mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-25 04:01:10 +00:00
5556d30cae
Bug 18247 is an off-by-one error in strtof's determination of a decimal exponent such that any value with that decimal exponent is at most half the least subnormal and so the appropriate underflowing value for the rounding mode can be determined with no multiple-precision computations. (Whether the value is in fact safe despite the off-by-one depends on the floating-point format in question. It's wrong for float and for m68k ldbl-96 but not for other supported formats.) This patch corrects the computation of the exponent in question to be safe in general, adding a comment explaining the new computation. Tested for x86_64. [BZ #18247] * stdlib/strtod_l.c (____STRTOF_INTERNAL): Decrease minimum decimal exponent by 1. * stdlib/tst-strtod-round-data: Add more tests. * stdlib/tst-strtod-round.c (tests): Regenerated.
1819 lines
49 KiB
C
1819 lines
49 KiB
C
/* Convert string representing a number to float value, using given locale.
|
||
Copyright (C) 1997-2015 Free Software Foundation, Inc.
|
||
This file is part of the GNU C Library.
|
||
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
||
|
||
The GNU C Library is free software; you can redistribute it and/or
|
||
modify it under the terms of the GNU Lesser General Public
|
||
License as published by the Free Software Foundation; either
|
||
version 2.1 of the License, or (at your option) any later version.
|
||
|
||
The GNU C Library is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
Lesser General Public License for more details.
|
||
|
||
You should have received a copy of the GNU Lesser General Public
|
||
License along with the GNU C Library; if not, see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include <xlocale.h>
|
||
|
||
extern double ____strtod_l_internal (const char *, char **, int, __locale_t);
|
||
extern unsigned long long int ____strtoull_l_internal (const char *, char **,
|
||
int, int, __locale_t);
|
||
|
||
/* Configuration part. These macros are defined by `strtold.c',
|
||
`strtof.c', `wcstod.c', `wcstold.c', and `wcstof.c' to produce the
|
||
`long double' and `float' versions of the reader. */
|
||
#ifndef FLOAT
|
||
# include <math_ldbl_opt.h>
|
||
# define FLOAT double
|
||
# define FLT DBL
|
||
# ifdef USE_WIDE_CHAR
|
||
# define STRTOF wcstod_l
|
||
# define __STRTOF __wcstod_l
|
||
# else
|
||
# define STRTOF strtod_l
|
||
# define __STRTOF __strtod_l
|
||
# endif
|
||
# define MPN2FLOAT __mpn_construct_double
|
||
# define FLOAT_HUGE_VAL HUGE_VAL
|
||
# define SET_MANTISSA(flt, mant) \
|
||
do { union ieee754_double u; \
|
||
u.d = (flt); \
|
||
u.ieee_nan.mantissa0 = (mant) >> 32; \
|
||
u.ieee_nan.mantissa1 = (mant); \
|
||
if ((u.ieee.mantissa0 | u.ieee.mantissa1) != 0) \
|
||
(flt) = u.d; \
|
||
} while (0)
|
||
#endif
|
||
/* End of configuration part. */
|
||
|
||
#include <ctype.h>
|
||
#include <errno.h>
|
||
#include <float.h>
|
||
#include <ieee754.h>
|
||
#include "../locale/localeinfo.h"
|
||
#include <locale.h>
|
||
#include <math.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <stdint.h>
|
||
#include <rounding-mode.h>
|
||
#include <tininess.h>
|
||
|
||
/* The gmp headers need some configuration frobs. */
|
||
#define HAVE_ALLOCA 1
|
||
|
||
/* Include gmp-mparam.h first, such that definitions of _SHORT_LIMB
|
||
and _LONG_LONG_LIMB in it can take effect into gmp.h. */
|
||
#include <gmp-mparam.h>
|
||
#include <gmp.h>
|
||
#include "gmp-impl.h"
|
||
#include "longlong.h"
|
||
#include "fpioconst.h"
|
||
|
||
#include <assert.h>
|
||
|
||
|
||
/* We use this code for the extended locale handling where the
|
||
function gets as an additional argument the locale which has to be
|
||
used. To access the values we have to redefine the _NL_CURRENT and
|
||
_NL_CURRENT_WORD macros. */
|
||
#undef _NL_CURRENT
|
||
#define _NL_CURRENT(category, item) \
|
||
(current->values[_NL_ITEM_INDEX (item)].string)
|
||
#undef _NL_CURRENT_WORD
|
||
#define _NL_CURRENT_WORD(category, item) \
|
||
((uint32_t) current->values[_NL_ITEM_INDEX (item)].word)
|
||
|
||
#if defined _LIBC || defined HAVE_WCHAR_H
|
||
# include <wchar.h>
|
||
#endif
|
||
|
||
#ifdef USE_WIDE_CHAR
|
||
# include <wctype.h>
|
||
# define STRING_TYPE wchar_t
|
||
# define CHAR_TYPE wint_t
|
||
# define L_(Ch) L##Ch
|
||
# define ISSPACE(Ch) __iswspace_l ((Ch), loc)
|
||
# define ISDIGIT(Ch) __iswdigit_l ((Ch), loc)
|
||
# define ISXDIGIT(Ch) __iswxdigit_l ((Ch), loc)
|
||
# define TOLOWER(Ch) __towlower_l ((Ch), loc)
|
||
# define TOLOWER_C(Ch) __towlower_l ((Ch), _nl_C_locobj_ptr)
|
||
# define STRNCASECMP(S1, S2, N) \
|
||
__wcsncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
|
||
# define STRTOULL(S, E, B) ____wcstoull_l_internal ((S), (E), (B), 0, loc)
|
||
#else
|
||
# define STRING_TYPE char
|
||
# define CHAR_TYPE char
|
||
# define L_(Ch) Ch
|
||
# define ISSPACE(Ch) __isspace_l ((Ch), loc)
|
||
# define ISDIGIT(Ch) __isdigit_l ((Ch), loc)
|
||
# define ISXDIGIT(Ch) __isxdigit_l ((Ch), loc)
|
||
# define TOLOWER(Ch) __tolower_l ((Ch), loc)
|
||
# define TOLOWER_C(Ch) __tolower_l ((Ch), _nl_C_locobj_ptr)
|
||
# define STRNCASECMP(S1, S2, N) \
|
||
__strncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
|
||
# define STRTOULL(S, E, B) ____strtoull_l_internal ((S), (E), (B), 0, loc)
|
||
#endif
|
||
|
||
|
||
/* Constants we need from float.h; select the set for the FLOAT precision. */
|
||
#define MANT_DIG PASTE(FLT,_MANT_DIG)
|
||
#define DIG PASTE(FLT,_DIG)
|
||
#define MAX_EXP PASTE(FLT,_MAX_EXP)
|
||
#define MIN_EXP PASTE(FLT,_MIN_EXP)
|
||
#define MAX_10_EXP PASTE(FLT,_MAX_10_EXP)
|
||
#define MIN_10_EXP PASTE(FLT,_MIN_10_EXP)
|
||
#define MAX_VALUE PASTE(FLT,_MAX)
|
||
#define MIN_VALUE PASTE(FLT,_MIN)
|
||
|
||
/* Extra macros required to get FLT expanded before the pasting. */
|
||
#define PASTE(a,b) PASTE1(a,b)
|
||
#define PASTE1(a,b) a##b
|
||
|
||
/* Function to construct a floating point number from an MP integer
|
||
containing the fraction bits, a base 2 exponent, and a sign flag. */
|
||
extern FLOAT MPN2FLOAT (mp_srcptr mpn, int exponent, int negative);
|
||
|
||
/* Definitions according to limb size used. */
|
||
#if BITS_PER_MP_LIMB == 32
|
||
# define MAX_DIG_PER_LIMB 9
|
||
# define MAX_FAC_PER_LIMB 1000000000UL
|
||
#elif BITS_PER_MP_LIMB == 64
|
||
# define MAX_DIG_PER_LIMB 19
|
||
# define MAX_FAC_PER_LIMB 10000000000000000000ULL
|
||
#else
|
||
# error "mp_limb_t size " BITS_PER_MP_LIMB "not accounted for"
|
||
#endif
|
||
|
||
extern const mp_limb_t _tens_in_limb[MAX_DIG_PER_LIMB + 1];
|
||
|
||
#ifndef howmany
|
||
#define howmany(x,y) (((x)+((y)-1))/(y))
|
||
#endif
|
||
#define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; })
|
||
|
||
#define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB)
|
||
|
||
#define RETURN(val,end) \
|
||
do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end); \
|
||
return val; } while (0)
|
||
|
||
/* Maximum size necessary for mpn integers to hold floating point
|
||
numbers. The largest number we need to hold is 10^n where 2^-n is
|
||
1/4 ulp of the smallest representable value (that is, n = MANT_DIG
|
||
- MIN_EXP + 2). Approximate using 10^3 < 2^10. */
|
||
#define MPNSIZE (howmany (1 + ((MANT_DIG - MIN_EXP + 2) * 10) / 3, \
|
||
BITS_PER_MP_LIMB) + 2)
|
||
/* Declare an mpn integer variable that big. */
|
||
#define MPN_VAR(name) mp_limb_t name[MPNSIZE]; mp_size_t name##size
|
||
/* Copy an mpn integer value. */
|
||
#define MPN_ASSIGN(dst, src) \
|
||
memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
|
||
|
||
|
||
/* Set errno and return an overflowing value with sign specified by
|
||
NEGATIVE. */
|
||
static FLOAT
|
||
overflow_value (int negative)
|
||
{
|
||
__set_errno (ERANGE);
|
||
#if FLT_EVAL_METHOD != 0
