)
|
|
bdz L(b12)
|
|
cmpld cr1, rWORD3, rWORD4
|
|
lbzu rWORD5, 2(rSTR1)
|
|
lbzu rWORD6, 2(rSTR2)
|
|
bdz L(b13)
|
|
.align 4
|
|
L(bLoop):
|
|
lbzu rWORD1, 1(rSTR1)
|
|
lbzu rWORD2, 1(rSTR2)
|
|
bne cr7, L(bLcr7)
|
|
|
|
cmpld cr6, rWORD5, rWORD6
|
|
bdz L(b3i)
|
|
|
|
lbzu rWORD3, 1(rSTR1)
|
|
lbzu rWORD4, 1(rSTR2)
|
|
bne cr1, L(bLcr1)
|
|
|
|
cmpld cr7, rWORD1, rWORD2
|
|
bdz L(b2i)
|
|
|
|
lbzu rWORD5, 1(rSTR1)
|
|
lbzu rWORD6, 1(rSTR2)
|
|
bne cr6, L(bLcr6)
|
|
|
|
cmpld cr1, rWORD3, rWORD4
|
|
bdnz L(bLoop)
|
|
|
|
/* We speculatively loading bytes before we have tested the previous
|
|
bytes. But we must avoid overrunning the length (in the ctr) to
|
|
prevent these speculative loads from causing a segfault. In this
|
|
case the loop will exit early (before the all pending bytes are
|
|
tested. In this case we must complete the pending operations
|
|
before returning. */
|
|
L(b1i):
|
|
bne cr7, L(bLcr7)
|
|
bne cr1, L(bLcr1)
|
|
b L(bx56)
|
|
.align 4
|
|
L(b2i):
|
|
bne cr6, L(bLcr6)
|
|
bne cr7, L(bLcr7)
|
|
b L(bx34)
|
|
.align 4
|
|
L(b3i):
|
|
bne cr1, L(bLcr1)
|
|
bne cr6, L(bLcr6)
|
|
b L(bx12)
|
|
.align 4
|
|
L(bLcr7):
|
|
li rRTN, 1
|
|
bgtlr cr7
|
|
li rRTN, -1
|
|
blr
|
|
L(bLcr1):
|
|
li rRTN, 1
|
|
bgtlr cr1
|
|
li rRTN, -1
|
|
blr
|
|
L(bLcr6):
|
|
li rRTN, 1
|
|
bgtlr cr6
|
|
li rRTN, -1
|
|
blr
|
|
|
|
L(b13):
|
|
bne cr7, L(bx12)
|
|
bne cr1, L(bx34)
|
|
L(bx56):
|
|
sub rRTN, rWORD5, rWORD6
|
|
blr
|
|
nop
|
|
L(b12):
|
|
bne cr7, L(bx12)
|
|
L(bx34):
|
|
sub rRTN, rWORD3, rWORD4
|
|
blr
|
|
L(b11):
|
|
L(bx12):
|
|
sub rRTN, rWORD1, rWORD2
|
|
blr
|
|
.align 4
|
|
L(zeroLength):
|
|
li rRTN, 0
|
|
blr
|
|
|
|
.align 4
|
|
/* At this point we know the strings have different alignment and the
|
|
compare length is at least 8 bytes. r12 contains the low order
|
|
3 bits of rSTR1 and cr5 contains the result of the logical compare
|
|
of r12 to 0. If r12 == 0 then rStr1 is double word
|
|
aligned and can perform the DWunaligned loop.
|
|
|
|
Otherwise we know that rSTR1 is not already DW aligned yet.
