mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-07 10:00:07 +00:00
bc2eb9321e
With all Linux ABIs using the expected Linux kABI to indicate syscalls errors, the INTERNAL_SYSCALL_DECL is an empty declaration on all ports. This patch removes the 'err' argument on INTERNAL_SYSCALL* macro and remove the INTERNAL_SYSCALL_DECL usage. Checked with a build against all affected ABIs.
855 lines
22 KiB
C
855 lines
22 KiB
C
/* getifaddrs -- get names and addresses of all network interfaces
|
|
Copyright (C) 2003-2020 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include <alloca.h>
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <ifaddrs.h>
|
|
#include <net/if.h>
|
|
#include <netinet/in.h>
|
|
#include <netpacket/packet.h>
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/socket.h>
|
|
#include <sysdep.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
|
|
#include "netlinkaccess.h"
|
|
|
|
|
|
/* There is a problem with this type. The address length for
|
|
Infiniband sockets is much longer than the 8 bytes allocated in the
|
|
sockaddr_ll definition. Hence we use here a special
|
|
definition. */
|
|
struct sockaddr_ll_max
|
|
{
|
|
unsigned short int sll_family;
|
|
unsigned short int sll_protocol;
|
|
int sll_ifindex;
|
|
unsigned short int sll_hatype;
|
|
unsigned char sll_pkttype;
|
|
unsigned char sll_halen;
|
|
unsigned char sll_addr[24];
|
|
};
|
|
|
|
|
|
/* struct to hold the data for one ifaddrs entry, so we can allocate
|
|
everything at once. */
|
|
struct ifaddrs_storage
|
|
{
|
|
struct ifaddrs ifa;
|
|
union
|
|
{
|
|
/* Save space for the biggest of the four used sockaddr types and
|
|
avoid a lot of casts. */
|
|
struct sockaddr sa;
|
|
struct sockaddr_ll_max sl;
|
|
struct sockaddr_in s4;
|
|
struct sockaddr_in6 s6;
|
|
} addr, netmask, broadaddr;
|
|
char name[IF_NAMESIZE + 1];
|
|
};
|
|
|
|
|
|
void
|
|
__netlink_free_handle (struct netlink_handle *h)
|
|
{
|
|
struct netlink_res *ptr;
|
|
int saved_errno = errno;
|
|
|
|
ptr = h->nlm_list;
|
|
while (ptr != NULL)
|
|
{
|
|
struct netlink_res *tmpptr;
|
|
|
|
tmpptr = ptr->next;
|
|
free (ptr);
|
|
ptr = tmpptr;
|
|
}
|
|
|
|
__set_errno (saved_errno);
|
|
}
|
|
|
|
|
|
static int
|
|
__netlink_sendreq (struct netlink_handle *h, int type)
|
|
{
|
|
struct req
|
|
{
|
|
struct nlmsghdr nlh;
|
|
struct rtgenmsg g;
|
|
char pad[0];
|
|
} req;
|
|
struct sockaddr_nl nladdr;
|
|
|
|
if (h->seq == 0)
|
|
h->seq = time_now ();
|
|
|
|
req.nlh.nlmsg_len = sizeof (req);
|
|
req.nlh.nlmsg_type = type;
|
|
req.nlh.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST;
|
|
req.nlh.nlmsg_pid = 0;
|
|
req.nlh.nlmsg_seq = h->seq;
|
|
req.g.rtgen_family = AF_UNSPEC;
|
|
if (sizeof (req) != offsetof (struct req, pad))
|
|
memset (req.pad, '\0', sizeof (req) - offsetof (struct req, pad));
|
|
|
|
memset (&nladdr, '\0', sizeof (nladdr));
|
|
nladdr.nl_family = AF_NETLINK;
|
|
|
|
