mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-02 01:40:07 +00:00
e44acb2063
Similar to the changes that were made to call sqrt functions directly in glibc, instead of __ieee754_sqrt variants, so that the compiler could inline them automatically without needing special inline definitions in lots of math_private.h headers, this patch makes libm code call floor functions directly instead of __floor variants, removing the inlines / macros for x86_64 (SSE4.1) and powerpc (POWER5). The redirection used to ensure that __ieee754_sqrt does still get called when the compiler doesn't inline a built-in function expansion is refactored so it can be applied to other functions; the refactoring is arranged so it's not limited to unary functions either (it would be reasonable to use this mechanism for copysign - removing the inline in math_private_calls.h but also eliminating unnecessary local PLT entry use in the cases (powerpc soft-float and e500v1, for IBM long double) where copysign calls don't get inlined). The point of this change is that more architectures can get floor calls inlined where they weren't previously (AArch64, for example), without needing special inline definitions in their math_private.h, and existing such definitions in math_private.h headers can be removed. Note that it's possible that in some cases an inline may be used where an IFUNC call was previously used - this is the case on x86_64, for example. I think the direct calls to floor are still appropriate; if there's any significant performance cost from inline SSE2 floor instead of an IFUNC call ending up with SSE4.1 floor, that indicates that either the function should be doing something else that's faster than using floor at all, or it should itself have IFUNC variants, or that the compiler choice of inlining for generic tuning should change to allow for the possibility that, by not inlining, an SSE4.1 IFUNC might be called at runtime - but not that glibc should avoid calling floor internally. (After all, all the same considerations would apply to any user program calling floor, where it might either be inlined or left as an out-of-line call allowing for a possible IFUNC.) Tested for x86_64, and with build-many-glibcs.py. * include/math.h [!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (MATH_REDIRECT): New macro. [!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (MATH_REDIRECT_LDBL): Likewise. [!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (MATH_REDIRECT_F128): Likewise. [!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (MATH_REDIRECT_UNARY_ARGS): Likewise. [!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (sqrt): Redirect using MATH_REDIRECT. [!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (floor): Likewise. * sysdeps/aarch64/fpu/s_floor.c: Define NO_MATH_REDIRECT before header inclusion. * sysdeps/aarch64/fpu/s_floorf.c: Likewise. * sysdeps/ieee754/dbl-64/s_floor.c: Likewise. * sysdeps/ieee754/dbl-64/wordsize-64/s_floor.c: Likewise. * sysdeps/ieee754/float128/s_floorf128.c: Likewise. * sysdeps/ieee754/flt-32/s_floorf.c: Likewise. * sysdeps/ieee754/ldbl-128/s_floorl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_floorl.c: Likewise. * sysdeps/m68k/m680x0/fpu/s_floor_template.c: Likewise. * sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_floor.c: Likewise. * sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_floorf.c: Likewise. * sysdeps/powerpc/powerpc64/fpu/multiarch/s_floor.c: Likewise. * sysdeps/powerpc/powerpc64/fpu/multiarch/s_floorf.c: Likewise. * sysdeps/riscv/rv64/rvd/s_floor.c: Likewise. * sysdeps/riscv/rvf/s_floorf.c: Likewise. * sysdeps/sparc/sparc64/fpu/multiarch/s_floor.c: Likewise. * sysdeps/sparc/sparc64/fpu/multiarch/s_floorf.c: Likewise. * sysdeps/x86_64/fpu/multiarch/s_floor.c: Likewise. * sysdeps/x86_64/fpu/multiarch/s_floorf.c: Likewise. * sysdeps/powerpc/fpu/math_private.h [_ARCH_PWR5X] (__floor): Remove macro. [_ARCH_PWR5X] (__floorf): Likewise. * sysdeps/x86_64/fpu/math_private.h [__SSE4_1__] (__floor): Remove inline function. [__SSE4_1__] (__floorf): Likewise. * math/w_lgamma_main.c (LGFUNC (__lgamma)): Use floor functions instead of __floor variants. * math/w_lgamma_r_compat.c (__lgamma_r): Likewise. * math/w_lgammaf_main.c (LGFUNC (__lgammaf)): Likewise. * math/w_lgammaf_r_compat.c (__lgammaf_r): Likewise. * math/w_lgammal_main.c (LGFUNC (__lgammal)): Likewise. * math/w_lgammal_r_compat.c (__lgammal_r): Likewise. * math/w_tgamma_compat.c (__tgamma): Likewise. * math/w_tgamma_template.c (M_DECL_FUNC (__tgamma)): Likewise. * math/w_tgammaf_compat.c (__tgammaf): Likewise. * math/w_tgammal_compat.c (__tgammal): Likewise. * sysdeps/ieee754/dbl-64/e_lgamma_r.c (sin_pi): Likewise. * sysdeps/ieee754/dbl-64/k_rem_pio2.c (__kernel_rem_pio2): Likewise. * sysdeps/ieee754/dbl-64/lgamma_neg.c (__lgamma_neg): Likewise. * sysdeps/ieee754/flt-32/e_lgammaf_r.c (sin_pif): Likewise. * sysdeps/ieee754/flt-32/lgamma_negf.c (__lgamma_negf): Likewise. * sysdeps/ieee754/ldbl-128/e_lgammal_r.c (__ieee754_lgammal_r): Likewise. * sysdeps/ieee754/ldbl-128/e_powl.c (__ieee754_powl): Likewise. * sysdeps/ieee754/ldbl-128/lgamma_negl.c (__lgamma_negl): Likewise. * sysdeps/ieee754/ldbl-128/s_expm1l.c (__expm1l): Likewise. * sysdeps/ieee754/ldbl-128ibm/e_lgammal_r.c (__ieee754_lgammal_r): Likewise. * sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Likewise. * sysdeps/ieee754/ldbl-128ibm/lgamma_negl.c (__lgamma_negl): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_expm1l.c (__expm1l): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_truncl.c (__truncl): Likewise. * sysdeps/ieee754/ldbl-96/e_lgammal_r.c (sin_pi): Likewise. * sysdeps/ieee754/ldbl-96/lgamma_negl.c (__lgamma_negl): Likewise. * sysdeps/powerpc/power5+/fpu/s_modf.c (__modf): Likewise. * sysdeps/powerpc/power5+/fpu/s_modff.c (__modff): Likewise.