|
|
So we can force the string addresses to the next lower DW
|
|
boundary and special case this first DW using shift left to
|
|
eliminate bits preceding the first byte. Since we want to join the
|
|
normal (DWaligned) compare loop, starting at the second double word,
|
|
we need to adjust the length (rN) and special case the loop
|
|
versioning for the first DW. This ensures that the loop count is
|
|
correct and the first DW (shifted) is in the expected resister pair. */
|
|
#define rSHL r29 /* Unaligned shift left count. */
|
|
#define rSHR r28 /* Unaligned shift right count. */
|
|
#define rWORD8_SHIFT r27 /* Left rotation temp for rWORD2. */
|
|
#define rWORD2_SHIFT r26 /* Left rotation temp for rWORD4. */
|
|
#define rWORD4_SHIFT r25 /* Left rotation temp for rWORD6. */
|
|
#define rWORD6_SHIFT r24 /* Left rotation temp for rWORD8. */
|
|
L(unaligned):
|
|
std rSHL, -24(r1)
|
|
cfi_offset(rSHL, -24)
|
|
clrldi rSHL, rSTR2, 61
|
|
beq cr6, L(duzeroLength)
|
|
std rSHR, -32(r1)
|
|
cfi_offset(rSHR, -32)
|
|
beq cr5, L(DWunaligned)
|
|
std rWORD8_SHIFT, -40(r1)
|
|
cfi_offset(rWORD8_SHIFT, -40)
|
|
/* Adjust the logical start of rSTR2 to compensate for the extra bits
|
|
in the 1st rSTR1 DW. */
|
|
sub rWORD8_SHIFT, rSTR2, r12
|
|
/* But do not attempt to address the DW before that DW that contains
|
|
the actual start of rSTR2. */
|
|
clrrdi rSTR2, rSTR2, 3
|
|
std rWORD2_SHIFT, -48(r1)
|
|
cfi_offset(rWORD2_SHIFT, -48)
|
|
/* Compute the left/right shift counts for the unaligned rSTR2,
|
|
compensating for the logical (DW aligned) start of rSTR1. */
|
|
clrldi rSHL, rWORD8_SHIFT, 61
|
|
clrrdi rSTR1, rSTR1, 3
|
|
std rWORD4_SHIFT, -56(r1)
|
|
cfi_offset(rWORD4_SHIFT, -56)
|
|
sldi rSHL, rSHL, 3
|
|
cmpld cr5, rWORD8_SHIFT, rSTR2
|
|
add rN, rN, r12
|
|
sldi rWORD6, r12, 3
|
|
std rWORD6_SHIFT, -64(r1)
|
|
cfi_offset(rWORD6_SHIFT, -64)
|
|
subfic rSHR, rSHL, 64
|
|
srdi r0, rN, 5 /* Divide by 32 */
|
|
andi. r12, rN, 24 /* Get the DW remainder */
|
|
/* We normally need to load 2 DWs to start the unaligned rSTR2, but in
|
|
this special case those bits may be discarded anyway. Also we
|
|
must avoid loading a DW where none of the bits are part of rSTR2 as
|
|
this may cross a page boundary and cause a page fault. */
|
|
li rWORD8, 0
|
|
blt cr5, L(dus0)
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD8, 0, rSTR2
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD8, 0(rSTR2)
|
|
addi rSTR2, rSTR2, 8
|
|
#endif
|
|
sld rWORD8, rWORD8, rSHL
|
|
|
|
L(dus0):
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD1, 0, rSTR1
|
|
ldbrx rWORD2, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD1, 0(rSTR1)
|
|
ld rWORD2, 0(rSTR2)
|
|
#endif
|
|
cmpldi cr1, r12, 16
|
|
cmpldi cr7, rN, 32
|
|
srd r12, rWORD2, rSHR
|
|
clrldi rN, rN, 61
|
|
beq L(duPs4)
|
|
mtctr r0
|
|
or rWORD8, r12, rWORD8
|
|
bgt cr1, L(duPs3)
|