return TEMP_FAILURE_RETRY (__sendto (h->fd, (void *) &req, sizeof (req), 0,
|
|
(struct sockaddr *) &nladdr,
|
|
sizeof (nladdr)));
|
|
}
|
|
|
|
|
|
int
|
|
__netlink_request (struct netlink_handle *h, int type)
|
|
{
|
|
struct netlink_res *nlm_next;
|
|
struct sockaddr_nl nladdr;
|
|
struct nlmsghdr *nlmh;
|
|
ssize_t read_len;
|
|
bool done = false;
|
|
|
|
#ifdef PAGE_SIZE
|
|
/* Help the compiler optimize out the malloc call if PAGE_SIZE
|
|
is constant and smaller or equal to PTHREAD_STACK_MIN/4. */
|
|
const size_t buf_size = PAGE_SIZE;
|
|
#else
|
|
const size_t buf_size = __getpagesize ();
|
|
#endif
|
|
bool use_malloc = false;
|
|
char *buf;
|
|
|
|
if (__libc_use_alloca (buf_size))
|
|
buf = alloca (buf_size);
|
|
else
|
|
{
|
|
buf = malloc (buf_size);
|
|
if (buf != NULL)
|
|
use_malloc = true;
|
|
else
|
|
goto out_fail;
|
|
}
|
|
|
|
struct iovec iov = { buf, buf_size };
|
|
|
|
if (__netlink_sendreq (h, type) < 0)
|
|
goto out_fail;
|
|
|
|
while (! done)
|
|
{
|
|
struct msghdr msg =
|
|
{
|
|
.msg_name = (void *) &nladdr,
|
|
.msg_namelen = sizeof (nladdr),
|
|
.msg_iov = &iov,
|
|
.msg_iovlen = 1,
|
|
.msg_control = NULL,
|
|
.msg_controllen = 0,
|
|
.msg_flags = 0
|
|
};
|
|
|
|
read_len = TEMP_FAILURE_RETRY (__recvmsg (h->fd, &msg, 0));
|
|
__netlink_assert_response (h->fd, read_len);
|
|
if (read_len < 0)
|
|
goto out_fail;
|
|
|
|
if (nladdr.nl_pid != 0)
|
|
continue;
|
|
|
|
if (__glibc_unlikely (msg.msg_flags & MSG_TRUNC))
|
|
goto out_fail;
|
|
|
|
size_t count = 0;
|
|
size_t remaining_len = read_len;
|
|
for (nlmh = (struct nlmsghdr *) buf;
|
|
NLMSG_OK (nlmh, remaining_len);
|
|
nlmh = (struct nlmsghdr *) NLMSG_NEXT (nlmh, remaining_len))
|
|
{
|
|
if ((pid_t) nlmh->nlmsg_pid != h->pid
|
|
|| nlmh->nlmsg_seq != h->seq)
|
|
continue;
|
|
|
|
++count;
|
|
if (nlmh->nlmsg_type == NLMSG_DONE)
|
|
{
|
|
/* We found the end, leave the loop. */
|
|
done = true;
|
|
break;
|
|
}
|
|
if (nlmh->nlmsg_type == NLMSG_ERROR)
|
|
{
|
|
struct nlmsgerr *nlerr = (struct nlmsgerr *) NLMSG_DATA (nlmh);
|
|
if (nlmh->nlmsg_len < NLMSG_LENGTH (sizeof (struct nlmsgerr)))
|
|
errno = EIO;
|
|
else
|
|
errno = -nlerr->error;
|
|
goto out_fail;
|
|
}
|
|
}
|
|
|
|
/* If there was nothing with the expected nlmsg_pid and nlmsg_seq,
|
|
there is no point to record it. */
|
|
if (count == 0)
|
|
continue;
|
|
|
|
nlm_next = (struct netlink_res *) malloc (sizeof (struct netlink_res)
|
|
+ read_len);
|
|
if (nlm_next == NULL)
|
|
goto out_fail;
|
|
nlm_next->next = NULL;
|
|
nlm_next->nlh = memcpy (nlm_next + 1, buf, read_len);
|
|
nlm_next->size = read_len;
|
|
nlm_next->seq = h->seq;
|
|
if (h->nlm_list == NULL)
|
|
h->nlm_list = nlm_next;
|
|
else
|
|
h->end_ptr->next = nlm_next;
|
|
h->end_ptr = nlm_next;
|
|
}
|
|
|
|
if (use_malloc)
|
|
free (buf);
|
|
return 0;
|
|
|
|
out_fail:
|
|
if (use_malloc)
|
|
free (buf);
|
|
return -1;
|
|
}
|
|
|
|
|
|
void
|
|
__netlink_close (struct netlink_handle *h)
|
|