1043 lines
32 KiB
C
1043 lines
32 KiB
C
/* lgammal
|
|
*
|
|
* Natural logarithm of gamma function
|
|
*
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* long double x, y, lgammal();
|
|
* extern int sgngam;
|
|
*
|
|
* y = lgammal(x);
|
|
*
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Returns the base e (2.718...) logarithm of the absolute
|
|
* value of the gamma function of the argument.
|
|
* The sign (+1 or -1) of the gamma function is returned in a
|
|
* global (extern) variable named sgngam.
|
|
*
|
|
* The positive domain is partitioned into numerous segments for approximation.
|
|
* For x > 10,
|
|
* log gamma(x) = (x - 0.5) log(x) - x + log sqrt(2 pi) + 1/x R(1/x^2)
|
|
* Near the minimum at x = x0 = 1.46... the approximation is
|
|
* log gamma(x0 + z) = log gamma(x0) + z^2 P(z)/Q(z)
|
|
* for small z.
|
|
* Elsewhere between 0 and 10,
|
|
* log gamma(n + z) = log gamma(n) + z P(z)/Q(z)
|
|
* for various selected n and small z.
|
|
*
|
|
* The cosecant reflection formula is employed for negative arguments.
|
|
*
|
|
*
|
|
*
|
|
* ACCURACY:
|
|
*
|
|
*
|
|
* arithmetic domain # trials peak rms
|
|
* Relative error:
|
|
* IEEE 10, 30 100000 3.9e-34 9.8e-35
|
|
* IEEE 0, 10 100000 3.8e-34 5.3e-35
|
|
* Absolute error:
|
|
* IEEE -10, 0 100000 8.0e-34 8.0e-35
|
|
* IEEE -30, -10 100000 4.4e-34 1.0e-34
|
|
* IEEE -100, 100 100000 1.0e-34
|
|
*
|
|
* The absolute error criterion is the same as relative error
|
|
* when the function magnitude is greater than one but it is absolute
|
|
* when the magnitude is less than one.
|
|
*
|
|
*/
|
|
|
|
/* Copyright 2001 by Stephen L. Moshier <moshier@na-net.ornl.gov>
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <float.h>
|
|
|
|
static const _Float128 PIL = L(3.1415926535897932384626433832795028841972E0);
|
|
static const _Float128 MAXLGM = L(1.0485738685148938358098967157129705071571E4928);
|
|
static const _Float128 one = 1;
|
|
static const _Float128 huge = LDBL_MAX;
|
|
|
|
/* log gamma(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x P(1/x^2)
|
|
1/x <= 0.0741 (x >= 13.495...)
|
|
Peak relative error 1.5e-36 */
|
|
static const _Float128 ls2pi = L(9.1893853320467274178032973640561763986140E-1);
|
|
#define NRASY 12
|
|
static const _Float128 RASY[NRASY + 1] =
|
|
{
|
|
L(8.333333333333333333333333333310437112111E-2),
|
|
L(-2.777777777777777777777774789556228296902E-3),
|
|
L(7.936507936507936507795933938448586499183E-4),
|
|
L(-5.952380952380952041799269756378148574045E-4),
|
|
L(8.417508417507928904209891117498524452523E-4),
|
|
L(-1.917526917481263997778542329739806086290E-3),
|
|
L(6.410256381217852504446848671499409919280E-3),
|
|
L(-2.955064066900961649768101034477363301626E-2),
|
|
L(1.796402955865634243663453415388336954675E-1),
|
|
L(-1.391522089007758553455753477688592767741E0),
|
|
L(1.326130089598399157988112385013829305510E1),
|
|
L(-1.420412699593782497803472576479997819149E2),
|
|
L(1.218058922427762808938869872528846787020E3)
|
|
};
|
|
|
|
|
|
/* log gamma(x+13) = log gamma(13) + x P(x)/Q(x)
|
|
-0.5 <= x <= 0.5
|
|
12.5 <= x+13 <= 13.5
|
|
Peak relative error 1.1e-36 */
|
|
static const _Float128 lgam13a = L(1.9987213134765625E1);
|
|
static const _Float128 lgam13b = L(1.3608962611495173623870550785125024484248E-6);
|
|
#define NRN13 7
|
|
static const _Float128 RN13[NRN13 + 1] =
|
|
{
|
|
L(8.591478354823578150238226576156275285700E11),
|
|
L(2.347931159756482741018258864137297157668E11),
|
|
L(2.555408396679352028680662433943000804616E10),
|
|
L(1.408581709264464345480765758902967123937E9),
|
|
L(4.126759849752613822953004114044451046321E7),
|
|
L(6.133298899622688505854211579222889943778E5),
|
|
L(3.929248056293651597987893340755876578072E3),
|
|
L(6.850783280018706668924952057996075215223E0)
|
|
};
|
|
#define NRD13 6
|
|
static const _Float128 RD13[NRD13 + 1] =
|
|
{
|
|
L(3.401225382297342302296607039352935541669E11),
|
|
L(8.756765276918037910363513243563234551784E10),
|
|
L(8.873913342866613213078554180987647243903E9),
|
|
L(4.483797255342763263361893016049310017973E8),
|
|
L(1.178186288833066430952276702931512870676E7),
|
|
L(1.519928623743264797939103740132278337476E5),
|
|
L(7.989298844938119228411117593338850892311E2)
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+12) = log gamma(12) + x P(x)/Q(x)
|
|
-0.5 <= x <= 0.5
|
|
11.5 <= x+12 <= 12.5
|
|
Peak relative error 4.1e-36 */
|
|
static const _Float128 lgam12a = L(1.75023040771484375E1);
|
|