|
||
volatile
|
||
#endif
|
||
FLOAT result = (negative ? -MAX_VALUE : MAX_VALUE) * MAX_VALUE;
|
||
return result;
|
||
}
|
||
|
||
|
||
/* Set errno and return an underflowing value with sign specified by
|
||
NEGATIVE. */
|
||
static FLOAT
|
||
underflow_value (int negative)
|
||
{
|
||
__set_errno (ERANGE);
|
||
#if FLT_EVAL_METHOD != 0
|
||
volatile
|
||
#endif
|
||
FLOAT result = (negative ? -MIN_VALUE : MIN_VALUE) * MIN_VALUE;
|
||
return result;
|
||
}
|
||
|
||
|
||
/* Return a floating point number of the needed type according to the given
|
||
multi-precision number after possible rounding. */
|
||
static FLOAT
|
||
round_and_return (mp_limb_t *retval, intmax_t exponent, int negative,
|
||
mp_limb_t round_limb, mp_size_t round_bit, int more_bits)
|
||
{
|
||
int mode = get_rounding_mode ();
|
||
|
||
if (exponent < MIN_EXP - 1)
|
||
{
|
||
if (exponent < MIN_EXP - 1 - MANT_DIG)
|
||
return underflow_value (negative);
|
||
|
||
mp_size_t shift = MIN_EXP - 1 - exponent;
|
||
bool is_tiny = true;
|
||
|
||
more_bits |= (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0;
|
||
if (shift == MANT_DIG)
|
||
/* This is a special case to handle the very seldom case where
|
||
the mantissa will be empty after the shift. */
|
||
{
|
||
int i;
|
||
|
||
round_limb = retval[RETURN_LIMB_SIZE - 1];
|
||
round_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
|
||
for (i = 0; i < RETURN_LIMB_SIZE - 1; ++i)
|
||
more_bits |= retval[i] != 0;
|
||
MPN_ZERO (retval, RETURN_LIMB_SIZE);
|
||
}
|
||
else if (shift >= BITS_PER_MP_LIMB)
|
||
{
|
||
int i;
|
||
|
||
round_limb = retval[(shift - 1) / BITS_PER_MP_LIMB];
|
||
round_bit = (shift - 1) % BITS_PER_MP_LIMB;
|
||
for (i = 0; i < (shift - 1) / BITS_PER_MP_LIMB; ++i)
|
||
more_bits |= retval[i] != 0;
|
||
more_bits |= ((round_limb & ((((mp_limb_t) 1) << round_bit) - 1))
|
||
!= 0);
|
||
|
||
/* __mpn_rshift requires 0 < shift < BITS_PER_MP_LIMB. */
|
||
if ((shift % BITS_PER_MP_LIMB) != 0)
|
||
(void) __mpn_rshift (retval, &retval[shift / BITS_PER_MP_LIMB],
|
||
RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB),
|
||
shift % BITS_PER_MP_LIMB);
|
||
else
|
||
for (i = 0; i < RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB); i++)
|
||
retval[i] = retval[i + (shift / BITS_PER_MP_LIMB)];
|
||
MPN_ZERO (&retval[RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB)],
|
||
shift / BITS_PER_MP_LIMB);
|
||
}
|
||
else if (shift > 0)
|
||
{
|
||
if (TININESS_AFTER_ROUNDING && shift == 1)
|
||
{
|
||
/* Whether the result counts as tiny depends on whether,
|
||
after rounding to the normal precision, it still has
|
||
a subnormal exponent. */
|
||
mp_limb_t retval_normal[RETURN_LIMB_SIZE];
|
||
if (round_away (negative,
|
||
(retval[0] & 1) != 0,
|
||
(round_limb
|
||
& (((mp_limb_t) 1) << round_bit)) != 0,
|
||
(more_bits
|
||
|| ((round_limb
|
||
& ((((mp_limb_t) 1) << round_bit) - 1))
|
||
!= 0)),
|
||
mode))
|
||
{
|
||
mp_limb_t cy = __mpn_add_1 (retval_normal, retval,
|
||
RETURN_LIMB_SIZE, 1);
|
||
|
||
if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
|
||
((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
|
||
((retval_normal[RETURN_LIMB_SIZE - 1]
|
||
& (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB)))
|
||
!= 0)))
|
||
is_tiny = false;
|
||
}
|
||
}
|
||
round_limb = retval[0];
|
||
round_bit = shift - 1;
|
||
(void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, shift);
|
||
}
|
||
/* This is a hook for the m68k long double format, where the
|
||
exponent bias is the same for normalized and denormalized
|
||
numbers. */
|
||
#ifndef DENORM_EXP
|
||
# define DENORM_EXP (MIN_EXP - 2)
|
||
#endif
|
||
exponent = DENORM_EXP;
|
||
if (is_tiny
|
||
&& ((round_limb & (((mp_limb_t) 1) << round_bit)) != 0
|
||
|| more_bits
|
||
|| (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0))
|
||
{
|
||
__set_errno (ERANGE);
|
||
volatile FLOAT force_underflow_exception = MIN_VALUE * MIN_VALUE;
|
||
(void) force_underflow_exception;
|
||
}
|
||
}
|
||
|
||
if (exponent > MAX_EXP)
|
||
goto overflow;
|
||
|
||
if (round_away (negative,
|
||
(retval[0] & 1) != 0,
|
||
(round_limb & (((mp_limb_t) 1) << round_bit)) != 0,
|
||
(more_bits
|
||
|| (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0),
|
||
mode))
|
||
{
|
||
mp_limb_t cy = __mpn_add_1 (retval, retval, RETURN_LIMB_SIZE, 1);
|
||
|
||
if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
|
||
((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
|
||
(retval[RETURN_LIMB_SIZE - 1]
|
||
& (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB))) != 0))
|
||
{
|
||
++exponent;
|
||
(void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, 1);
|
||
retval[RETURN_LIMB_SIZE - 1]
|
||
|= ((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB);
|
||
}
|
||
else if (exponent == DENORM_EXP
|
||
&& (retval[RETURN_LIMB_SIZE - 1]
|
||
& (((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB)))
|
||
!= 0)
|
||
/* The number was denormalized but now normalized. */
|
||
exponent = MIN_EXP - 1;
|
||
}
|
||
|
||
if (exponent > MAX_EXP)
|
||
overflow:
|
||
return overflow_value (negative);
|
||
|
||
return MPN2FLOAT (retval, exponent, negative);
|
||
}
|
||
|
||
|
||
/* Read a multi-precision integer starting at STR with exactly DIGCNT digits
|
||
into N. Return the size of the number limbs in NSIZE at the first
|
||
character od the string that is not part of the integer as the function
|
||
value. If the EXPONENT is small enough to be taken as an additional
|
||
factor for the resulting number (see code) multiply by it. */
|
||
static const STRING_TYPE *
|
||
str_to_mpn (const STRING_TYPE *str, int digcnt, mp_limb_t *n, mp_size_t *nsize,
|
||
intmax_t *exponent
|
||
#ifndef USE_WIDE_CHAR
|
||
, const char *decimal, size_t decimal_len, const char *thousands
|
||
#endif
|
||
|
||
)
|
||
{
|
||
/* Number of digits for actual limb. */
|
||
int cnt = 0;
|
||
mp_limb_t low = 0;
|
||
mp_limb_t start;
|
||
|
||
*nsize = 0;
|
||
assert (digcnt > 0);
|
||
do
|
||
{
|
||
if (cnt == MAX_DIG_PER_LIMB)
|
||
{
|
||
if (*nsize == 0)
|
||
{
|
||
n[0] = low;
|
||
*nsize = 1;
|
||
}
|
||
else
|
||
{
|
||
mp_limb_t cy;
|
||
cy = __mpn_mul_1 (n, n, *nsize, MAX_FAC_PER_LIMB);
|
||
cy += __mpn_add_1 (n, n, *nsize, low);
|
||
if (cy != 0)
|
||
{
|
||
assert (*nsize < MPNSIZE);
|
||
n[*nsize] = cy;
|
||
++(*nsize);
|
||
}
|
||
}
|
||
cnt = 0;
|
||
low = 0;
|
||
}
|
||
|
||
/* There might be thousands separators or radix characters in
|
||
the string. But these all can be ignored because we know the
|
||
format of the number is correct and we have an exact number
|
||
of characters to read. */
|
||
#ifdef USE_WIDE_CHAR
|
||
if (*str < L'0' || *str > L'9')
|
||
++str;
|
||
#else
|
||
if (*str < '0' || *str > '9')
|
||
{
|
||
int inner = 0;
|
||
if (thousands != NULL && *str == *thousands
|
||
&& ({ for (inner = 1; thousands[inner] != '\0'; ++inner)
|
||
if (thousands[inner] != str[inner])
|
||
break;
|
||
thousands[inner] == '\0'; }))
|
||
str += inner;
|
||
else
|
||
str += decimal_len;
|
||
}
|
||
#endif
|
||
low = low * 10 + *str++ - L_('0');
|
||
++cnt;
|
||
}
|
||
while (--digcnt > 0);
|
||
|
||
if (*exponent > 0 && *exponent <= MAX_DIG_PER_LIMB - cnt)
|
||
{
|
||
low *= _tens_in_limb[*exponent];
|
||
start = _tens_in_limb[cnt + *exponent];
|
||
*exponent = 0;
|
||
}
|
||
else
|
||
start = _tens_in_limb[cnt];
|
||
|
||
if (*nsize == 0)
|
||
{
|
||
n[0] = low;
|
||
*nsize = 1;
|
||
}
|
||
else
|
||
{
|
||
mp_limb_t cy;
|
||
cy = __mpn_mul_1 (n, n, *nsize, start);
|
||
cy += __mpn_add_1 (n, n, *nsize, low);
|
||
if (cy != 0)
|
||
{
|
||
assert (*nsize < MPNSIZE);
|
||
n[(*nsize)++] = cy;
|
||
}
|
||
}
|
||
|
||
return str;
|
||
}
|
||
|
||
|
||
/* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits
|
||
with the COUNT most significant bits of LIMB.
