mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-29 14:01:20 +00:00
688903eb3e
* All files with FSF copyright notices: Update copyright dates using scripts/update-copyrights. * locale/programs/charmap-kw.h: Regenerated. * locale/programs/locfile-kw.h: Likewise.
136 lines
5.2 KiB
C
136 lines
5.2 KiB
C
/* Quad-precision floating point sine on <-pi/4,pi/4>.
|
|
Copyright (C) 1999-2018 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Jakub Jelinek <jj@ultra.linux.cz>
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
|
|
static const _Float128 c[] = {
|
|
#define ONE c[0]
|
|
L(1.00000000000000000000000000000000000E+00), /* 3fff0000000000000000000000000000 */
|
|
|
|
/* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 )
|
|
x in <0,1/256> */
|
|
#define SCOS1 c[1]
|
|
#define SCOS2 c[2]
|
|
#define SCOS3 c[3]
|
|
#define SCOS4 c[4]
|
|
#define SCOS5 c[5]
|
|
L(-5.00000000000000000000000000000000000E-01), /* bffe0000000000000000000000000000 */
|
|
L(4.16666666666666666666666666556146073E-02), /* 3ffa5555555555555555555555395023 */
|
|
L(-1.38888888888888888888309442601939728E-03), /* bff56c16c16c16c16c16a566e42c0375 */
|
|
L(2.48015873015862382987049502531095061E-05), /* 3fefa01a01a019ee02dcf7da2d6d5444 */
|
|
L(-2.75573112601362126593516899592158083E-07), /* bfe927e4f5dce637cb0b54908754bde0 */
|
|
|
|
/* sin x ~ ONE * x + x^3 ( SIN1 + SIN2 * x^2 + ... + SIN7 * x^12 + SIN8 * x^14 )
|
|
x in <0,0.1484375> */
|
|
#define SIN1 c[6]
|
|
#define SIN2 c[7]
|
|
#define SIN3 c[8]
|
|
#define SIN4 c[9]
|
|
#define SIN5 c[10]
|
|
#define SIN6 c[11]
|
|
#define SIN7 c[12]
|
|
#define SIN8 c[13]
|
|
L(-1.66666666666666666666666666666666538e-01), /* bffc5555555555555555555555555550 */
|
|
L(8.33333333333333333333333333307532934e-03), /* 3ff811111111111111111111110e7340 */
|
|
L(-1.98412698412698412698412534478712057e-04), /* bff2a01a01a01a01a01a019e7a626296 */
|
|
L(2.75573192239858906520896496653095890e-06), /* 3fec71de3a556c7338fa38527474b8f5 */
|
|
L(-2.50521083854417116999224301266655662e-08), /* bfe5ae64567f544e16c7de65c2ea551f */
|
|
L(1.60590438367608957516841576404938118e-10), /* 3fde6124613a811480538a9a41957115 */
|
|
L(-7.64716343504264506714019494041582610e-13), /* bfd6ae7f3d5aef30c7bc660b060ef365 */
|
|
L(2.81068754939739570236322404393398135e-15), /* 3fce9510115aabf87aceb2022a9a9180 */
|
|
|
|
/* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 )
|
|
x in <0,1/256> */
|
|
#define SSIN1 c[14]
|
|
#define SSIN2 c[15]
|
|
#define SSIN3 c[16]
|
|
#define SSIN4 c[17]
|
|
#define SSIN5 c[18]
|
|
L(-1.66666666666666666666666666666666659E-01), /* bffc5555555555555555555555555555 */
|
|
L(8.33333333333333333333333333146298442E-03), /* 3ff81111111111111111111110fe195d */
|
|
L(-1.98412698412698412697726277416810661E-04), /* bff2a01a01a01a01a019e7121e080d88 */
|
|
L(2.75573192239848624174178393552189149E-06), /* 3fec71de3a556c640c6aaa51aa02ab41 */
|
|
L(-2.50521016467996193495359189395805639E-08), /* bfe5ae644ee90c47dc71839de75b2787 */
|
|
};
|
|
|
|
#define SINCOSL_COS_HI 0
|
|
#define SINCOSL_COS_LO 1
|
|
#define SINCOSL_SIN_HI 2
|
|
#define SINCOSL_SIN_LO 3
|
|
extern const _Float128 __sincosl_table[];
|
|
|
|
_Float128
|
|
__kernel_sinl(_Float128 x, _Float128 y, int iy)
|
|
{
|
|
_Float128 h, l, z, sin_l, cos_l_m1;
|
|
int64_t ix;
|
|
uint32_t tix, hix, index;
|
|
GET_LDOUBLE_MSW64 (ix, x);
|
|
tix = ((uint64_t)ix) >> 32;
|
|
tix &= ~0x80000000; /* tix = |x|'s high 32 bits */
|
|
if (tix < 0x3ffc3000) /* |x| < 0.1484375 */
|
|
{
|
|
/* Argument is small enough to approximate it by a Chebyshev
|
|
polynomial of degree 17. */
|
|
if (tix < 0x3fc60000) /* |x| < 2^-57 */
|
|
{
|
|
math_check_force_underflow (x);
|
|
if (!((int)x)) return x; /* generate inexact */
|
|
}
|
|
z = x * x;
|
|
return x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+
|
|
z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8)))))))));
|
|
}
|
|
else
|
|
{
|
|
/* So that we don't have to use too large polynomial, we find
|
|
l and h such that x = l + h, where fabsl(l) <= 1.0/256 with 83
|
|
possible values for h. We look up cosl(h) and sinl(h) in
|
|
pre-computed tables, compute cosl(l) and sinl(l) using a
|
|
Chebyshev polynomial of degree 10(11) and compute
|
|
sinl(h+l) = sinl(h)cosl(l) + cosl(h)sinl(l). */
|
|
index = 0x3ffe - (tix >> 16);
|
|
hix = (tix + (0x200 << index)) & (0xfffffc00 << index);
|
|
x = fabsl (x);
|
|
switch (index)
|
|
{
|
|
case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break;
|
|
case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break;
|
|
default:
|
|
case 2: index = (hix - 0x3ffc3000) >> 10; break;
|
|
}
|
|
|
|
SET_LDOUBLE_WORDS64(h, ((uint64_t)hix) << 32, 0);
|
|
if (iy)
|
|
l = (ix < 0 ? -y : y) - (h - x);
|
|
else
|
|
l = x - h;
|
|
z = l * l;
|
|
sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5)))));
|
|
cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5))));
|
|
z = __sincosl_table [index + SINCOSL_SIN_HI]
|
|
+ (__sincosl_table [index + SINCOSL_SIN_LO]
|
|
+ (__sincosl_table [index + SINCOSL_SIN_HI] * cos_l_m1)
|
|
+ (__sincosl_table [index + SINCOSL_COS_HI] * sin_l));
|
|
return (ix < 0) ? -z : z;
|
|
}
|
|
}
|