static const _Float128 lgam12b = L(3.7687254483392876529072161996717039575982E-6);
|
|
#define NRN12 7
|
|
static const _Float128 RN12[NRN12 + 1] =
|
|
{
|
|
L(4.709859662695606986110997348630997559137E11),
|
|
L(1.398713878079497115037857470168777995230E11),
|
|
L(1.654654931821564315970930093932954900867E10),
|
|
L(9.916279414876676861193649489207282144036E8),
|
|
L(3.159604070526036074112008954113411389879E7),
|
|
L(5.109099197547205212294747623977502492861E5),
|
|
L(3.563054878276102790183396740969279826988E3),
|
|
L(6.769610657004672719224614163196946862747E0)
|
|
};
|
|
#define NRD12 6
|
|
static const _Float128 RD12[NRD12 + 1] =
|
|
{
|
|
L(1.928167007860968063912467318985802726613E11),
|
|
L(5.383198282277806237247492369072266389233E10),
|
|
L(5.915693215338294477444809323037871058363E9),
|
|
L(3.241438287570196713148310560147925781342E8),
|
|
L(9.236680081763754597872713592701048455890E6),
|
|
L(1.292246897881650919242713651166596478850E5),
|
|
L(7.366532445427159272584194816076600211171E2)
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+11) = log gamma(11) + x P(x)/Q(x)
|
|
-0.5 <= x <= 0.5
|
|
10.5 <= x+11 <= 11.5
|
|
Peak relative error 1.8e-35 */
|
|
static const _Float128 lgam11a = L(1.5104400634765625E1);
|
|
static const _Float128 lgam11b = L(1.1938309890295225709329251070371882250744E-5);
|
|
#define NRN11 7
|
|
static const _Float128 RN11[NRN11 + 1] =
|
|
{
|
|
L(2.446960438029415837384622675816736622795E11),
|
|
L(7.955444974446413315803799763901729640350E10),
|
|
L(1.030555327949159293591618473447420338444E10),
|
|
L(6.765022131195302709153994345470493334946E8),
|
|
L(2.361892792609204855279723576041468347494E7),
|
|
L(4.186623629779479136428005806072176490125E5),
|
|
L(3.202506022088912768601325534149383594049E3),
|
|
L(6.681356101133728289358838690666225691363E0)
|
|
};
|
|
#define NRD11 6
|
|
static const _Float128 RD11[NRD11 + 1] =
|
|
{
|
|
L(1.040483786179428590683912396379079477432E11),
|
|
L(3.172251138489229497223696648369823779729E10),
|
|
L(3.806961885984850433709295832245848084614E9),
|
|
L(2.278070344022934913730015420611609620171E8),
|
|
L(7.089478198662651683977290023829391596481E6),
|
|
L(1.083246385105903533237139380509590158658E5),
|
|
L(6.744420991491385145885727942219463243597E2)
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+10) = log gamma(10) + x P(x)/Q(x)
|
|
-0.5 <= x <= 0.5
|
|
9.5 <= x+10 <= 10.5
|
|
Peak relative error 5.4e-37 */
|
|
static const _Float128 lgam10a = L(1.280181884765625E1);
|
|
static const _Float128 lgam10b = L(8.6324252196112077178745667061642811492557E-6);
|
|
#define NRN10 7
|
|
static const _Float128 RN10[NRN10 + 1] =
|
|
{
|
|
L(-1.239059737177249934158597996648808363783E14),
|
|
L(-4.725899566371458992365624673357356908719E13),
|
|
L(-7.283906268647083312042059082837754850808E12),
|
|
L(-5.802855515464011422171165179767478794637E11),
|
|
L(-2.532349691157548788382820303182745897298E10),
|
|
L(-5.884260178023777312587193693477072061820E8),
|
|
L(-6.437774864512125749845840472131829114906E6),
|
|
L(-2.350975266781548931856017239843273049384E4)
|
|
};
|
|
#define NRD10 7
|
|
static const _Float128 RD10[NRD10 + 1] =
|
|
{
|
|
L(-5.502645997581822567468347817182347679552E13),
|
|
L(-1.970266640239849804162284805400136473801E13),
|
|
L(-2.819677689615038489384974042561531409392E12),
|
|
L(-2.056105863694742752589691183194061265094E11),
|
|
L(-8.053670086493258693186307810815819662078E9),
|
|
L(-1.632090155573373286153427982504851867131E8),
|
|
L(-1.483575879240631280658077826889223634921E6),
|
|
L(-4.002806669713232271615885826373550502510E3)
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+9) = log gamma(9) + x P(x)/Q(x)
|
|
-0.5 <= x <= 0.5
|
|
8.5 <= x+9 <= 9.5
|
|
Peak relative error 3.6e-36 */
|
|
static const _Float128 lgam9a = L(1.06045989990234375E1);
|
|
static const _Float128 lgam9b = L(3.9037218127284172274007216547549861681400E-6);
|
|
#define NRN9 7
|
|
static const _Float128 RN9[NRN9 + 1] =
|
|
{
|
|
L(-4.936332264202687973364500998984608306189E13),
|
|
L(-2.101372682623700967335206138517766274855E13),
|
|
L(-3.615893404644823888655732817505129444195E12),
|
|
L(-3.217104993800878891194322691860075472926E11),
|
|
L(-1.568465330337375725685439173603032921399E10),
|
|
L(-4.073317518162025744377629219101510217761E8),
|
|
L(-4.983232096406156139324846656819246974500E6),
|
|
L(-2.036280038903695980912289722995505277253E4)
|
|
};
|
|
#define NRD9 7
|
|
static const _Float128 RD9[NRD9 + 1] =
|
|
{
|