{
|
|
/* Don't modify errno. */
|
|
INTERNAL_SYSCALL_CALL (close, h->fd);
|
|
}
|
|
|
|
|
|
/* Open a NETLINK socket. */
|
|
int
|
|
__netlink_open (struct netlink_handle *h)
|
|
{
|
|
struct sockaddr_nl nladdr;
|
|
|
|
h->fd = __socket (PF_NETLINK, SOCK_RAW | SOCK_CLOEXEC, NETLINK_ROUTE);
|
|
if (h->fd < 0)
|
|
goto out;
|
|
|
|
memset (&nladdr, '\0', sizeof (nladdr));
|
|
nladdr.nl_family = AF_NETLINK;
|
|
if (__bind (h->fd, (struct sockaddr *) &nladdr, sizeof (nladdr)) < 0)
|
|
{
|
|
close_and_out:
|
|
__netlink_close (h);
|
|
out:
|
|
return -1;
|
|
}
|
|
/* Determine the ID the kernel assigned for this netlink connection.
|
|
It is not necessarily the PID if there is more than one socket
|
|
open. */
|
|
socklen_t addr_len = sizeof (nladdr);
|
|
if (__getsockname (h->fd, (struct sockaddr *) &nladdr, &addr_len) < 0)
|
|
goto close_and_out;
|
|
h->pid = nladdr.nl_pid;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* We know the number of RTM_NEWLINK entries, so we reserve the first
|
|
# of entries for this type. All RTM_NEWADDR entries have an index
|
|
pointer to the RTM_NEWLINK entry. To find the entry, create
|
|
a table to map kernel index entries to our index numbers.
|
|
Since we get at first all RTM_NEWLINK entries, it can never happen
|
|
that a RTM_NEWADDR index is not known to this map. */
|
|
static int
|
|
map_newlink (int index, struct ifaddrs_storage *ifas, int *map, int max)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < max; i++)
|
|
{
|
|
if (map[i] == -1)
|
|
{
|
|
map[i] = index;
|
|
if (i > 0)
|
|
ifas[i - 1].ifa.ifa_next = &ifas[i].ifa;
|
|
return i;
|
|
}
|
|
else if (map[i] == index)
|
|
return i;
|
|
}
|
|
|
|
/* This means interfaces changed between the reading of the
|
|
RTM_GETLINK and RTM_GETADDR information. We have to repeat
|
|
everything. */
|
|
return -1;
|
|
}
|
|
|
|
|
|
/* Create a linked list of `struct ifaddrs' structures, one for each
|
|
network interface on the host machine. If successful, store the
|
|
list in *IFAP and return 0. On errors, return -1 and set `errno'. */
|
|
static int
|
|
getifaddrs_internal (struct ifaddrs **ifap)
|
|
{
|
|
struct netlink_handle nh = { 0, 0, 0, NULL, NULL };
|
|
struct netlink_res *nlp;
|
|
struct ifaddrs_storage *ifas;
|
|
unsigned int i, newlink, newaddr, newaddr_idx;
|
|
int *map_newlink_data;
|
|
size_t ifa_data_size = 0; /* Size to allocate for all ifa_data. */
|
|
char *ifa_data_ptr; /* Pointer to the unused part of memory for
|
|
ifa_data. */
|
|
int result = 0;
|
|
|
|
*ifap = NULL;
|
|
|
|
if (__netlink_open (&nh) < 0)
|
|
return -1;
|
|
|
|
/* Tell the kernel that we wish to get a list of all
|
|
active interfaces, collect all data for every interface. */
|
|
if (__netlink_request (&nh, RTM_GETLINK) < 0)
|
|
{
|
|
result = -1;
|
|
goto exit_free;
|
|
}
|
|
|
|
/* Now ask the kernel for all addresses which are assigned
|
|
to an interface and collect all data for every interface.