|
||
|
||
Implemented as a macro, so that __builtin_constant_p works even at -O0.
|
||
|
||
Tege doesn't like this macro so I have to write it here myself. :)
|
||
--drepper */
|
||
#define __mpn_lshift_1(ptr, size, count, limb) \
|
||
do \
|
||
{ \
|
||
mp_limb_t *__ptr = (ptr); \
|
||
if (__builtin_constant_p (count) && count == BITS_PER_MP_LIMB) \
|
||
{ \
|
||
mp_size_t i; \
|
||
for (i = (size) - 1; i > 0; --i) \
|
||
__ptr[i] = __ptr[i - 1]; \
|
||
__ptr[0] = (limb); \
|
||
} \
|
||
else \
|
||
{ \
|
||
/* We assume count > 0 && count < BITS_PER_MP_LIMB here. */ \
|
||
unsigned int __count = (count); \
|
||
(void) __mpn_lshift (__ptr, __ptr, size, __count); \
|
||
__ptr[0] |= (limb) >> (BITS_PER_MP_LIMB - __count); \
|
||
} \
|
||
} \
|
||
while (0)
|
||
|
||
|
||
#define INTERNAL(x) INTERNAL1(x)
|
||
#define INTERNAL1(x) __##x##_internal
|
||
#ifndef ____STRTOF_INTERNAL
|
||
# define ____STRTOF_INTERNAL INTERNAL (__STRTOF)
|
||
#endif
|
||
|
||
/* This file defines a function to check for correct grouping. */
|
||
#include "grouping.h"
|
||
|
||
|
||
/* Return a floating point number with the value of the given string NPTR.
|
||
Set *ENDPTR to the character after the last used one. If the number is
|
||
smaller than the smallest representable number, set `errno' to ERANGE and
|
||
return 0.0. If the number is too big to be represented, set `errno' to
|
||
ERANGE and return HUGE_VAL with the appropriate sign. */
|
||
FLOAT
|
||
____STRTOF_INTERNAL (nptr, endptr, group, loc)
|
||
const STRING_TYPE *nptr;
|
||
STRING_TYPE **endptr;
|
||
int group;
|
||
__locale_t loc;
|
||
{
|
||
int negative; /* The sign of the number. */
|
||
MPN_VAR (num); /* MP representation of the number. */
|
||
intmax_t exponent; /* Exponent of the number. */
|
||
|
||
/* Numbers starting `0X' or `0x' have to be processed with base 16. */
|
||
int base = 10;
|
||
|
||
/* When we have to compute fractional digits we form a fraction with a
|
||
second multi-precision number (and we sometimes need a second for
|
||
temporary results). */
|
||
MPN_VAR (den);
|
||
|
||
/* Representation for the return value. */
|
||
mp_limb_t retval[RETURN_LIMB_SIZE];
|
||
/* Number of bits currently in result value. */
|
||
int bits;
|
||
|
||
/* Running pointer after the last character processed in the string. */
|
||
const STRING_TYPE *cp, *tp;
|
||
/* Start of significant part of the number. */
|
||
const STRING_TYPE *startp, *start_of_digits;
|
||
/* Points at the character following the integer and fractional digits. */
|
||
const STRING_TYPE *expp;
|
||
/* Total number of digit and number of digits in integer part. */
|
||
size_t dig_no, int_no, lead_zero;
|
||
/* Contains the last character read. */
|
||
CHAR_TYPE c;
|
||
|
||
/* We should get wint_t from <stddef.h>, but not all GCC versions define it
|
||
there. So define it ourselves if it remains undefined. */
|
||
#ifndef _WINT_T
|
||
typedef unsigned int wint_t;
|
||
#endif
|
||
/* The radix character of the current locale. */
|
||
#ifdef USE_WIDE_CHAR
|
||
wchar_t decimal;
|
||
#else
|
||
const char *decimal;
|
||
size_t decimal_len;
|
||
#endif
|
||
/* The thousands character of the current locale. */
|
||
#ifdef USE_WIDE_CHAR
|
||
wchar_t thousands = L'\0';
|
||
#else
|
||
const char *thousands = NULL;
|
||
#endif
|
||
/* The numeric grouping specification of the current locale,
|
||
in the format described in <locale.h>. */
|
||
const char *grouping;
|
||
/* Used in several places. */
|
||
int cnt;
|
||
|
||
struct __locale_data *current = loc->__locales[LC_NUMERIC];
|
||
|
||
if (__glibc_unlikely (group))
|
||
{
|
||
grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
|
||
if (*grouping <= 0 || *grouping == CHAR_MAX)
|
||
grouping = NULL;
|
||
else
|
||
{
|
||
/* Figure out the thousands separator character. */
|
||
#ifdef USE_WIDE_CHAR
|
||
thousands = _NL_CURRENT_WORD (LC_NUMERIC,
|
||
_NL_NUMERIC_THOUSANDS_SEP_WC);
|
||
if (thousands == L'\0')
|
||
grouping = NULL;
|
||
#else
|
||
thousands = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP);
|
||
if (*thousands == '\0')
|
||
{
|
||
thousands = NULL;
|
||
grouping = NULL;
|
||
}
|
||
#endif
|
||
}
|
||
}
|
||
else
|
||
grouping = NULL;
|
||
|
||
/* Find the locale's decimal point character. */
|
||
#ifdef USE_WIDE_CHAR
|
||
decimal = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC);
|
||
assert (decimal != L'\0');
|
||
# define decimal_len 1
|
||
#else
|
||
decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
|
||
decimal_len = strlen (decimal);
|
||
assert (decimal_len > 0);
|
||
#endif
|
||
|
||
/* Prepare number representation. */
|
||
exponent = 0;
|
||
negative = 0;
|
||
bits = 0;
|
||
|
||
/* Parse string to get maximal legal prefix. We need the number of
|
||
characters of the integer part, the fractional part and the exponent. */
|
||
cp = nptr - 1;
|
||
/* Ignore leading white space. */
|
||
do
|
||
c = *++cp;
|
||
while (ISSPACE (c));
|
||
|
||
/* Get sign of the result. */
|
||
if (c == L_('-'))
|
||
{
|
||
negative = 1;
|
||
c = *++cp;
|
||
}
|
||
else if (c == L_('+'))
|
||
c = *++cp;
|
||
|
||
/* Return 0.0 if no legal string is found.