|
L(-2.306006080437656357167128541231915480393E13),
|
|
L(-9.183606842453274924895648863832233799950E12),
|
|
L(-1.461857965935942962087907301194381010380E12),
|
|
L(-1.185728254682789754150068652663124298303E11),
|
|
L(-5.166285094703468567389566085480783070037E9),
|
|
L(-1.164573656694603024184768200787835094317E8),
|
|
L(-1.177343939483908678474886454113163527909E6),
|
|
L(-3.529391059783109732159524500029157638736E3)
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+8) = log gamma(8) + x P(x)/Q(x)
|
|
-0.5 <= x <= 0.5
|
|
7.5 <= x+8 <= 8.5
|
|
Peak relative error 2.4e-37 */
|
|
static const _Float128 lgam8a = L(8.525146484375E0);
|
|
static const _Float128 lgam8b = L(1.4876690414300165531036347125050759667737E-5);
|
|
#define NRN8 8
|
|
static const _Float128 RN8[NRN8 + 1] =
|
|
{
|
|
L(6.600775438203423546565361176829139703289E11),
|
|
L(3.406361267593790705240802723914281025800E11),
|
|
L(7.222460928505293914746983300555538432830E10),
|
|
L(8.102984106025088123058747466840656458342E9),
|
|
L(5.157620015986282905232150979772409345927E8),
|
|
L(1.851445288272645829028129389609068641517E7),
|
|
L(3.489261702223124354745894067468953756656E5),
|
|
L(2.892095396706665774434217489775617756014E3),
|
|
L(6.596977510622195827183948478627058738034E0)
|
|
};
|
|
#define NRD8 7
|
|
static const _Float128 RD8[NRD8 + 1] =
|
|
{
|
|
L(3.274776546520735414638114828622673016920E11),
|
|
L(1.581811207929065544043963828487733970107E11),
|
|
L(3.108725655667825188135393076860104546416E10),
|
|
L(3.193055010502912617128480163681842165730E9),
|
|
L(1.830871482669835106357529710116211541839E8),
|
|
L(5.790862854275238129848491555068073485086E6),
|
|
L(9.305213264307921522842678835618803553589E4),
|
|
L(6.216974105861848386918949336819572333622E2)
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+7) = log gamma(7) + x P(x)/Q(x)
|
|
-0.5 <= x <= 0.5
|
|
6.5 <= x+7 <= 7.5
|
|
Peak relative error 3.2e-36 */
|
|
static const _Float128 lgam7a = L(6.5792388916015625E0);
|
|
static const _Float128 lgam7b = L(1.2320408538495060178292903945321122583007E-5);
|
|
#define NRN7 8
|
|
static const _Float128 RN7[NRN7 + 1] =
|
|
{
|
|
L(2.065019306969459407636744543358209942213E11),
|
|
L(1.226919919023736909889724951708796532847E11),
|
|
L(2.996157990374348596472241776917953749106E10),
|
|
L(3.873001919306801037344727168434909521030E9),
|
|
L(2.841575255593761593270885753992732145094E8),
|
|
L(1.176342515359431913664715324652399565551E7),
|
|
L(2.558097039684188723597519300356028511547E5),
|
|
L(2.448525238332609439023786244782810774702E3),
|
|
L(6.460280377802030953041566617300902020435E0)
|
|
};
|
|
#define NRD7 7
|
|
static const _Float128 RD7[NRD7 + 1] =
|
|
{
|
|
L(1.102646614598516998880874785339049304483E11),
|
|
L(6.099297512712715445879759589407189290040E10),
|
|
L(1.372898136289611312713283201112060238351E10),
|
|
L(1.615306270420293159907951633566635172343E9),
|
|
L(1.061114435798489135996614242842561967459E8),
|
|
L(3.845638971184305248268608902030718674691E6),
|
|
L(7.081730675423444975703917836972720495507E4),
|
|
L(5.423122582741398226693137276201344096370E2)
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+6) = log gamma(6) + x P(x)/Q(x)
|
|
-0.5 <= x <= 0.5
|
|
5.5 <= x+6 <= 6.5
|
|
Peak relative error 6.2e-37 */
|
|
static const _Float128 lgam6a = L(4.7874908447265625E0);
|
|
static const _Float128 lgam6b = L(8.9805548349424770093452324304839959231517E-7);
|
|
#define NRN6 8
|
|
static const _Float128 RN6[NRN6 + 1] =
|
|
{
|
|
L(-3.538412754670746879119162116819571823643E13),
|
|
L(-2.613432593406849155765698121483394257148E13),
|
|
L(-8.020670732770461579558867891923784753062E12),
|
|
L(-1.322227822931250045347591780332435433420E12),
|
|
L(-1.262809382777272476572558806855377129513E11),
|
|
L(-7.015006277027660872284922325741197022467E9),
|
|
L(-2.149320689089020841076532186783055727299E8),
|
|
L(-3.167210585700002703820077565539658995316E6),
|
|
L(-1.576834867378554185210279285358586385266E4)
|
|
};
|
|
#define NRD6 8
|
|
static const _Float128 RD6[NRD6 + 1] =
|
|
{
|
|
L(-2.073955870771283609792355579558899389085E13),
|
|
L(-1.421592856111673959642750863283919318175E13),
|
|
L(-4.012134994918353924219048850264207074949E12),
|
|
L(-6.013361045800992316498238470888523722431E11),
|
|
L(-5.145382510136622274784240527039643430628E10),
|
|
L(-2.510575820013409711678540476918249524123E9),
|
|
L(-6.564058379709759600836745035871373240904E7),
|
|
L(-7.861511116647120540275354855221373571536E5),