|
|
Since we store the addresses after the interfaces in the
|
|
list, we will later always find the interface before the
|
|
corresponding addresses. */
|
|
++nh.seq;
|
|
if (__netlink_request (&nh, RTM_GETADDR) < 0)
|
|
{
|
|
result = -1;
|
|
goto exit_free;
|
|
}
|
|
|
|
/* Count all RTM_NEWLINK and RTM_NEWADDR entries to allocate
|
|
enough memory. */
|
|
newlink = newaddr = 0;
|
|
for (nlp = nh.nlm_list; nlp; nlp = nlp->next)
|
|
{
|
|
struct nlmsghdr *nlh;
|
|
size_t size = nlp->size;
|
|
|
|
if (nlp->nlh == NULL)
|
|
continue;
|
|
|
|
/* Walk through all entries we got from the kernel and look, which
|
|
message type they contain. */
|
|
for (nlh = nlp->nlh; NLMSG_OK (nlh, size); nlh = NLMSG_NEXT (nlh, size))
|
|
{
|
|
/* Check if the message is what we want. */
|
|
if ((pid_t) nlh->nlmsg_pid != nh.pid || nlh->nlmsg_seq != nlp->seq)
|
|
continue;
|
|
|
|
/* If the dump got interrupted, we can't rely on the results
|
|
so try again. */
|
|
if (nlh->nlmsg_flags & NLM_F_DUMP_INTR)
|
|
{
|
|
result = -EAGAIN;
|
|
goto exit_free;
|
|
}
|
|
|
|
if (nlh->nlmsg_type == NLMSG_DONE)
|
|
break; /* ok */
|
|
|
|
if (nlh->nlmsg_type == RTM_NEWLINK)
|
|
{
|
|
/* A RTM_NEWLINK message can have IFLA_STATS data. We need to
|
|
know the size before creating the list to allocate enough
|
|
memory. */
|
|
struct ifinfomsg *ifim = (struct ifinfomsg *) NLMSG_DATA (nlh);
|
|
struct rtattr *rta = IFLA_RTA (ifim);
|
|
size_t rtasize = IFLA_PAYLOAD (nlh);
|
|
|
|
while (RTA_OK (rta, rtasize))
|
|
{
|
|
size_t rta_payload = RTA_PAYLOAD (rta);
|
|
|
|
if (rta->rta_type == IFLA_STATS)
|
|
{
|
|
ifa_data_size += rta_payload;
|
|
break;
|
|
}
|
|
else
|
|
rta = RTA_NEXT (rta, rtasize);
|
|
}
|
|
++newlink;
|
|
}
|
|
else if (nlh->nlmsg_type == RTM_NEWADDR)
|
|
++newaddr;
|
|
}
|
|
}
|
|
|
|
/* Return if no interface is up. */
|
|
if ((newlink + newaddr) == 0)
|
|
goto exit_free;
|
|
|
|
/* Allocate memory for all entries we have and initialize next
|
|
pointer. */
|
|
ifas = (struct ifaddrs_storage *) calloc (1,
|
|
(newlink + newaddr)
|
|
* sizeof (struct ifaddrs_storage)
|
|
+ ifa_data_size);
|
|
if (ifas == NULL)
|
|
{
|
|
result = -1;
|
|
goto exit_free;
|
|
}
|
|
|
|
/* Table for mapping kernel index to entry in our list. */
|
|
map_newlink_data = alloca (newlink * sizeof (int));
|
|
memset (map_newlink_data, '\xff', newlink * sizeof (int));
|
|
|
|
ifa_data_ptr = (char *) &ifas[newlink + newaddr];
|
|
newaddr_idx = 0; /* Counter for newaddr index. */
|
|
|
|
/* Walk through the list of data we got from the kernel. */
|
|
for (nlp = nh.nlm_list; nlp; nlp = nlp->next)
|
|
{
|
|
struct nlmsghdr *nlh;
|
|
size_t size = nlp->size;
|
|
|
|
if (nlp->nlh == NULL)
|
|
continue;
|
|
|
|
/* Walk through one message and look at the type: If it is our
|
|