|
||
No character is used even if a sign was found. */
|
||
#ifdef USE_WIDE_CHAR
|
||
if (c == (wint_t) decimal
|
||
&& (wint_t) cp[1] >= L'0' && (wint_t) cp[1] <= L'9')
|
||
{
|
||
/* We accept it. This funny construct is here only to indent
|
||
the code correctly. */
|
||
}
|
||
#else
|
||
for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
|
||
if (cp[cnt] != decimal[cnt])
|
||
break;
|
||
if (decimal[cnt] == '\0' && cp[cnt] >= '0' && cp[cnt] <= '9')
|
||
{
|
||
/* We accept it. This funny construct is here only to indent
|
||
the code correctly. */
|
||
}
|
||
#endif
|
||
else if (c < L_('0') || c > L_('9'))
|
||
{
|
||
/* Check for `INF' or `INFINITY'. */
|
||
CHAR_TYPE lowc = TOLOWER_C (c);
|
||
|
||
if (lowc == L_('i') && STRNCASECMP (cp, L_("inf"), 3) == 0)
|
||
{
|
||
/* Return +/- infinity. */
|
||
if (endptr != NULL)
|
||
*endptr = (STRING_TYPE *)
|
||
(cp + (STRNCASECMP (cp + 3, L_("inity"), 5) == 0
|
||
? 8 : 3));
|
||
|
||
return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
|
||
}
|
||
|
||
if (lowc == L_('n') && STRNCASECMP (cp, L_("nan"), 3) == 0)
|
||
{
|
||
/* Return NaN. */
|
||
FLOAT retval = NAN;
|
||
|
||
cp += 3;
|
||
|
||
/* Match `(n-char-sequence-digit)'. */
|
||
if (*cp == L_('('))
|
||
{
|
||
const STRING_TYPE *startp = cp;
|
||
do
|
||
++cp;
|
||
while ((*cp >= L_('0') && *cp <= L_('9'))
|
||
|| ({ CHAR_TYPE lo = TOLOWER (*cp);
|
||
lo >= L_('a') && lo <= L_('z'); })
|
||
|| *cp == L_('_'));
|
||
|
||
if (*cp != L_(')'))
|
||
/* The closing brace is missing. Only match the NAN
|
||
part. */
|
||
cp = startp;
|
||
else
|
||
{
|
||
/* This is a system-dependent way to specify the
|
||
bitmask used for the NaN. We expect it to be
|
||
a number which is put in the mantissa of the
|
||
number. */
|
||
STRING_TYPE *endp;
|
||
unsigned long long int mant;
|
||
|
||
mant = STRTOULL (startp + 1, &endp, 0);
|
||
if (endp == cp)
|
||
SET_MANTISSA (retval, mant);
|
||
|
||
/* Consume the closing brace. */
|
||
++cp;
|
||
}
|
||
}
|
||
|
||
if (endptr != NULL)
|
||
*endptr = (STRING_TYPE *) cp;
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* It is really a text we do not recognize. */
|
||
RETURN (0.0, nptr);
|
||
}
|
||
|
||
/* First look whether we are faced with a hexadecimal number. */
|
||
if (c == L_('0') && TOLOWER (cp[1]) == L_('x'))
|
||
{
|
||
/* Okay, it is a hexa-decimal number. Remember this and skip
|
||
the characters. BTW: hexadecimal numbers must not be
|
||
grouped. */
|
||
base = 16;
|
||
cp += 2;
|
||
c = *cp;
|
||
grouping = NULL;
|
||
}
|
||
|
||
/* Record the start of the digits, in case we will check their grouping. */
|
||
start_of_digits = startp = cp;
|
||
|
||
/* Ignore leading zeroes. This helps us to avoid useless computations. */
|
||
#ifdef USE_WIDE_CHAR
|
||
while (c == L'0' || ((wint_t) thousands != L'\0' && c == (wint_t) thousands))
|
||
c = *++cp;
|
||
#else
|
||
if (__glibc_likely (thousands == NULL))
|
||
while (c == '0')
|
||
c = *++cp;
|
||
else
|
||
{
|
||
/* We also have the multibyte thousands string. */
|
||
while (1)
|
||
{
|
||
if (c != '0')
|
||
{
|
||
for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
|
||
if (thousands[cnt] != cp[cnt])
|
||
break;
|
||
if (thousands[cnt] != '\0')
|
||
break;
|
||
cp += cnt - 1;
|
||
}
|
||
c = *++cp;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* If no other digit but a '0' is found the result is 0.0.
|
||
Return current read pointer. */
|
||
CHAR_TYPE lowc = TOLOWER (c);
|
||
if (!((c >= L_('0') && c <= L_('9'))
|
||
|| (base == 16 && lowc >= L_('a') && lowc <= L_('f'))
|
||
|| (
|
||
#ifdef USE_WIDE_CHAR
|
||
c == (wint_t) decimal
|
||
#else
|
||
({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
|
||
if (decimal[cnt] != cp[cnt])
|
||
break;
|
||
decimal[cnt] == '\0'; })
|
||
#endif
|
||
/* '0x.' alone is not a valid hexadecimal number.
|
||
'.' alone is not valid either, but that has been checked
|
||
already earlier. */
|
||
&& (base != 16
|
||
|| cp != start_of_digits
|
||
|| (cp[decimal_len] >= L_('0') && cp[decimal_len] <= L_('9'))
|
||
|| ({ CHAR_TYPE lo = TOLOWER (cp[decimal_len]);
|
||
lo >= L_('a') && lo <= L_('f'); })))
|
||
|| (base == 16 && (cp != start_of_digits
|
||
&& lowc == L_('p')))
|
||
|| (base != 16 && lowc == L_('e'))))
|
||
{
|
||
#ifdef USE_WIDE_CHAR
|
||
tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
|
||
grouping);
|
||
#else
|
||
tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
|
||
grouping);
|
||
#endif
|
||
/* If TP is at the start of the digits, there was no correctly
|
||
grouped prefix of the string; so no number found. */
|
||
RETURN (negative ? -0.0 : 0.0,
|
||
tp == start_of_digits ? (base == 16 ? cp - 1 : nptr) : tp);
|
||
}
|
||
|
||
/* Remember first significant digit and read following characters until the
|
||
decimal point, exponent character or any non-FP number character. */
|
||
startp = cp;
|
||
dig_no = 0;
|
||
while (1)
|
||
{
|
||
if ((c >= L_('0') && c <= L_('9'))
|
||
|| (base == 16
|
||
&& ({ CHAR_TYPE lo = TOLOWER (c);
|
||
lo >= L_('a') && lo <= L_('f'); })))
|
||
++dig_no;
|
||
else
|
||
{
|
||
#ifdef USE_WIDE_CHAR
|
||
if (__builtin_expect ((wint_t) thousands == L'\0', 1)
|
||
|| c != (wint_t) thousands)
|
||
/* Not a digit or separator: end of the integer part. */
|
||
break;
|
||
#else
|
||
if (__glibc_likely (thousands == NULL))
|
||
break;
|
||
else
|
||
{
|
||
for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
|
||
if (thousands[cnt] != cp[cnt])
|
||
break;
|
||
if (thousands[cnt] != '\0')
|
||
break;
|
||
cp += cnt - 1;
|
||
}
|
||
#endif
|
||
}
|
||
c = *++cp;
|
||
}
|
||
|
||
if (__builtin_expect (grouping != NULL, 0) && cp > start_of_digits)
|
||
{
|
||
/* Check the grouping of the digits. */
|
||
#ifdef USE_WIDE_CHAR
|
||
tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
|
||
grouping);
|
||
#else
|
||
tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
|
||
grouping);
|
||
#endif
|
||
if (cp != tp)
|
||
{
|
||
/* Less than the entire string was correctly grouped. */
|
||
|
||
if (tp == start_of_digits)
|
||
/* No valid group of numbers at all: no valid number. */
|
||
RETURN (0.0, nptr);
|
||
|
||
if (tp < startp)
|
||
/* The number is validly grouped, but consists
|
||
only of zeroes. The whole value is zero. */
|
||
RETURN (negative ? -0.0 : 0.0, tp);
|
||
|
||
/* Recompute DIG_NO so we won't read more digits than
|
||
are properly grouped. */
|
||
cp = tp;
|
||
dig_no = 0;
|
||
for (tp = startp; tp < cp; ++tp)
|
||
if (*tp >= L_('0') && *tp <= L_('9'))
|
||
++dig_no;
|
||
|
||
int_no = dig_no;
|
||
lead_zero = 0;
|
||
|
||
goto number_parsed;
|
||
}
|
||
}
|
||
|
||
/* We have the number of digits in the integer part. Whether these
|
||
are all or any is really a fractional digit will be decided
|
||
later. */
|
||
int_no = dig_no;
|
||
lead_zero = int_no == 0 ? (size_t) -1 : 0;
|
||
|
||
/* Read the fractional digits. A special case are the 'american
|
||
style' numbers like `16.' i.e. with decimal point but without
|
||
trailing digits. */
|
||
if (
|
||
#ifdef USE_WIDE_CHAR
|
||
c == (wint_t) decimal
|
||
#else
|
||