|
beq cr1, L(duPs2)
|
|
|
|
/* Remainder is 8 */
|
|
.align 4
|
|
L(dusP1):
|
|
sld rWORD8_SHIFT, rWORD2, rSHL
|
|
sld rWORD7, rWORD1, rWORD6
|
|
sld rWORD8, rWORD8, rWORD6
|
|
bge cr7, L(duP1e)
|
|
/* At this point we exit early with the first double word compare
|
|
complete and remainder of 0 to 7 bytes. See L(du14) for details on
|
|
how we handle the remaining bytes. */
|
|
cmpld cr5, rWORD7, rWORD8
|
|
sldi. rN, rN, 3
|
|
bne cr5, L(duLcr5)
|
|
cmpld cr7, rN, rSHR
|
|
beq L(duZeroReturn)
|
|
li r0, 0
|
|
ble cr7, L(dutrim)
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD2, 0, rSTR2
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD2, 8(rSTR2)
|
|
#endif
|
|
srd r0, rWORD2, rSHR
|
|
b L(dutrim)
|
|
/* Remainder is 16 */
|
|
.align 4
|
|
L(duPs2):
|
|
sld rWORD6_SHIFT, rWORD2, rSHL
|
|
sld rWORD5, rWORD1, rWORD6
|
|
sld rWORD6, rWORD8, rWORD6
|
|
b L(duP2e)
|
|
/* Remainder is 24 */
|
|
.align 4
|
|
L(duPs3):
|
|
sld rWORD4_SHIFT, rWORD2, rSHL
|
|
sld rWORD3, rWORD1, rWORD6
|
|
sld rWORD4, rWORD8, rWORD6
|
|
b L(duP3e)
|
|
/* Count is a multiple of 32, remainder is 0 */
|
|
.align 4
|
|
L(duPs4):
|
|
mtctr r0
|
|
or rWORD8, r12, rWORD8
|
|
sld rWORD2_SHIFT, rWORD2, rSHL
|
|
sld rWORD1, rWORD1, rWORD6
|
|
sld rWORD2, rWORD8, rWORD6
|
|
b L(duP4e)
|
|
|
|
/* At this point we know rSTR1 is double word aligned and the
|
|
compare length is at least 8 bytes. */
|
|
.align 4
|
|
L(DWunaligned):
|
|
std rWORD8_SHIFT, -40(r1)
|
|
cfi_offset(rWORD8_SHIFT, -40)
|
|
clrrdi rSTR2, rSTR2, 3
|
|
std rWORD2_SHIFT, -48(r1)
|
|
cfi_offset(rWORD2_SHIFT, -48)
|
|
srdi r0, rN, 5 /* Divide by 32 */
|
|
std rWORD4_SHIFT, -56(r1)
|
|
cfi_offset(rWORD4_SHIFT, -56)
|
|
andi. r12, rN, 24 /* Get the DW remainder */
|
|
std rWORD6_SHIFT, -64(r1)
|
|
cfi_offset(rWORD6_SHIFT, -64)
|
|
sldi rSHL, rSHL, 3
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD6, 0, rSTR2
|
|
addi rSTR2, rSTR2, 8
|
|
ldbrx rWORD8, 0, rSTR2
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD6, 0(rSTR2)
|
|
ldu rWORD8, 8(rSTR2)
|
|
#endif
|
|
cmpldi cr1, r12, 16
|
|
cmpldi cr7, rN, 32
|
|
clrldi rN, rN, 61
|
|
subfic rSHR, rSHL, 64
|
|
sld rWORD6_SHIFT, rWORD6, rSHL
|
|
beq L(duP4)
|
|
mtctr r0
|
|
bgt cr1, L(duP3)
|
|
beq cr1, L(duP2)
|
|
|
|
/* Remainder is 8 */
|
|
.align 4
|
|
L(duP1):
|
|
srd r12, rWORD8, rSHR
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD7, 0, rSTR1
|
|
addi rSTR1, rSTR1, 8
|
|
#else
|
|
ld rWORD7, 0(rSTR1)
|
|
#endif
|
|
sld rWORD8_SHIFT, rWORD8, rSHL
|
|
or rWORD8, r12, rWORD6_SHIFT
|
|
blt cr7, L(duP1x)
|
|
L(duP1e):
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD1, 0, rSTR1
|
|
ldbrx rWORD2, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD1, 8(rSTR1)
|
|
ld rWORD2, 8(rSTR2)
|
|
#endif
|
|
cmpld cr5, rWORD7, rWORD8
|
|
srd r0, rWORD2, rSHR
|
|
sld rWORD2_SHIFT, rWORD2, rSHL
|
|
or rWORD2, r0, rWORD8_SHIFT