message, we need RTM_NEWLINK/RTM_NEWADDR and stop if we reach
|
|
the end or we find the end marker (in this case we ignore the
|
|
following data. */
|
|
for (nlh = nlp->nlh; NLMSG_OK (nlh, size); nlh = NLMSG_NEXT (nlh, size))
|
|
{
|
|
int ifa_index = 0;
|
|
|
|
/* Check if the message is the one we want */
|
|
if ((pid_t) nlh->nlmsg_pid != nh.pid || nlh->nlmsg_seq != nlp->seq)
|
|
continue;
|
|
|
|
if (nlh->nlmsg_type == NLMSG_DONE)
|
|
break; /* ok */
|
|
|
|
if (nlh->nlmsg_type == RTM_NEWLINK)
|
|
{
|
|
/* We found a new interface. Now extract everything from the
|
|
interface data we got and need. */
|
|
struct ifinfomsg *ifim = (struct ifinfomsg *) NLMSG_DATA (nlh);
|
|
struct rtattr *rta = IFLA_RTA (ifim);
|
|
size_t rtasize = IFLA_PAYLOAD (nlh);
|
|
|
|
/* Interfaces are stored in the first "newlink" entries
|
|
of our list, starting in the order as we got from the
|
|
kernel. */
|
|
ifa_index = map_newlink (ifim->ifi_index - 1, ifas,
|
|
map_newlink_data, newlink);
|
|
if (__glibc_unlikely (ifa_index == -1))
|
|
{
|
|
try_again:
|
|
result = -EAGAIN;
|
|
free (ifas);
|
|
goto exit_free;
|
|
}
|
|
ifas[ifa_index].ifa.ifa_flags = ifim->ifi_flags;
|
|
|
|
while (RTA_OK (rta, rtasize))
|
|
{
|
|
char *rta_data = RTA_DATA (rta);
|
|
size_t rta_payload = RTA_PAYLOAD (rta);
|
|
|
|
switch (rta->rta_type)
|
|
{
|
|
case IFLA_ADDRESS:
|
|
if (rta_payload <= sizeof (ifas[ifa_index].addr))
|
|
{
|
|
ifas[ifa_index].addr.sl.sll_family = AF_PACKET;
|
|
memcpy (ifas[ifa_index].addr.sl.sll_addr,
|
|
(char *) rta_data, rta_payload);
|
|
ifas[ifa_index].addr.sl.sll_halen = rta_payload;
|
|
ifas[ifa_index].addr.sl.sll_ifindex
|
|
= ifim->ifi_index;
|
|
ifas[ifa_index].addr.sl.sll_hatype = ifim->ifi_type;
|
|
|
|
ifas[ifa_index].ifa.ifa_addr
|
|
= &ifas[ifa_index].addr.sa;
|
|
}
|
|
break;
|
|
|
|
case IFLA_BROADCAST:
|
|
if (rta_payload <= sizeof (ifas[ifa_index].broadaddr))
|
|
{
|
|
ifas[ifa_index].broadaddr.sl.sll_family = AF_PACKET;
|
|
memcpy (ifas[ifa_index].broadaddr.sl.sll_addr,
|
|
(char *) rta_data, rta_payload);
|
|
ifas[ifa_index].broadaddr.sl.sll_halen = rta_payload;
|
|
ifas[ifa_index].broadaddr.sl.sll_ifindex
|
|
= ifim->ifi_index;
|
|
ifas[ifa_index].broadaddr.sl.sll_hatype
|
|
= ifim->ifi_type;
|
|
|
|
ifas[ifa_index].ifa.ifa_broadaddr
|
|
= &ifas[ifa_index].broadaddr.sa;
|
|
}
|
|
break;
|
|
|
|
case IFLA_IFNAME: /* Name of Interface */
|
|
if ((rta_payload + 1) <= sizeof (ifas[ifa_index].name))
|
|
{
|
|
ifas[ifa_index].ifa.ifa_name = ifas[ifa_index].name;
|
|
*(char *) __mempcpy (ifas[ifa_index].name, rta_data,
|
|
rta_payload) = '\0';
|
|
}
|
|
break;
|
|
|
|
case IFLA_STATS: /* Statistics of Interface */
|
|
ifas[ifa_index].ifa.ifa_data = ifa_data_ptr;
|
|
ifa_data_ptr += rta_payload;
|
|
memcpy (ifas[ifa_index].ifa.ifa_data, rta_data,
|
|
rta_payload);
|
|