|
|
L(-2.821943442729620524365661338459579270561E3)
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+5) = log gamma(5) + x P(x)/Q(x)
|
|
-0.5 <= x <= 0.5
|
|
4.5 <= x+5 <= 5.5
|
|
Peak relative error 3.4e-37 */
|
|
static const _Float128 lgam5a = L(3.17803955078125E0);
|
|
static const _Float128 lgam5b = L(1.4279566695619646941601297055408873990961E-5);
|
|
#define NRN5 9
|
|
static const _Float128 RN5[NRN5 + 1] =
|
|
{
|
|
L(2.010952885441805899580403215533972172098E11),
|
|
L(1.916132681242540921354921906708215338584E11),
|
|
L(7.679102403710581712903937970163206882492E10),
|
|
L(1.680514903671382470108010973615268125169E10),
|
|
L(2.181011222911537259440775283277711588410E9),
|
|
L(1.705361119398837808244780667539728356096E8),
|
|
L(7.792391565652481864976147945997033946360E6),
|
|
L(1.910741381027985291688667214472560023819E5),
|
|
L(2.088138241893612679762260077783794329559E3),
|
|
L(6.330318119566998299106803922739066556550E0)
|
|
};
|
|
#define NRD5 8
|
|
static const _Float128 RD5[NRD5 + 1] =
|
|
{
|
|
L(1.335189758138651840605141370223112376176E11),
|
|
L(1.174130445739492885895466097516530211283E11),
|
|
L(4.308006619274572338118732154886328519910E10),
|
|
L(8.547402888692578655814445003283720677468E9),
|
|
L(9.934628078575618309542580800421370730906E8),
|
|
L(6.847107420092173812998096295422311820672E7),
|
|
L(2.698552646016599923609773122139463150403E6),
|
|
L(5.526516251532464176412113632726150253215E4),
|
|
L(4.772343321713697385780533022595450486932E2)
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+4) = log gamma(4) + x P(x)/Q(x)
|
|
-0.5 <= x <= 0.5
|
|
3.5 <= x+4 <= 4.5
|
|
Peak relative error 6.7e-37 */
|
|
static const _Float128 lgam4a = L(1.791748046875E0);
|
|
static const _Float128 lgam4b = L(1.1422353055000812477358380702272722990692E-5);
|
|
#define NRN4 9
|
|
static const _Float128 RN4[NRN4 + 1] =
|
|
{
|
|
L(-1.026583408246155508572442242188887829208E13),
|
|
L(-1.306476685384622809290193031208776258809E13),
|
|
L(-7.051088602207062164232806511992978915508E12),
|
|
L(-2.100849457735620004967624442027793656108E12),
|
|
L(-3.767473790774546963588549871673843260569E11),
|
|
L(-4.156387497364909963498394522336575984206E10),
|
|
L(-2.764021460668011732047778992419118757746E9),
|
|
L(-1.036617204107109779944986471142938641399E8),
|
|
L(-1.895730886640349026257780896972598305443E6),
|
|
L(-1.180509051468390914200720003907727988201E4)
|
|
};
|
|
#define NRD4 9
|
|
static const _Float128 RD4[NRD4 + 1] =
|
|
{
|
|
L(-8.172669122056002077809119378047536240889E12),
|
|
L(-9.477592426087986751343695251801814226960E12),
|
|
L(-4.629448850139318158743900253637212801682E12),
|
|
L(-1.237965465892012573255370078308035272942E12),
|
|
L(-1.971624313506929845158062177061297598956E11),
|
|
L(-1.905434843346570533229942397763361493610E10),
|
|
L(-1.089409357680461419743730978512856675984E9),
|
|
L(-3.416703082301143192939774401370222822430E7),
|
|
L(-4.981791914177103793218433195857635265295E5),
|
|
L(-2.192507743896742751483055798411231453733E3)
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+3) = log gamma(3) + x P(x)/Q(x)
|
|
-0.25 <= x <= 0.5
|
|
2.75 <= x+3 <= 3.5
|
|
Peak relative error 6.0e-37 */
|
|
static const _Float128 lgam3a = L(6.93145751953125E-1);
|
|
static const _Float128 lgam3b = L(1.4286068203094172321214581765680755001344E-6);
|
|
|
|
#define NRN3 9
|
|
static const _Float128 RN3[NRN3 + 1] =
|
|
{
|
|
L(-4.813901815114776281494823863935820876670E11),
|
|
L(-8.425592975288250400493910291066881992620E11),
|
|
L(-6.228685507402467503655405482985516909157E11),
|
|
L(-2.531972054436786351403749276956707260499E11),
|
|
L(-6.170200796658926701311867484296426831687E10),
|
|
L(-9.211477458528156048231908798456365081135E9),
|
|
L(-8.251806236175037114064561038908691305583E8),
|
|
L(-4.147886355917831049939930101151160447495E7),
|
|
L(-1.010851868928346082547075956946476932162E6),
|
|
L(-8.333374463411801009783402800801201603736E3)
|
|
};
|
|
#define NRD3 9
|
|
static const _Float128 RD3[NRD3 + 1] =
|
|
{
|
|
L(-5.216713843111675050627304523368029262450E11),
|
|
L(-8.014292925418308759369583419234079164391E11),
|
|
L(-5.180106858220030014546267824392678611990E11),
|
|
L(-1.830406975497439003897734969120997840011E11),
|
|
L(-3.845274631904879621945745960119924118925E10),
|
|
L(-4.891033385370523863288908070309417710903E9),
|
|
L(-3.670172254411328640353855768698287474282E8),
|
|
L(-1.505316381525727713026364396635522516989E7),