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD3, 0, rSTR1
|
|
ldbrx rWORD4, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD3, 16(rSTR1)
|
|
ld rWORD4, 16(rSTR2)
|
|
#endif
|
|
cmpld cr7, rWORD1, rWORD2
|
|
srd r12, rWORD4, rSHR
|
|
sld rWORD4_SHIFT, rWORD4, rSHL
|
|
bne cr5, L(duLcr5)
|
|
or rWORD4, r12, rWORD2_SHIFT
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD5, 0, rSTR1
|
|
ldbrx rWORD6, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD5, 24(rSTR1)
|
|
ld rWORD6, 24(rSTR2)
|
|
#endif
|
|
cmpld cr1, rWORD3, rWORD4
|
|
srd r0, rWORD6, rSHR
|
|
sld rWORD6_SHIFT, rWORD6, rSHL
|
|
bne cr7, L(duLcr7)
|
|
or rWORD6, r0, rWORD4_SHIFT
|
|
cmpld cr6, rWORD5, rWORD6
|
|
b L(duLoop3)
|
|
.align 4
|
|
/* At this point we exit early with the first double word compare
|
|
complete and remainder of 0 to 7 bytes. See L(du14) for details on
|
|
how we handle the remaining bytes. */
|
|
L(duP1x):
|
|
cmpld cr5, rWORD7, rWORD8
|
|
sldi. rN, rN, 3
|
|
bne cr5, L(duLcr5)
|
|
cmpld cr7, rN, rSHR
|
|
beq L(duZeroReturn)
|
|
li r0, 0
|
|
ble cr7, L(dutrim)
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD2, 0, rSTR2
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD2, 8(rSTR2)
|
|
#endif
|
|
srd r0, rWORD2, rSHR
|
|
b L(dutrim)
|
|
/* Remainder is 16 */
|
|
.align 4
|
|
L(duP2):
|
|
srd r0, rWORD8, rSHR
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD5, 0, rSTR1
|
|
addi rSTR1, rSTR1, 8
|
|
#else
|
|
ld rWORD5, 0(rSTR1)
|
|
#endif
|
|
or rWORD6, r0, rWORD6_SHIFT
|
|
sld rWORD6_SHIFT, rWORD8, rSHL
|
|
L(duP2e):
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD7, 0, rSTR1
|
|
ldbrx rWORD8, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD7, 8(rSTR1)
|
|
ld rWORD8, 8(rSTR2)
|
|
#endif
|
|
cmpld cr6, rWORD5, rWORD6
|
|
srd r12, rWORD8, rSHR
|
|
sld rWORD8_SHIFT, rWORD8, rSHL
|
|
or rWORD8, r12, rWORD6_SHIFT
|
|
blt cr7, L(duP2x)
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD1, 0, rSTR1
|
|
ldbrx rWORD2, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD1, 16(rSTR1)
|
|
ld rWORD2, 16(rSTR2)
|
|
#endif
|
|
cmpld cr5, rWORD7, rWORD8
|
|
bne cr6, L(duLcr6)
|
|
srd r0, rWORD2, rSHR
|
|
sld rWORD2_SHIFT, rWORD2, rSHL
|
|
or rWORD2, r0, rWORD8_SHIFT
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD3, 0, rSTR1
|
|
ldbrx rWORD4, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD3, 24(rSTR1)
|
|
ld rWORD4, 24(rSTR2)
|
|
#endif
|
|
cmpld cr7, rWORD1, rWORD2
|
|
bne cr5, L(duLcr5)
|
|
srd r12, rWORD4, rSHR
|
|
sld rWORD4_SHIFT, rWORD4, rSHL
|
|
or rWORD4, r12, rWORD2_SHIFT
|
|
#ifndef __LITTLE_ENDIAN__
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#endif
|
|
cmpld cr1, rWORD3, rWORD4
|
|
b L(duLoop2)
|
|
.align 4
|
|
L(duP2x):
|
|
cmpld cr5, rWORD7, rWORD8
|
|
#ifndef __LITTLE_ENDIAN__
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#endif
|
|
bne cr6, L(duLcr6)
|
|
sldi. rN, rN, 3
|