break;
|
|
|
|
case IFLA_UNSPEC:
|
|
break;
|
|
case IFLA_MTU:
|
|
break;
|
|
case IFLA_LINK:
|
|
break;
|
|
case IFLA_QDISC:
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
rta = RTA_NEXT (rta, rtasize);
|
|
}
|
|
}
|
|
else if (nlh->nlmsg_type == RTM_NEWADDR)
|
|
{
|
|
struct ifaddrmsg *ifam = (struct ifaddrmsg *) NLMSG_DATA (nlh);
|
|
struct rtattr *rta = IFA_RTA (ifam);
|
|
size_t rtasize = IFA_PAYLOAD (nlh);
|
|
|
|
/* New Addresses are stored in the order we got them from
|
|
the kernel after the interfaces. Theoretically it is possible
|
|
that we have holes in the interface part of the list,
|
|
but we always have already the interface for this address. */
|
|
ifa_index = newlink + newaddr_idx;
|
|
int idx = map_newlink (ifam->ifa_index - 1, ifas,
|
|
map_newlink_data, newlink);
|
|
if (__glibc_unlikely (idx == -1))
|
|
goto try_again;
|
|
ifas[ifa_index].ifa.ifa_flags = ifas[idx].ifa.ifa_flags;
|
|
if (ifa_index > 0)
|
|
ifas[ifa_index - 1].ifa.ifa_next = &ifas[ifa_index].ifa;
|
|
++newaddr_idx;
|
|
|
|
while (RTA_OK (rta, rtasize))
|
|
{
|
|
char *rta_data = RTA_DATA (rta);
|
|
size_t rta_payload = RTA_PAYLOAD (rta);
|
|
|
|
switch (rta->rta_type)
|
|
{
|
|
case IFA_ADDRESS:
|
|
{
|
|
struct sockaddr *sa;
|
|
|
|
if (ifas[ifa_index].ifa.ifa_addr != NULL)
|
|
{
|
|
/* In a point-to-poing network IFA_ADDRESS
|
|
contains the destination address, local
|
|
address is supplied in IFA_LOCAL attribute.
|
|
destination address and broadcast address
|
|
are stored in an union, so it doesn't matter
|
|
which name we use. */
|
|
ifas[ifa_index].ifa.ifa_broadaddr
|
|
= &ifas[ifa_index].broadaddr.sa;
|
|
sa = &ifas[ifa_index].broadaddr.sa;
|
|
}
|
|
else
|
|
{
|
|
ifas[ifa_index].ifa.ifa_addr
|
|
= &ifas[ifa_index].addr.sa;
|
|
sa = &ifas[ifa_index].addr.sa;
|
|
}
|
|
|
|
sa->sa_family = ifam->ifa_family;
|
|
|
|
switch (ifam->ifa_family)
|
|
{
|
|
case AF_INET:
|
|
/* Size must match that of an address for IPv4. */
|
|
if (rta_payload == 4)
|
|
memcpy (&((struct sockaddr_in *) sa)->sin_addr,
|
|
rta_data, rta_payload);
|
|
break;
|
|
|
|
case AF_INET6:
|
|
/* Size must match that of an address for IPv6. */
|
|
if (rta_payload == 16)
|
|
{
|
|
memcpy (&((struct sockaddr_in6 *) sa)->sin6_addr,
|
|
rta_data, rta_payload);
|
|
if (IN6_IS_ADDR_LINKLOCAL (rta_data)
|
|
|| IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
|
|
((struct sockaddr_in6 *) sa)->sin6_scope_id
|
|
= ifam->ifa_index;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
if (rta_payload <= sizeof (ifas[ifa_index].addr))
|
|
memcpy (sa->sa_data, rta_data, rta_payload);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case IFA_LOCAL:
|
|
if (ifas[ifa_index].ifa.ifa_addr != NULL)
|
|
{
|
|
/* If ifa_addr is set and we get IFA_LOCAL,
|
|
assume we have a point-to-point network.