|
|
L(-2.856327162923716881454613540575964890347E5),
|
|
L(-1.622140448015769906847567212766206894547E3)
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+2.5) = log gamma(2.5) + x P(x)/Q(x)
|
|
-0.125 <= x <= 0.25
|
|
2.375 <= x+2.5 <= 2.75 */
|
|
static const _Float128 lgam2r5a = L(2.8466796875E-1);
|
|
static const _Float128 lgam2r5b = L(1.4901722919159632494669682701924320137696E-5);
|
|
#define NRN2r5 8
|
|
static const _Float128 RN2r5[NRN2r5 + 1] =
|
|
{
|
|
L(-4.676454313888335499356699817678862233205E9),
|
|
L(-9.361888347911187924389905984624216340639E9),
|
|
L(-7.695353600835685037920815799526540237703E9),
|
|
L(-3.364370100981509060441853085968900734521E9),
|
|
L(-8.449902011848163568670361316804900559863E8),
|
|
L(-1.225249050950801905108001246436783022179E8),
|
|
L(-9.732972931077110161639900388121650470926E6),
|
|
L(-3.695711763932153505623248207576425983573E5),
|
|
L(-4.717341584067827676530426007495274711306E3)
|
|
};
|
|
#define NRD2r5 8
|
|
static const _Float128 RD2r5[NRD2r5 + 1] =
|
|
{
|
|
L(-6.650657966618993679456019224416926875619E9),
|
|
L(-1.099511409330635807899718829033488771623E10),
|
|
L(-7.482546968307837168164311101447116903148E9),
|
|
L(-2.702967190056506495988922973755870557217E9),
|
|
L(-5.570008176482922704972943389590409280950E8),
|
|
L(-6.536934032192792470926310043166993233231E7),
|
|
L(-4.101991193844953082400035444146067511725E6),
|
|
L(-1.174082735875715802334430481065526664020E5),
|
|
L(-9.932840389994157592102947657277692978511E2)
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+2) = x P(x)/Q(x)
|
|
-0.125 <= x <= +0.375
|
|
1.875 <= x+2 <= 2.375
|
|
Peak relative error 4.6e-36 */
|
|
#define NRN2 9
|
|
static const _Float128 RN2[NRN2 + 1] =
|
|
{
|
|
L(-3.716661929737318153526921358113793421524E9),
|
|
L(-1.138816715030710406922819131397532331321E10),
|
|
L(-1.421017419363526524544402598734013569950E10),
|
|
L(-9.510432842542519665483662502132010331451E9),
|
|
L(-3.747528562099410197957514973274474767329E9),
|
|
L(-8.923565763363912474488712255317033616626E8),
|
|
L(-1.261396653700237624185350402781338231697E8),
|
|
L(-9.918402520255661797735331317081425749014E6),
|
|
L(-3.753996255897143855113273724233104768831E5),
|
|
L(-4.778761333044147141559311805999540765612E3)
|
|
};
|
|
#define NRD2 9
|
|
static const _Float128 RD2[NRD2 + 1] =
|
|
{
|
|
L(-8.790916836764308497770359421351673950111E9),
|
|
L(-2.023108608053212516399197678553737477486E10),
|
|
L(-1.958067901852022239294231785363504458367E10),
|
|
L(-1.035515043621003101254252481625188704529E10),
|
|
L(-3.253884432621336737640841276619272224476E9),
|
|
L(-6.186383531162456814954947669274235815544E8),
|
|
L(-6.932557847749518463038934953605969951466E7),
|
|
L(-4.240731768287359608773351626528479703758E6),
|
|
L(-1.197343995089189188078944689846348116630E5),
|
|
L(-1.004622911670588064824904487064114090920E3)
|
|
/* 1.0E0 */
|
|
};
|
|
|
|
|
|
/* log gamma(x+1.75) = log gamma(1.75) + x P(x)/Q(x)
|
|
-0.125 <= x <= +0.125
|
|
1.625 <= x+1.75 <= 1.875
|
|
Peak relative error 9.2e-37 */
|
|
static const _Float128 lgam1r75a = L(-8.441162109375E-2);
|
|
static const _Float128 lgam1r75b = L(1.0500073264444042213965868602268256157604E-5);
|
|
#define NRN1r75 8
|
|
static const _Float128 RN1r75[NRN1r75 + 1] =
|
|
{
|
|
L(-5.221061693929833937710891646275798251513E7),
|
|
L(-2.052466337474314812817883030472496436993E8),
|
|
L(-2.952718275974940270675670705084125640069E8),
|
|
L(-2.132294039648116684922965964126389017840E8),
|
|
L(-8.554103077186505960591321962207519908489E7),
|
|
L(-1.940250901348870867323943119132071960050E7),
|
|
L(-2.379394147112756860769336400290402208435E6),
|
|
L(-1.384060879999526222029386539622255797389E5),
|
|
L(-2.698453601378319296159355612094598695530E3)
|
|
};
|
|
#define NRD1r75 8
|
|
static const _Float128 RD1r75[NRD1r75 + 1] =
|
|
{
|
|
L(-2.109754689501705828789976311354395393605E8),
|
|
L(-5.036651829232895725959911504899241062286E8),
|
|
L(-4.954234699418689764943486770327295098084E8),
|
|
L(-2.589558042412676610775157783898195339410E8),
|
|
L(-7.731476117252958268044969614034776883031E7),
|
|
L(-1.316721702252481296030801191240867486965E7),
|
|
L(-1.201296501404876774861190604303728810836E6),
|
|
L(-5.007966406976106636109459072523610273928E4),
|
|
L(-6.155817990560743422008969155276229018209E2)
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+x0) = y0 + x^2 P(x)/Q(x)
|
|
-0.0867 <= x <= +0.1634
|
|
1.374932... <= x+x0 <= 1.625032...