|
bne cr5, L(duLcr5)
|
|
cmpld cr7, rN, rSHR
|
|
beq L(duZeroReturn)
|
|
li r0, 0
|
|
ble cr7, L(dutrim)
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD2, 0, rSTR2
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD2, 8(rSTR2)
|
|
#endif
|
|
srd r0, rWORD2, rSHR
|
|
b L(dutrim)
|
|
|
|
/* Remainder is 24 */
|
|
.align 4
|
|
L(duP3):
|
|
srd r12, rWORD8, rSHR
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD3, 0, rSTR1
|
|
addi rSTR1, rSTR1, 8
|
|
#else
|
|
ld rWORD3, 0(rSTR1)
|
|
#endif
|
|
sld rWORD4_SHIFT, rWORD8, rSHL
|
|
or rWORD4, r12, rWORD6_SHIFT
|
|
L(duP3e):
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD5, 0, rSTR1
|
|
ldbrx rWORD6, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD5, 8(rSTR1)
|
|
ld rWORD6, 8(rSTR2)
|
|
#endif
|
|
cmpld cr1, rWORD3, rWORD4
|
|
srd r0, rWORD6, rSHR
|
|
sld rWORD6_SHIFT, rWORD6, rSHL
|
|
or rWORD6, r0, rWORD4_SHIFT
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD7, 0, rSTR1
|
|
ldbrx rWORD8, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD7, 16(rSTR1)
|
|
ld rWORD8, 16(rSTR2)
|
|
#endif
|
|
cmpld cr6, rWORD5, rWORD6
|
|
bne cr1, L(duLcr1)
|
|
srd r12, rWORD8, rSHR
|
|
sld rWORD8_SHIFT, rWORD8, rSHL
|
|
or rWORD8, r12, rWORD6_SHIFT
|
|
blt cr7, L(duP3x)
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD1, 0, rSTR1
|
|
ldbrx rWORD2, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD1, 24(rSTR1)
|
|
ld rWORD2, 24(rSTR2)
|
|
#endif
|
|
cmpld cr5, rWORD7, rWORD8
|
|
bne cr6, L(duLcr6)
|
|
srd r0, rWORD2, rSHR
|
|
sld rWORD2_SHIFT, rWORD2, rSHL
|
|
or rWORD2, r0, rWORD8_SHIFT
|
|
#ifndef __LITTLE_ENDIAN__
|
|
addi rSTR1, rSTR1, 16
|
|
addi rSTR2, rSTR2, 16
|
|
#endif
|
|
cmpld cr7, rWORD1, rWORD2
|
|
b L(duLoop1)
|
|
.align 4
|
|
L(duP3x):
|
|
#ifndef __LITTLE_ENDIAN__
|
|
addi rSTR1, rSTR1, 16
|
|
addi rSTR2, rSTR2, 16
|
|
#endif
|
|
#if 0
|
|
/* Huh? We've already branched on cr1! */
|
|
bne cr1, L(duLcr1)
|
|
#endif
|
|
cmpld cr5, rWORD7, rWORD8
|
|
bne cr6, L(duLcr6)
|
|
sldi. rN, rN, 3
|
|
bne cr5, L(duLcr5)
|
|
cmpld cr7, rN, rSHR
|
|
beq L(duZeroReturn)
|
|
li r0, 0
|
|
ble cr7, L(dutrim)
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD2, 0, rSTR2
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD2, 8(rSTR2)
|
|
#endif
|
|
srd r0, rWORD2, rSHR
|
|
b L(dutrim)
|
|
|
|
/* Count is a multiple of 32, remainder is 0 */
|
|
.align 4
|
|
L(duP4):
|
|
mtctr r0
|
|
srd r0, rWORD8, rSHR
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD1, 0, rSTR1
|
|
addi rSTR1, rSTR1, 8
|
|
#else
|
|
ld rWORD1, 0(rSTR1)
|
|
#endif
|
|
sld rWORD2_SHIFT, rWORD8, rSHL
|
|
or rWORD2, r0, rWORD6_SHIFT
|
|
L(duP4e):
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD3, 0, rSTR1
|
|
ldbrx rWORD4, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD3, 8(rSTR1)
|
|
ld rWORD4, 8(rSTR2)
|
|
#endif
|
|
cmpld cr7, rWORD1, rWORD2
|
|
srd r12, rWORD4, rSHR
|