|
|
Move address to correct field. */
|
|
ifas[ifa_index].broadaddr = ifas[ifa_index].addr;
|
|
ifas[ifa_index].ifa.ifa_broadaddr
|
|
= &ifas[ifa_index].broadaddr.sa;
|
|
memset (&ifas[ifa_index].addr, '\0',
|
|
sizeof (ifas[ifa_index].addr));
|
|
}
|
|
|
|
ifas[ifa_index].ifa.ifa_addr = &ifas[ifa_index].addr.sa;
|
|
ifas[ifa_index].ifa.ifa_addr->sa_family
|
|
= ifam->ifa_family;
|
|
|
|
switch (ifam->ifa_family)
|
|
{
|
|
case AF_INET:
|
|
/* Size must match that of an address for IPv4. */
|
|
if (rta_payload == 4)
|
|
memcpy (&ifas[ifa_index].addr.s4.sin_addr,
|
|
rta_data, rta_payload);
|
|
break;
|
|
|
|
case AF_INET6:
|
|
/* Size must match that of an address for IPv6. */
|
|
if (rta_payload == 16)
|
|
{
|
|
memcpy (&ifas[ifa_index].addr.s6.sin6_addr,
|
|
rta_data, rta_payload);
|
|
if (IN6_IS_ADDR_LINKLOCAL (rta_data)
|
|
|| IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
|
|
ifas[ifa_index].addr.s6.sin6_scope_id =
|
|
ifam->ifa_index;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
if (rta_payload <= sizeof (ifas[ifa_index].addr))
|
|
memcpy (ifas[ifa_index].addr.sa.sa_data,
|
|
rta_data, rta_payload);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case IFA_BROADCAST:
|
|
/* We get IFA_BROADCAST, so IFA_LOCAL was too much. */
|
|
if (ifas[ifa_index].ifa.ifa_broadaddr != NULL)
|
|
memset (&ifas[ifa_index].broadaddr, '\0',
|
|
sizeof (ifas[ifa_index].broadaddr));
|
|
|
|
ifas[ifa_index].ifa.ifa_broadaddr
|
|
= &ifas[ifa_index].broadaddr.sa;
|
|
ifas[ifa_index].ifa.ifa_broadaddr->sa_family
|
|
= ifam->ifa_family;
|
|
|
|
switch (ifam->ifa_family)
|
|
{
|
|
case AF_INET:
|
|
/* Size must match that of an address for IPv4. */
|
|
if (rta_payload == 4)
|
|
memcpy (&ifas[ifa_index].broadaddr.s4.sin_addr,
|
|
rta_data, rta_payload);
|
|
break;
|
|
|
|
case AF_INET6:
|
|
/* Size must match that of an address for IPv6. */
|
|
if (rta_payload == 16)
|
|
{
|
|
memcpy (&ifas[ifa_index].broadaddr.s6.sin6_addr,
|
|
rta_data, rta_payload);
|
|
if (IN6_IS_ADDR_LINKLOCAL (rta_data)
|
|
|| IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
|
|
ifas[ifa_index].broadaddr.s6.sin6_scope_id
|
|
= ifam->ifa_index;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
if (rta_payload <= sizeof (ifas[ifa_index].addr))
|
|
memcpy (&ifas[ifa_index].broadaddr.sa.sa_data,
|
|
rta_data, rta_payload);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case IFA_LABEL:
|
|
if (rta_payload + 1 <= sizeof (ifas[ifa_index].name))
|
|
{
|
|
ifas[ifa_index].ifa.ifa_name = ifas[ifa_index].name;
|
|
*(char *) __mempcpy (ifas[ifa_index].name, rta_data,
|
|
rta_payload) = '\0';
|
|
}
|
|
else
|
|
abort ();
|
|
break;
|
|
|
|
case IFA_UNSPEC:
|
|
break;
|
|
case IFA_CACHEINFO:
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
rta = RTA_NEXT (rta, rtasize);
|
|
}
|
|
|
|