({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
|
||
if (decimal[cnt] != cp[cnt])
|
||
break;
|
||
decimal[cnt] == '\0'; })
|
||
#endif
|
||
)
|
||
{
|
||
cp += decimal_len;
|
||
c = *cp;
|
||
while ((c >= L_('0') && c <= L_('9')) ||
|
||
(base == 16 && ({ CHAR_TYPE lo = TOLOWER (c);
|
||
lo >= L_('a') && lo <= L_('f'); })))
|
||
{
|
||
if (c != L_('0') && lead_zero == (size_t) -1)
|
||
lead_zero = dig_no - int_no;
|
||
++dig_no;
|
||
c = *++cp;
|
||
}
|
||
}
|
||
assert (dig_no <= (uintmax_t) INTMAX_MAX);
|
||
|
||
/* Remember start of exponent (if any). */
|
||
expp = cp;
|
||
|
||
/* Read exponent. */
|
||
lowc = TOLOWER (c);
|
||
if ((base == 16 && lowc == L_('p'))
|
||
|| (base != 16 && lowc == L_('e')))
|
||
{
|
||
int exp_negative = 0;
|
||
|
||
c = *++cp;
|
||
if (c == L_('-'))
|
||
{
|
||
exp_negative = 1;
|
||
c = *++cp;
|
||
}
|
||
else if (c == L_('+'))
|
||
c = *++cp;
|
||
|
||
if (c >= L_('0') && c <= L_('9'))
|
||
{
|
||
intmax_t exp_limit;
|
||
|
||
/* Get the exponent limit. */
|
||
if (base == 16)
|
||
{
|
||
if (exp_negative)
|
||
{
|
||
assert (int_no <= (uintmax_t) (INTMAX_MAX
|
||
+ MIN_EXP - MANT_DIG) / 4);
|
||
exp_limit = -MIN_EXP + MANT_DIG + 4 * (intmax_t) int_no;
|
||
}
|
||
else
|
||
{
|
||
if (int_no)
|
||
{
|
||
assert (lead_zero == 0
|
||
&& int_no <= (uintmax_t) INTMAX_MAX / 4);
|
||
exp_limit = MAX_EXP - 4 * (intmax_t) int_no + 3;
|
||
}
|
||
else if (lead_zero == (size_t) -1)
|
||
{
|
||
/* The number is zero and this limit is
|
||
arbitrary. */
|
||
exp_limit = MAX_EXP + 3;
|
||
}
|
||
else
|
||
{
|
||
assert (lead_zero
|
||
<= (uintmax_t) (INTMAX_MAX - MAX_EXP - 3) / 4);
|
||
exp_limit = (MAX_EXP
|
||
+ 4 * (intmax_t) lead_zero
|
||
+ 3);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (exp_negative)
|
||
{
|
||
assert (int_no
|
||
<= (uintmax_t) (INTMAX_MAX + MIN_10_EXP - MANT_DIG));
|
||
exp_limit = -MIN_10_EXP + MANT_DIG + (intmax_t) int_no;
|
||
}
|
||
else
|
||
{
|
||
if (int_no)
|
||
{
|
||
assert (lead_zero == 0
|
||
&& int_no <= (uintmax_t) INTMAX_MAX);
|
||
exp_limit = MAX_10_EXP - (intmax_t) int_no + 1;
|
||
}
|
||
else if (lead_zero == (size_t) -1)
|
||
{
|
||
/* The number is zero and this limit is
|
||
arbitrary. */
|
||
exp_limit = MAX_10_EXP + 1;
|
||
}
|
||
else
|
||
{
|
||
assert (lead_zero
|
||
<= (uintmax_t) (INTMAX_MAX - MAX_10_EXP - 1));
|
||
exp_limit = MAX_10_EXP + (intmax_t) lead_zero + 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (exp_limit < 0)
|
||
exp_limit = 0;
|
||
|
||
do
|
||
{
|
||
if (__builtin_expect ((exponent > exp_limit / 10
|
||
|| (exponent == exp_limit / 10
|
||
&& c - L_('0') > exp_limit % 10)), 0))
|
||
/* The exponent is too large/small to represent a valid
|
||
number. */
|
||
{
|
||
FLOAT result;
|
||
|
||
/* We have to take care for special situation: a joker
|
||
might have written "0.0e100000" which is in fact
|
||
zero. */
|
||
if (lead_zero == (size_t) -1)
|
||
result = negative ? -0.0 : 0.0;
|
||
else
|
||
{
|
||
/* Overflow or underflow. */
|
||
result = (exp_negative
|
||
? underflow_value (negative)
|
||
: overflow_value (negative));
|
||
}
|
||
|
||
/* Accept all following digits as part of the exponent. */
|
||
do
|
||
++cp;
|
||
while (*cp >= L_('0') && *cp <= L_('9'));
|
||
|
||
RETURN (result, cp);
|
||
/* NOTREACHED */
|
||
}
|
||
|
||
exponent *= 10;
|
||
exponent += c - L_('0');
|
||
|
||
c = *++cp;
|
||
}
|
||
while (c >= L_('0') && c <= L_('9'));
|
||
|
||
if (exp_negative)
|
||
exponent = -exponent;
|
||
}
|
||
else
|
||
cp = expp;
|
||
}
|
||
|
||
/* We don't want to have to work with trailing zeroes after the radix. */
|
||
if (dig_no > int_no)
|
||
{
|
||
while (expp[-1] == L_('0'))
|
||
{
|
||
--expp;
|
||
--dig_no;
|
||
}
|
||
assert (dig_no >= int_no);
|
||
}
|
||
|
||
if (dig_no == int_no && dig_no > 0 && exponent < 0)
|
||
do
|
||
{
|
||
while (! (base == 16 ? ISXDIGIT (expp[-1]) : ISDIGIT (expp[-1])))
|
||
--expp;
|
||
|
||
if (expp[-1] != L_('0'))
|
||
break;
|
||
|
||
--expp;
|
||
--dig_no;
|
||
--int_no;
|
||
exponent += base == 16 ? 4 : 1;
|
||
}
|
||
while (dig_no > 0 && exponent < 0);
|
||
|
||
number_parsed:
|
||
|
||
/* The whole string is parsed. Store the address of the next character. */
|
||
if (endptr)
|
||
*endptr = (STRING_TYPE *) cp;
|
||
|
||
if (dig_no == 0)
|
||
return negative ? -0.0 : 0.0;
|
||
|
||
if (lead_zero)
|
||
{
|
||
/* Find the decimal point */
|
||
#ifdef USE_WIDE_CHAR
|
||
while (*startp != decimal)
|
||
++startp;
|
||
#else
|
||
while (1)
|
||
{
|
||
if (*startp == decimal[0])
|
||
{
|
||
for (cnt = 1; decimal[cnt] != '\0'; ++cnt)
|
||
if (decimal[cnt] != startp[cnt])
|
||
break;
|
||
if (decimal[cnt] == '\0')
|
||
break;
|
||
}
|
||
++startp;
|
||
}
|
||
#endif
|
||
startp += lead_zero + decimal_len;
|
||
assert (lead_zero <= (base == 16
|
||
? (uintmax_t) INTMAX_MAX / 4
|
||
: (uintmax_t) INTMAX_MAX));
|
||
assert (lead_zero <= (base == 16
|
||
? ((uintmax_t) exponent
|
||
- (uintmax_t) INTMAX_MIN) / 4
|
||
: ((uintmax_t) exponent - (uintmax_t) INTMAX_MIN)));
|
||
exponent -= base == 16 ? 4 * (intmax_t) lead_zero : (intmax_t) lead_zero;
|
||
dig_no -= lead_zero;
|
||
}
|
||
|
||
/* If the BASE is 16 we can use a simpler algorithm. */
|
||
if (base == 16)
|
||
{
|
||
static const int nbits[16] = { 0, 1, 2, 2, 3, 3, 3, 3,
|
||
4, 4, 4, 4, 4, 4, 4, 4 };
|
||
int idx = (MANT_DIG - 1) / BITS_PER_MP_LIMB;
|
||
int pos = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
|
||
mp_limb_t val;
|
||
|
||
while (!ISXDIGIT (*startp))
|
||
++startp;
|
||
while (*startp == L_('0'))
|
||
++startp;
|
||
if (ISDIGIT (*startp))
|
||
val = *startp++ - L_('0');
|
||
else
|
||
val = 10 + TOLOWER (*startp++) - L_('a');
|
||
bits = nbits[val];
|
||
/* We cannot have a leading zero. */
|
||
assert (bits != 0);
|
||
|
||
if (pos + 1 >= 4 || pos + 1 >= bits)
|
||
{
|
||
/* We don't have to care for wrapping. This is the normal
|
||
case so we add the first clause in the `if' expression as
|
||
an optimization. It is a compile-time constant and so does
|
||
not cost anything. */
|
||
retval[idx] = val << (pos - bits + 1);
|
||
pos -= bits;
|
||
}
|
||
else
|
||
{
|
||
retval[idx--] = val >> (bits - pos - 1);
|
||
retval[idx] = val << (BITS_PER_MP_LIMB - (bits - pos - 1));
|
||
pos = BITS_PER_MP_LIMB - 1 - (bits - pos - 1);
|
||
}
|
||
|
||
/* Adjust the exponent for the bits we are shifting in. */
|
||
assert (int_no <= (uintmax_t) (exponent < 0
|
||
? (INTMAX_MAX - bits + 1) / 4
|
||
: (INTMAX_MAX - exponent - bits + 1) / 4));
|
||
exponent += bits - 1 + ((intmax_t) int_no - 1) * 4;
|
||
|
||
while (--dig_no > 0 && idx >= 0)
|
||
{
|
||
if (!ISXDIGIT (*startp))
|
||
startp += decimal_len;
|
||
if (ISDIGIT (*startp))
|
||
val = *startp++ - L_('0');
|
||
else
|
||
val = 10 + TOLOWER (*startp++) - L_('a');
|
||
|
||
if (pos + 1 >= 4)
|
||
{
|
||
retval[idx] |= val << (pos - 4 + 1);
|
||
pos -= 4;
|
||
}
|
||
else
|
||
{
|
||
retval[idx--] |= val >> (4 - pos - 1);
|
||
val <<= BITS_PER_MP_LIMB - (4 - pos - 1);
|
||
if (idx < 0)
|
||
{
|
||
int rest_nonzero = 0;
|
||
while (--dig_no > 0)
|
||
{
|
||
if (*startp != L_('0'))
|
||
{
|
||