|
|
Peak relative error 4.0e-36 */
|
|
static const _Float128 x0a = L(1.4616241455078125);
|
|
static const _Float128 x0b = L(7.9994605498412626595423257213002588621246E-6);
|
|
static const _Float128 y0a = L(-1.21490478515625E-1);
|
|
static const _Float128 y0b = L(4.1879797753919044854428223084178486438269E-6);
|
|
#define NRN1r5 8
|
|
static const _Float128 RN1r5[NRN1r5 + 1] =
|
|
{
|
|
L(6.827103657233705798067415468881313128066E5),
|
|
L(1.910041815932269464714909706705242148108E6),
|
|
L(2.194344176925978377083808566251427771951E6),
|
|
L(1.332921400100891472195055269688876427962E6),
|
|
L(4.589080973377307211815655093824787123508E5),
|
|
L(8.900334161263456942727083580232613796141E4),
|
|
L(9.053840838306019753209127312097612455236E3),
|
|
L(4.053367147553353374151852319743594873771E2),
|
|
L(5.040631576303952022968949605613514584950E0)
|
|
};
|
|
#define NRD1r5 8
|
|
static const _Float128 RD1r5[NRD1r5 + 1] =
|
|
{
|
|
L(1.411036368843183477558773688484699813355E6),
|
|
L(4.378121767236251950226362443134306184849E6),
|
|
L(5.682322855631723455425929877581697918168E6),
|
|
L(3.999065731556977782435009349967042222375E6),
|
|
L(1.653651390456781293163585493620758410333E6),
|
|
L(4.067774359067489605179546964969435858311E5),
|
|
L(5.741463295366557346748361781768833633256E4),
|
|
L(4.226404539738182992856094681115746692030E3),
|
|
L(1.316980975410327975566999780608618774469E2),
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x+1.25) = log gamma(1.25) + x P(x)/Q(x)
|
|
-.125 <= x <= +.125
|
|
1.125 <= x+1.25 <= 1.375
|
|
Peak relative error = 4.9e-36 */
|
|
static const _Float128 lgam1r25a = L(-9.82818603515625E-2);
|
|
static const _Float128 lgam1r25b = L(1.0023929749338536146197303364159774377296E-5);
|
|
#define NRN1r25 9
|
|
static const _Float128 RN1r25[NRN1r25 + 1] =
|
|
{
|
|
L(-9.054787275312026472896002240379580536760E4),
|
|
L(-8.685076892989927640126560802094680794471E4),
|
|
L(2.797898965448019916967849727279076547109E5),
|
|
L(6.175520827134342734546868356396008898299E5),
|
|
L(5.179626599589134831538516906517372619641E5),
|
|
L(2.253076616239043944538380039205558242161E5),
|
|
L(5.312653119599957228630544772499197307195E4),
|
|
L(6.434329437514083776052669599834938898255E3),
|
|
L(3.385414416983114598582554037612347549220E2),
|
|
L(4.907821957946273805080625052510832015792E0)
|
|
};
|
|
#define NRD1r25 8
|
|
static const _Float128 RD1r25[NRD1r25 + 1] =
|
|
{
|
|
L(3.980939377333448005389084785896660309000E5),
|
|
L(1.429634893085231519692365775184490465542E6),
|
|
L(2.145438946455476062850151428438668234336E6),
|
|
L(1.743786661358280837020848127465970357893E6),
|
|
L(8.316364251289743923178092656080441655273E5),
|
|
L(2.355732939106812496699621491135458324294E5),
|
|
L(3.822267399625696880571810137601310855419E4),
|
|
L(3.228463206479133236028576845538387620856E3),
|
|
L(1.152133170470059555646301189220117965514E2)
|
|
/* 1.0E0L */
|
|
};
|
|
|
|
|
|
/* log gamma(x + 1) = x P(x)/Q(x)
|
|
0.0 <= x <= +0.125
|
|
1.0 <= x+1 <= 1.125
|
|
Peak relative error 1.1e-35 */
|
|
#define NRN1 8
|
|
static const _Float128 RN1[NRN1 + 1] =
|
|
{
|
|
L(-9.987560186094800756471055681088744738818E3),
|
|
L(-2.506039379419574361949680225279376329742E4),
|
|
L(-1.386770737662176516403363873617457652991E4),
|
|
L(1.439445846078103202928677244188837130744E4),
|
|
L(2.159612048879650471489449668295139990693E4),
|
|
L(1.047439813638144485276023138173676047079E4),
|
|
L(2.250316398054332592560412486630769139961E3),
|
|
L(1.958510425467720733041971651126443864041E2),