/* If we didn't get the interface name with the
|
|
address, use the name from the interface entry. */
|
|
if (ifas[ifa_index].ifa.ifa_name == NULL)
|
|
{
|
|
int idx = map_newlink (ifam->ifa_index - 1, ifas,
|
|
map_newlink_data, newlink);
|
|
if (__glibc_unlikely (idx == -1))
|
|
goto try_again;
|
|
ifas[ifa_index].ifa.ifa_name = ifas[idx].ifa.ifa_name;
|
|
}
|
|
|
|
/* Calculate the netmask. */
|
|
if (ifas[ifa_index].ifa.ifa_addr
|
|
&& ifas[ifa_index].ifa.ifa_addr->sa_family != AF_UNSPEC
|
|
&& ifas[ifa_index].ifa.ifa_addr->sa_family != AF_PACKET)
|
|
{
|
|
uint32_t max_prefixlen = 0;
|
|
char *cp = NULL;
|
|
|
|
ifas[ifa_index].ifa.ifa_netmask
|
|
= &ifas[ifa_index].netmask.sa;
|
|
|
|
switch (ifas[ifa_index].ifa.ifa_addr->sa_family)
|
|
{
|
|
case AF_INET:
|
|
cp = (char *) &ifas[ifa_index].netmask.s4.sin_addr;
|
|
max_prefixlen = 32;
|
|
break;
|
|
|
|
case AF_INET6:
|
|
cp = (char *) &ifas[ifa_index].netmask.s6.sin6_addr;
|
|
max_prefixlen = 128;
|
|
break;
|
|
}
|
|
|
|
ifas[ifa_index].ifa.ifa_netmask->sa_family
|
|
= ifas[ifa_index].ifa.ifa_addr->sa_family;
|
|
|
|
if (cp != NULL)
|
|
{
|
|
unsigned int preflen;
|
|
|
|
if (ifam->ifa_prefixlen > max_prefixlen)
|
|
preflen = max_prefixlen;
|
|
else
|
|
preflen = ifam->ifa_prefixlen;
|
|
|
|
for (i = 0; i < preflen / 8; i++)
|
|
*cp++ = 0xff;
|
|
if (preflen % 8)
|
|
*cp = 0xff << (8 - preflen % 8);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
assert (ifa_data_ptr <= (char *) &ifas[newlink + newaddr] + ifa_data_size);
|
|
|
|
if (newaddr_idx > 0)
|
|
{
|
|
for (i = 0; i < newlink; ++i)
|
|
if (map_newlink_data[i] == -1)
|
|
{
|
|
/* We have fewer links then we anticipated. Adjust the
|
|
forward pointer to the first address entry. */
|
|
ifas[i - 1].ifa.ifa_next = &ifas[newlink].ifa;
|
|
}
|
|
|
|
if (i == 0 && newlink > 0)
|
|
/* No valid link, but we allocated memory. We have to
|
|
populate the first entry. */
|
|
memmove (ifas, &ifas[newlink], sizeof (struct ifaddrs_storage));
|
|
}
|
|
|
|
*ifap = &ifas[0].ifa;
|
|
|
|
exit_free:
|
|
__netlink_free_handle (&nh);
|
|
__netlink_close (&nh);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Create a linked list of `struct ifaddrs' structures, one for each
|
|
network interface on the host machine. If successful, store the
|
|
list in *IFAP and return 0. On errors, return -1 and set `errno'. */
|
|
int
|
|
__getifaddrs (struct ifaddrs **ifap)
|
|
{
|
|
int res;
|
|
|
|
do
|
|
res = getifaddrs_internal (ifap);
|
|
while (res == -EAGAIN);
|
|
|
|
return res;
|
|
}
|
|
weak_alias (__getifaddrs, getifaddrs)
|
|
libc_hidden_def (__getifaddrs)
|
|
libc_hidden_weak (getifaddrs)
|
|
|
|
|
|
void
|
|
__freeifaddrs (struct ifaddrs *ifa)
|
|
{
|
|
free (ifa);
|
|
}
|
|
weak_alias (__freeifaddrs, freeifaddrs)
|
|
libc_hidden_def (__freeifaddrs)
|
|
libc_hidden_weak (freeifaddrs)
|