rest_nonzero = 1;
|
||
break;
|
||
}
|
||
startp++;
|
||
}
|
||
return round_and_return (retval, exponent, negative, val,
|
||
BITS_PER_MP_LIMB - 1, rest_nonzero);
|
||
}
|
||
|
||
retval[idx] = val;
|
||
pos = BITS_PER_MP_LIMB - 1 - (4 - pos - 1);
|
||
}
|
||
}
|
||
|
||
/* We ran out of digits. */
|
||
MPN_ZERO (retval, idx);
|
||
|
||
return round_and_return (retval, exponent, negative, 0, 0, 0);
|
||
}
|
||
|
||
/* Now we have the number of digits in total and the integer digits as well
|
||
as the exponent and its sign. We can decide whether the read digits are
|
||
really integer digits or belong to the fractional part; i.e. we normalize
|
||
123e-2 to 1.23. */
|
||
{
|
||
intmax_t incr = (exponent < 0
|
||
? MAX (-(intmax_t) int_no, exponent)
|
||
: MIN ((intmax_t) dig_no - (intmax_t) int_no, exponent));
|
||
int_no += incr;
|
||
exponent -= incr;
|
||
}
|
||
|
||
if (__glibc_unlikely (exponent > MAX_10_EXP + 1 - (intmax_t) int_no))
|
||
return overflow_value (negative);
|
||
|
||
/* 10^(MIN_10_EXP-1) is not normal. Thus, 10^(MIN_10_EXP-1) /
|
||
2^MANT_DIG is below half the least subnormal, so anything with a
|
||
base-10 exponent less than the base-10 exponent (which is
|
||
MIN_10_EXP - 1 - ceil(MANT_DIG*log10(2))) of that value
|
||
underflows. DIG is floor((MANT_DIG-1)log10(2)), so an exponent
|
||
below MIN_10_EXP - (DIG + 3) underflows. But EXPONENT is
|
||
actually an exponent multiplied only by a fractional part, not an
|
||
integer part, so an exponent below MIN_10_EXP - (DIG + 2)
|
||
underflows. */
|
||
if (__glibc_unlikely (exponent < MIN_10_EXP - (DIG + 2)))
|
||
return underflow_value (negative);
|
||
|
||
if (int_no > 0)
|
||
{
|
||
/* Read the integer part as a multi-precision number to NUM. */
|
||
startp = str_to_mpn (startp, int_no, num, &numsize, &exponent
|
||
#ifndef USE_WIDE_CHAR
|
||
, decimal, decimal_len, thousands
|
||
#endif
|
||
);
|
||
|
||
if (exponent > 0)
|
||
{
|
||
/* We now multiply the gained number by the given power of ten. */
|
||
mp_limb_t *psrc = num;
|
||
mp_limb_t *pdest = den;
|
||
int expbit = 1;
|
||
const struct mp_power *ttab = &_fpioconst_pow10[0];
|
||
|
||
do
|
||
{
|
||
if ((exponent & expbit) != 0)
|
||
{
|
||
size_t size = ttab->arraysize - _FPIO_CONST_OFFSET;
|
||
mp_limb_t cy;
|
||
exponent ^= expbit;
|
||
|
||
/* FIXME: not the whole multiplication has to be
|
||
done. If we have the needed number of bits we
|
||
only need the information whether more non-zero
|
||
bits follow. */
|
||
if (numsize >= ttab->arraysize - _FPIO_CONST_OFFSET)
|
||
cy = __mpn_mul (pdest, psrc, numsize,
|
||
&__tens[ttab->arrayoff
|
||
+ _FPIO_CONST_OFFSET],
|
||
size);
|
||
else
|
||
cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
|
||
+ _FPIO_CONST_OFFSET],
|
||
size, psrc, numsize);
|
||
numsize += size;
|
||
if (cy == 0)
|
||
--numsize;
|
||
(void) SWAP (psrc, pdest);
|
||
}
|
||
expbit <<= 1;
|
||
++ttab;
|
||
}
|
||
while (exponent != 0);
|
||
|
||
if (psrc == den)
|
||
memcpy (num, den, numsize * sizeof (mp_limb_t));
|
||
}
|
||
|
||
/* Determine how many bits of the result we already have. */
|
||
count_leading_zeros (bits, num[numsize - 1]);
|
||
bits = numsize * BITS_PER_MP_LIMB - bits;
|
||
|
||
/* Now we know the exponent of the number in base two.
|
||
Check it against the maximum possible exponent. */
|
||
if (__glibc_unlikely (bits > MAX_EXP))
|
||
return overflow_value (negative);
|
||
|
||
/* We have already the first BITS bits of the result. Together with
|
||
the information whether more non-zero bits follow this is enough
|
||
to determine the result. */
|
||
if (bits > MANT_DIG)
|
||
{
|
||
int i;
|
||
const mp_size_t least_idx = (bits - MANT_DIG) / BITS_PER_MP_LIMB;
|
||
const mp_size_t least_bit = (bits - MANT_DIG) % BITS_PER_MP_LIMB;
|
||
const mp_size_t round_idx = least_bit == 0 ? least_idx - 1
|
||
: least_idx;
|
||
const mp_size_t round_bit = least_bit == 0 ? BITS_PER_MP_LIMB - 1
|
||
: least_bit - 1;
|
||
|
||
if (least_bit == 0)
|
||
memcpy (retval, &num[least_idx],
|
||
RETURN_LIMB_SIZE * sizeof (mp_limb_t));
|
||
else
|
||
{
|
||
for (i = least_idx; i < numsize - 1; ++i)
|
||
retval[i - least_idx] = (num[i] >> least_bit)
|
||
| (num[i + 1]
|
||
<< (BITS_PER_MP_LIMB - least_bit));
|
||
if (i - least_idx < RETURN_LIMB_SIZE)
|
||
retval[RETURN_LIMB_SIZE - 1] = num[i] >> least_bit;
|
||
}
|
||
|
||
/* Check whether any limb beside the ones in RETVAL are non-zero. */
|
||
for (i = 0; num[i] == 0; ++i)
|
||
;
|
||
|
||
return round_and_return (retval, bits - 1, negative,
|
||
num[round_idx], round_bit,
|
||
int_no < dig_no || i < round_idx);
|
||
/* NOTREACHED */
|
||
}
|
||
else if (dig_no == int_no)
|
||
{
|
||
const mp_size_t target_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
|
||
const mp_size_t is_bit = (bits - 1) % BITS_PER_MP_LIMB;
|
||
|
||
if (target_bit == is_bit)
|
||
{
|
||
memcpy (&retval[RETURN_LIMB_SIZE - numsize], num,
|
||
numsize * sizeof (mp_limb_t));
|
||
/* FIXME: the following loop can be avoided if we assume a
|
||
maximal MANT_DIG value. */
|
||
MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
|
||
}
|
||
else if (target_bit > is_bit)
|
||
{
|
||
(void) __mpn_lshift (&retval[RETURN_LIMB_SIZE - numsize],
|
||
num, numsize, target_bit - is_bit);
|
||
/* FIXME: the following loop can be avoided if we assume a
|
||
maximal MANT_DIG value. */
|
||
MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
|
||
}
|
||
else
|
||
{
|
||
mp_limb_t cy;
|
||
assert (numsize < RETURN_LIMB_SIZE);
|
||
|
||
cy = __mpn_rshift (&retval[RETURN_LIMB_SIZE - numsize],
|
||
num, numsize, is_bit - target_bit);
|
||
retval[RETURN_LIMB_SIZE - numsize - 1] = cy;
|
||
/* FIXME: the following loop can be avoided if we assume a
|
||
maximal MANT_DIG value. */
|
||
MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize - 1);
|
||
}
|
||
|
||
return round_and_return (retval, bits - 1, negative, 0, 0, 0);
|
||
/* NOTREACHED */
|
||
}
|
||
|
||
/* Store the bits we already have. */
|
||
memcpy (retval, num, numsize * sizeof (mp_limb_t));
|
||
#if RETURN_LIMB_SIZE > 1
|
||
if (numsize < RETURN_LIMB_SIZE)
|
||
# if RETURN_LIMB_SIZE == 2
|
||
retval[numsize] = 0;
|
||
# else
|
||
MPN_ZERO (retval + numsize, RETURN_LIMB_SIZE - numsize);
|
||
# endif
|
||
#endif
|
||
}
|
||
|
||
/* We have to compute at least some of the fractional digits. */
|
||
{
|
||
/* We construct a fraction and the result of the division gives us
|
||
the needed digits. The denominator is 1.0 multiplied by the
|
||
exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and
|
||
123e-6 gives 123 / 1000000. */
|
||
|
||
int expbit;
|
||
int neg_exp;
|
||
int more_bits;
|
||
int need_frac_digits;
|
||
mp_limb_t cy;
|
||
mp_limb_t *psrc = den;
|
||
mp_limb_t *pdest = num;
|
||
const struct mp_power *ttab = &_fpioconst_pow10[0];
|
||
|
||
assert (dig_no > int_no
|
||
&& exponent <= 0
|
||
&& exponent >= MIN_10_EXP - (DIG + 2));
|
||
|
||
/* We need to compute MANT_DIG - BITS fractional bits that lie
|
||
within the mantissa of the result, the following bit for
|
||
rounding, and to know whether any subsequent bit is 0.