|
sld rWORD4_SHIFT, rWORD4, rSHL
|
|
or rWORD4, r12, rWORD2_SHIFT
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD5, 0, rSTR1
|
|
ldbrx rWORD6, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD5, 16(rSTR1)
|
|
ld rWORD6, 16(rSTR2)
|
|
#endif
|
|
cmpld cr1, rWORD3, rWORD4
|
|
bne cr7, L(duLcr7)
|
|
srd r0, rWORD6, rSHR
|
|
sld rWORD6_SHIFT, rWORD6, rSHL
|
|
or rWORD6, r0, rWORD4_SHIFT
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD7, 0, rSTR1
|
|
ldbrx rWORD8, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ldu rWORD7, 24(rSTR1)
|
|
ldu rWORD8, 24(rSTR2)
|
|
#endif
|
|
cmpld cr6, rWORD5, rWORD6
|
|
bne cr1, L(duLcr1)
|
|
srd r12, rWORD8, rSHR
|
|
sld rWORD8_SHIFT, rWORD8, rSHL
|
|
or rWORD8, r12, rWORD6_SHIFT
|
|
cmpld cr5, rWORD7, rWORD8
|
|
bdz L(du24) /* Adjust CTR as we start with +4 */
|
|
/* This is the primary loop */
|
|
.align 4
|
|
L(duLoop):
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD1, 0, rSTR1
|
|
ldbrx rWORD2, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD1, 8(rSTR1)
|
|
ld rWORD2, 8(rSTR2)
|
|
#endif
|
|
cmpld cr1, rWORD3, rWORD4
|
|
bne cr6, L(duLcr6)
|
|
srd r0, rWORD2, rSHR
|
|
sld rWORD2_SHIFT, rWORD2, rSHL
|
|
or rWORD2, r0, rWORD8_SHIFT
|
|
L(duLoop1):
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD3, 0, rSTR1
|
|
ldbrx rWORD4, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD3, 16(rSTR1)
|
|
ld rWORD4, 16(rSTR2)
|
|
#endif
|
|
cmpld cr6, rWORD5, rWORD6
|
|
bne cr5, L(duLcr5)
|
|
srd r12, rWORD4, rSHR
|
|
sld rWORD4_SHIFT, rWORD4, rSHL
|
|
or rWORD4, r12, rWORD2_SHIFT
|
|
L(duLoop2):
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD5, 0, rSTR1
|
|
ldbrx rWORD6, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD5, 24(rSTR1)
|
|
ld rWORD6, 24(rSTR2)
|
|
#endif
|
|
cmpld cr5, rWORD7, rWORD8
|
|
bne cr7, L(duLcr7)
|
|
srd r0, rWORD6, rSHR
|
|
sld rWORD6_SHIFT, rWORD6, rSHL
|
|
or rWORD6, r0, rWORD4_SHIFT
|
|
L(duLoop3):
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD7, 0, rSTR1
|
|
ldbrx rWORD8, 0, rSTR2
|
|
addi rSTR1, rSTR1, 8
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ldu rWORD7, 32(rSTR1)
|
|
ldu rWORD8, 32(rSTR2)
|
|
#endif
|
|
cmpld cr7, rWORD1, rWORD2
|
|
bne cr1, L(duLcr1)
|
|
srd r12, rWORD8, rSHR
|
|
sld rWORD8_SHIFT, rWORD8, rSHL
|
|
or rWORD8, r12, rWORD6_SHIFT
|
|
bdnz L(duLoop)
|
|
|
|
L(duL4):
|
|
#if 0
|
|
/* Huh? We've already branched on cr1! */
|
|
bne cr1, L(duLcr1)
|
|
#endif
|
|
cmpld cr1, rWORD3, rWORD4
|
|
bne cr6, L(duLcr6)
|
|
cmpld cr6, rWORD5, rWORD6
|
|
bne cr5, L(duLcr5)
|
|
cmpld cr5, rWORD7, rWORD8
|
|
L(du44):
|
|
bne cr7, L(duLcr7)
|
|
L(du34):
|
|
bne cr1, L(duLcr1)
|
|
L(du24):
|
|
bne cr6, L(duLcr6)
|
|
L(du14):
|
|
sldi. rN, rN, 3
|
|
bne cr5, L(duLcr5)
|
|
/* At this point we have a remainder of 1 to 7 bytes to compare. We use
|
|
shift right double to eliminate bits beyond the compare length.