|
||
Computing a bit with value 2^-n means looking at n digits after
|
||
the decimal point. */
|
||
if (bits > 0)
|
||
{
|
||
/* The bits required are those immediately after the point. */
|
||
assert (int_no > 0 && exponent == 0);
|
||
need_frac_digits = 1 + MANT_DIG - bits;
|
||
}
|
||
else
|
||
{
|
||
/* The number is in the form .123eEXPONENT. */
|
||
assert (int_no == 0 && *startp != L_('0'));
|
||
/* The number is at least 10^(EXPONENT-1), and 10^3 <
|
||
2^10. */
|
||
int neg_exp_2 = ((1 - exponent) * 10) / 3 + 1;
|
||
/* The number is at least 2^-NEG_EXP_2. We need up to
|
||
MANT_DIG bits following that bit. */
|
||
need_frac_digits = neg_exp_2 + MANT_DIG;
|
||
/* However, we never need bits beyond 1/4 ulp of the smallest
|
||
representable value. (That 1/4 ulp bit is only needed to
|
||
determine tinyness on machines where tinyness is determined
|
||
after rounding.) */
|
||
if (need_frac_digits > MANT_DIG - MIN_EXP + 2)
|
||
need_frac_digits = MANT_DIG - MIN_EXP + 2;
|
||
/* At this point, NEED_FRAC_DIGITS is the total number of
|
||
digits needed after the point, but some of those may be
|
||
leading 0s. */
|
||
need_frac_digits += exponent;
|
||
/* Any cases underflowing enough that none of the fractional
|
||
digits are needed should have been caught earlier (such
|
||
cases are on the order of 10^-n or smaller where 2^-n is
|
||
the least subnormal). */
|
||
assert (need_frac_digits > 0);
|
||
}
|
||
|
||
if (need_frac_digits > (intmax_t) dig_no - (intmax_t) int_no)
|
||
need_frac_digits = (intmax_t) dig_no - (intmax_t) int_no;
|
||
|
||
if ((intmax_t) dig_no > (intmax_t) int_no + need_frac_digits)
|
||
{
|
||
dig_no = int_no + need_frac_digits;
|
||
more_bits = 1;
|
||
}
|
||
else
|
||
more_bits = 0;
|
||
|
||
neg_exp = (intmax_t) dig_no - (intmax_t) int_no - exponent;
|
||
|
||
/* Construct the denominator. */
|
||
densize = 0;
|
||
expbit = 1;
|
||
do
|
||
{
|
||
if ((neg_exp & expbit) != 0)
|
||
{
|
||
mp_limb_t cy;
|
||
neg_exp ^= expbit;
|
||
|
||
if (densize == 0)
|
||
{
|
||
densize = ttab->arraysize - _FPIO_CONST_OFFSET;
|
||
memcpy (psrc, &__tens[ttab->arrayoff + _FPIO_CONST_OFFSET],
|
||
densize * sizeof (mp_limb_t));
|
||
}
|
||
else
|
||
{
|
||
cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
|
||
+ _FPIO_CONST_OFFSET],
|
||
ttab->arraysize - _FPIO_CONST_OFFSET,
|
||
psrc, densize);
|
||
densize += ttab->arraysize - _FPIO_CONST_OFFSET;
|
||
if (cy == 0)
|
||
--densize;
|
||
(void) SWAP (psrc, pdest);
|
||
}
|
||
}
|
||
expbit <<= 1;
|
||
++ttab;
|
||
}
|
||
while (neg_exp != 0);
|
||
|
||
if (psrc == num)
|
||
memcpy (den, num, densize * sizeof (mp_limb_t));
|
||
|
||
/* Read the fractional digits from the string. */
|
||
(void) str_to_mpn (startp, dig_no - int_no, num, &numsize, &exponent
|
||
#ifndef USE_WIDE_CHAR
|
||
, decimal, decimal_len, thousands
|
||
#endif
|
||
);
|
||
|
||
/* We now have to shift both numbers so that the highest bit in the
|
||
denominator is set. In the same process we copy the numerator to
|
||
a high place in the array so that the division constructs the wanted
|
||
digits. This is done by a "quasi fix point" number representation.
|
||
|
||
num: ddddddddddd . 0000000000000000000000
|
||
|--- m ---|
|
||
den: ddddddddddd n >= m
|
||
|--- n ---|
|
||
*/
|
||
|
||
count_leading_zeros (cnt, den[densize - 1]);
|
||
|
||
if (cnt > 0)
|
||
{
|
||
/* Don't call `mpn_shift' with a count of zero since the specification
|
||
does not allow this. */
|
||
(void) __mpn_lshift (den, den, densize, cnt);
|
||
cy = __mpn_lshift (num, num, numsize, cnt);
|
||
if (cy != 0)
|
||
num[numsize++] = cy;
|
||
}
|
||
|
||
/* Now we are ready for the division. But it is not necessary to
|
||
do a full multi-precision division because we only need a small
|
||
number of bits for the result. So we do not use __mpn_divmod
|
||
here but instead do the division here by hand and stop whenever
|
||
the needed number of bits is reached. The code itself comes
|
||
from the GNU MP Library by Torbj\"orn Granlund. */
|
||
|
||
exponent = bits;
|
||
|
||
switch (densize)
|
||
{
|
||
case 1:
|
||
{
|
||
mp_limb_t d, n, quot;
|
||
int used = 0;
|
||
|
||
n = num[0];
|
||
d = den[0];
|
||
assert (numsize == 1 && n < d);
|
||
|
||
do
|
||
{
|
||
udiv_qrnnd (quot, n, n, 0, d);
|
||
|
||
#define got_limb \
|
||
if (bits == 0) \
|
||
{ \
|
||
int cnt; \
|
||
if (quot == 0) \
|
||
cnt = BITS_PER_MP_LIMB; \
|
||
else \
|
||
count_leading_zeros (cnt, quot); \
|
||
exponent -= cnt; \
|
||
if (BITS_PER_MP_LIMB - cnt > MANT_DIG) \
|
||
{ \
|
||
used = MANT_DIG + cnt; \
|
||
retval[0] = quot >> (BITS_PER_MP_LIMB - used); \
|
||
bits = MANT_DIG + 1; \
|
||
} \
|
||
else \
|
||
{ \
|
||
/* Note that we only clear the second element. */ \
|
||
/* The conditional is determined at compile time. */ \
|
||
if (RETURN_LIMB_SIZE > 1) \
|
||
retval[1] = 0; \
|
||
retval[0] = quot; \
|
||
bits = -cnt; \
|
||
} \
|
||
} \
|
||
else if (bits + BITS_PER_MP_LIMB <= MANT_DIG) \
|
||
__mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB, \
|
||
quot); \
|
||
else \
|
||
{ \
|
||
used = MANT_DIG - bits; \
|
||
if (used > 0) \
|
||
__mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot); \
|
||
} \
|
||
bits += BITS_PER_MP_LIMB
|
||
|
||
got_limb;
|
||
}
|
||
while (bits <= MANT_DIG);
|
||
|
||
return round_and_return (retval, exponent - 1, negative,
|
||
quot, BITS_PER_MP_LIMB - 1 - used,
|
||
more_bits || n != 0);
|
||
}
|
||
case 2:
|
||
{
|
||
mp_limb_t d0, d1, n0, n1;
|
||
mp_limb_t quot = 0;
|
||
int used = 0;
|
||
|
||
d0 = den[0];
|
||
d1 = den[1];
|
||
|
||
if (numsize < densize)
|
||
{
|
||
if (num[0] >= d1)
|
||
{
|
||
/* The numerator of the number occupies fewer bits than
|
||
the denominator but the one limb is bigger than the
|
||
high limb of the numerator. */
|
||
n1 = 0;
|
||
n0 = num[0];
|
||
}
|
||
else
|
||
{
|
||
if (bits <= 0)
|
||
exponent -= BITS_PER_MP_LIMB;
|
||
else
|
||
{
|
||
if (bits + BITS_PER_MP_LIMB <= MANT_DIG)
|
||
__mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
|
||
BITS_PER_MP_LIMB, 0);
|
||
else
|
||
{
|
||
used = MANT_DIG - bits;
|
||
if (used > 0)
|
||
__mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
|
||
}
|
||
bits += BITS_PER_MP_LIMB;
|
||
}
|
||
n1 = num[0];
|
||
n0 = 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
n1 = num[1];
|
||
n0 = num[0];
|
||
}
|
||
|
||
while (bits <= MANT_DIG)
|
||
{
|
||
mp_limb_t r;
|
||
|
||
if (n1 == d1)
|
||
{
|
||
/* QUOT should be either 111..111 or 111..110. We need
|
||
special treatment of this rare case as normal division
|
||
would give overflow. */
|
||
quot = ~(mp_limb_t) 0;
|
||
|
||
r = n0 + d1;
|
||
if (r < d1) /* Carry in the addition? */
|
||
{
|
||
add_ssaaaa (n1, n0, r - d0, 0, 0, d0);
|
||
goto have_quot;
|
||
}
|
||
n1 = d0 - (d0 != 0);
|
||
n0 = -d0;
|
||
}
|
||
else
|
||
{
|
||
udiv_qrnnd (quot, r, n1, n0, d1);
|
||
umul_ppmm (n1, n0, d0, quot);
|
||
}
|
||
|
||
q_test:
|
||
if (n1 > r || (n1 == r && n0 > 0))
|
||
{
|
||
/* The estimated QUOT was too large. */
|
||
--quot;
|
||
|
||
sub_ddmmss (n1, n0, n1, n0, 0, d0);
|
||
r += d1;
|
||
if (r >= d1) /* If not carry, test QUOT again. */
|
||
goto q_test;
|
||
}
|
||
sub_ddmmss (n1, n0, r, 0, n1, n0);
|
||
|
||
have_quot:
|
||
got_limb;
|
||
}
|
||
|
||
return round_and_return (retval, exponent - 1, negative,
|
||
quot, BITS_PER_MP_LIMB - 1 - used,
|
||
more_bits || n1 != 0 || n0 != 0);
|
||
}
|
||
default:
|
||
{
|
||
int i;
|
||
mp_limb_t cy, dX, d1, n0, n1;
|
||
mp_limb_t quot = 0;
|
||
int used = 0;
|
||
|
||
dX = den[densize - 1];
|
||
d1 = den[densize - 2];
|
||
|
||
/* The division does not work if the upper limb of the two-limb
|
||
numerator is greater than the denominator. */
|
||
if (__mpn_cmp (num, &den[densize - numsize], numsize) > 0)
|
||
num[numsize++] = 0;
|
||
|
||
if (numsize < densize)
|
||
{
|
||
mp_size_t empty = densize - numsize;
|
||
int i;
|
||
|
||
if (bits <= 0)
|
||
exponent -= empty * BITS_PER_MP_LIMB;
|
||
else
|
||
{
|
||
if (bits + empty * BITS_PER_MP_LIMB <= MANT_DIG)
|
||
{
|
||
/* We make a difference here because the compiler
|
||
cannot optimize the `else' case that good and
|
||
this reflects all currently used FLOAT types
|
||
and GMP implementations. */
|
||
#if RETURN_LIMB_SIZE <= 2
|
||
assert (empty == 1);
|
||
__mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
|
||
BITS_PER_MP_LIMB, 0);
|
||
#else
|
||
for (i = RETURN_LIMB_SIZE - 1; i >= empty; --i)
|
||
retval[i] = retval[i - empty];
|
||
while (i >= 0)
|
||
retval[i--] = 0;
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
used = MANT_DIG - bits;
|
||
if (used >= BITS_PER_MP_LIMB)
|
||
{
|
||
int i;
|
||
(void) __mpn_lshift (&retval[used
|
||
/ BITS_PER_MP_LIMB],
|
||
retval,
|
||
(RETURN_LIMB_SIZE
|
||
- used / BITS_PER_MP_LIMB),
|
||
used % BITS_PER_MP_LIMB);
|
||
for (i = used / BITS_PER_MP_LIMB - 1; i >= 0; --i)
|
||
retval[i] = 0;
|
||
}
|
||
else if (used > 0)
|
||
__mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
|
||
}
|
||
bits += empty * BITS_PER_MP_LIMB;
|
||
}
|
||
for (i = numsize; i > 0; --i)
|
||
num[i + empty] = num[i - 1];
|
||
MPN_ZERO (num, empty + 1);
|
||
}
|
||
else
|
||
{
|
||
int i;
|
||
assert (numsize == densize);
|
||
for (i = numsize; i > 0; --i)
|
||
num[i] = num[i - 1];
|
||
num[0] = 0;
|
||
}
|
||
|
||
den[densize] = 0;
|
||
n0 = num[densize];
|
||
|
||
while (bits <= MANT_DIG)
|
||
{
|
||
if (n0 == dX)
|
||
/* This might over-estimate QUOT, but it's probably not
|
||
worth the extra code here to find out. */
|
||
quot = ~(mp_limb_t) 0;
|
||
else
|
||
{
|
||
mp_limb_t r;
|
||
|
||
udiv_qrnnd (quot, r, n0, num[densize - 1], dX);
|
||
umul_ppmm (n1, n0, d1, quot);
|
||
|
||
while (n1 > r || (n1 == r && n0 > num[densize - 2]))
|
||
{
|
||
--quot;
|
||
r += dX;
|
||
if (r < dX) /* I.e. "carry in previous addition?" */
|
||
break;
|
||
n1 -= n0 < d1;
|
||
n0 -= d1;
|
||
}
|
||
}
|
||
|
||
/* Possible optimization: We already have (q * n0) and (1 * n1)
|
||
after the calculation of QUOT. Taking advantage of this, we
|
||
could make this loop make two iterations less. */
|
||
|
||
cy = __mpn_submul_1 (num, den, densize + 1, quot);
|
||
|
||
if (num[densize] != cy)
|
||
{
|
||
cy = __mpn_add_n (num, num, den, densize);
|
||
assert (cy != 0);
|
||
--quot;
|
||
}
|
||
n0 = num[densize] = num[densize - 1];
|
||
for (i = densize - 1; i > 0; --i)
|
||
num[i] = num[i - 1];
|
||
num[0] = 0;
|
||
|
||
got_limb;
|
||
}
|
||
|
||
for (i = densize; i >= 0 && num[i] == 0; --i)
|
||
;
|
||
return round_and_return (retval, exponent - 1, negative,
|
||
quot, BITS_PER_MP_LIMB - 1 - used,
|
||
more_bits || i >= 0);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* NOTREACHED */
|
||
}
|
||
#if defined _LIBC && !defined USE_WIDE_CHAR
|
||
libc_hidden_def (____STRTOF_INTERNAL)
|
||
#endif
|
||
|
||
/* External user entry point. */
|
||
|
||
FLOAT
|
||
#ifdef weak_function
|
||
weak_function
|
||
#endif
|
||
__STRTOF (nptr, endptr, loc)
|
||
const STRING_TYPE *nptr;
|
||
STRING_TYPE **endptr;
|
||
__locale_t loc;
|
||
{
|
||
return ____STRTOF_INTERNAL (nptr, endptr, 0, loc);
|
||
}
|
||
#if defined _LIBC
|
||
libc_hidden_def (__STRTOF)
|
||
libc_hidden_ver (__STRTOF, STRTOF)
|
||
#endif
|
||
weak_alias (__STRTOF, STRTOF)
|
||
|
||
#ifdef LONG_DOUBLE_COMPAT
|
||
# if LONG_DOUBLE_COMPAT(libc, GLIBC_2_1)
|
||
# ifdef USE_WIDE_CHAR
|
||
compat_symbol (libc, __wcstod_l, __wcstold_l, GLIBC_2_1);
|
||
# else
|
||
compat_symbol (libc, __strtod_l, __strtold_l, GLIBC_2_1);
|
||
# endif
|
||
# endif
|
||
# if LONG_DOUBLE_COMPAT(libc, GLIBC_2_3)
|
||
# ifdef USE_WIDE_CHAR
|
||
compat_symbol (libc, wcstod_l, wcstold_l, GLIBC_2_3);
|
||
# else
|
||
compat_symbol (libc, strtod_l, strtold_l, GLIBC_2_3);
|
||
# endif
|
||
# endif
|
||
#endif
|