|
|
|
|
However it may not be safe to load rWORD2 which may be beyond the
|
|
string length. So we compare the bit length of the remainder to
|
|
the right shift count (rSHR). If the bit count is less than or equal
|
|
we do not need to load rWORD2 (all significant bits are already in
|
|
rWORD8_SHIFT). */
|
|
cmpld cr7, rN, rSHR
|
|
beq L(duZeroReturn)
|
|
li r0, 0
|
|
ble cr7, L(dutrim)
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD2, 0, rSTR2
|
|
addi rSTR2, rSTR2, 8
|
|
#else
|
|
ld rWORD2, 8(rSTR2)
|
|
#endif
|
|
srd r0, rWORD2, rSHR
|
|
.align 4
|
|
L(dutrim):
|
|
#ifdef __LITTLE_ENDIAN__
|
|
ldbrx rWORD1, 0, rSTR1
|
|
#else
|
|
ld rWORD1, 8(rSTR1)
|
|
#endif
|
|
ld rWORD8, -8(r1)
|
|
subfic rN, rN, 64 /* Shift count is 64 - (rN * 8). */
|
|
or rWORD2, r0, rWORD8_SHIFT
|
|
ld rWORD7, -16(r1)
|
|
ld rSHL, -24(r1)
|
|
srd rWORD1, rWORD1, rN
|
|
srd rWORD2, rWORD2, rN
|
|
ld rSHR, -32(r1)
|
|
ld rWORD8_SHIFT, -40(r1)
|
|
li rRTN, 0
|
|
cmpld cr7, rWORD1, rWORD2
|
|
ld rWORD2_SHIFT, -48(r1)
|
|
ld rWORD4_SHIFT, -56(r1)
|
|
beq cr7, L(dureturn24)
|
|
li rRTN, 1
|
|
ld rWORD6_SHIFT, -64(r1)
|
|
bgtlr cr7
|
|
li rRTN, -1
|
|
blr
|
|
.align 4
|
|
L(duLcr7):
|
|
ld rWORD8, -8(r1)
|
|
ld rWORD7, -16(r1)
|
|
li rRTN, 1
|
|
bgt cr7, L(dureturn29)
|
|
ld rSHL, -24(r1)
|
|
ld rSHR, -32(r1)
|
|
li rRTN, -1
|
|
b L(dureturn27)
|
|
.align 4
|
|
L(duLcr1):
|
|
ld rWORD8, -8(r1)
|
|
ld rWORD7, -16(r1)
|
|
li rRTN, 1
|
|
bgt cr1, L(dureturn29)
|
|
ld rSHL, -24(r1)
|
|
ld rSHR, -32(r1)
|
|
li rRTN, -1
|
|
b L(dureturn27)
|
|
.align 4
|
|
L(duLcr6):
|
|
ld rWORD8, -8(r1)
|
|
ld rWORD7, -16(r1)
|
|
li rRTN, 1
|
|
bgt cr6, L(dureturn29)
|
|
ld rSHL, -24(r1)
|
|
ld rSHR, -32(r1)
|
|
li rRTN, -1
|
|
b L(dureturn27)
|
|
.align 4
|
|
L(duLcr5):
|
|
ld rWORD8, -8(r1)
|
|
ld rWORD7, -16(r1)
|
|
li rRTN, 1
|
|
bgt cr5, L(dureturn29)
|
|
ld rSHL, -24(r1)
|
|
ld rSHR, -32(r1)
|
|
li rRTN, -1
|
|
b L(dureturn27)
|
|
.align 3
|
|
L(duZeroReturn):
|
|
li rRTN, 0
|
|
.align 4
|
|
L(dureturn):
|
|
ld rWORD8, -8(r1)
|
|
ld rWORD7, -16(r1)
|
|
L(dureturn29):
|
|
ld rSHL, -24(r1)
|
|
ld rSHR, -32(r1)
|
|
L(dureturn27):
|
|
ld rWORD8_SHIFT, -40(r1)
|
|
L(dureturn26):
|
|
ld rWORD2_SHIFT, -48(r1)
|
|
L(dureturn25):
|
|
ld rWORD4_SHIFT, -56(r1)
|
|
L(dureturn24):
|
|
ld rWORD6_SHIFT, -64(r1)
|
|
blr
|
|
L(duzeroLength):
|
|
li rRTN, 0
|
|
blr
|
|
|
|
END (memcmp)
|
|
libc_hidden_builtin_def (memcmp)
|
|
weak_alias (memcmp, bcmp)
|