|
|
L(4.516830313569454663374271993200291219855E0)
|
|
};
|
|
#define NRD1 7
|
|
static const _Float128 RD1[NRD1 + 1] =
|
|
{
|
|
L(1.730299573175751778863269333703788214547E4),
|
|
L(6.807080914851328611903744668028014678148E4),
|
|
L(1.090071629101496938655806063184092302439E5),
|
|
L(9.124354356415154289343303999616003884080E4),
|
|
L(4.262071638655772404431164427024003253954E4),
|
|
L(1.096981664067373953673982635805821283581E4),
|
|
L(1.431229503796575892151252708527595787588E3),
|
|
L(7.734110684303689320830401788262295992921E1)
|
|
/* 1.0E0 */
|
|
};
|
|
|
|
|
|
/* log gamma(x + 1) = x P(x)/Q(x)
|
|
-0.125 <= x <= 0
|
|
0.875 <= x+1 <= 1.0
|
|
Peak relative error 7.0e-37 */
|
|
#define NRNr9 8
|
|
static const _Float128 RNr9[NRNr9 + 1] =
|
|
{
|
|
L(4.441379198241760069548832023257571176884E5),
|
|
L(1.273072988367176540909122090089580368732E6),
|
|
L(9.732422305818501557502584486510048387724E5),
|
|
L(-5.040539994443998275271644292272870348684E5),
|
|
L(-1.208719055525609446357448132109723786736E6),
|
|
L(-7.434275365370936547146540554419058907156E5),
|
|
L(-2.075642969983377738209203358199008185741E5),
|
|
L(-2.565534860781128618589288075109372218042E4),
|
|
L(-1.032901669542994124131223797515913955938E3),
|
|
};
|
|
#define NRDr9 8
|
|
static const _Float128 RDr9[NRDr9 + 1] =
|
|
{
|
|
L(-7.694488331323118759486182246005193998007E5),
|
|
L(-3.301918855321234414232308938454112213751E6),
|
|
L(-5.856830900232338906742924836032279404702E6),
|
|
L(-5.540672519616151584486240871424021377540E6),
|
|
L(-3.006530901041386626148342989181721176919E6),
|
|
L(-9.350378280513062139466966374330795935163E5),
|
|
L(-1.566179100031063346901755685375732739511E5),
|
|
L(-1.205016539620260779274902967231510804992E4),
|
|
L(-2.724583156305709733221564484006088794284E2)
|
|
/* 1.0E0 */
|
|
};
|
|
|
|
|
|
/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
|
|
|
|
static _Float128
|
|
neval (_Float128 x, const _Float128 *p, int n)
|
|
{
|
|
_Float128 y;
|
|
|
|
p += n;
|
|
y = *p--;
|
|
do
|
|
{
|
|
y = y * x + *p--;
|
|
}
|
|
while (--n > 0);
|
|
return y;
|
|
}
|
|
|
|
|
|
/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
|
|
|
|
static _Float128
|
|
deval (_Float128 x, const _Float128 *p, int n)
|
|
{
|
|
_Float128 y;
|
|
|
|
p += n;
|
|
y = x + *p--;
|
|
do
|
|
{
|
|
y = y * x + *p--;
|
|
}
|
|
while (--n > 0);
|
|
return y;
|
|
}
|
|
|
|
|
|
_Float128
|
|
__ieee754_lgammal_r (_Float128 x, int *signgamp)
|
|
{
|
|
_Float128 p, q, w, z, nx;
|
|
int i, nn;
|
|
|
|
*signgamp = 1;
|
|
|
|
if (! isfinite (x))
|
|
return x * x;
|
|
|
|
if (x == 0)
|
|
{
|
|
if (signbit (x))
|
|
*signgamp = -1;
|
|
}
|
|
|
|
if (x < 0)
|
|
{
|
|
if (x < -2 && x > -50)
|
|
return __lgamma_negl (x, signgamp);
|
|
q = -x;
|
|
p = floorl (q);
|
|
if (p == q)
|
|
return (one / fabsl (p - p));
|
|
_Float128 halfp = p * L(0.5);
|
|
if (halfp == floorl (halfp))
|
|
*signgamp = -1;
|
|
else
|
|
*signgamp = 1;
|
|
if (q < L(0x1p-120))
|
|
return -__logl (q);
|
|
z = q - p;
|
|
if (z > L(0.5))
|
|
{
|
|
p += 1;
|
|
z = p - q;
|
|
}
|
|
z = q * __sinl (PIL * z);
|
|
w = __ieee754_lgammal_r (q, &i);
|
|
z = __logl (PIL / z) - w;
|
|
return (z);
|
|
}
|
|
|
|
if (x < L(13.5))
|
|
{
|
|
p = 0;
|
|
nx = floorl (x + L(0.5));
|
|
nn = nx;
|
|
switch (nn)
|
|
{
|
|
case 0:
|
|
/* log gamma (x + 1) = log(x) + log gamma(x) */
|
|
if (x < L(0x1p-120))
|
|
return -__logl (x);
|
|
else if (x <= 0.125)
|
|
{
|
|
p = x * neval (x, RN1, NRN1) / deval (x, RD1, NRD1);
|
|
}
|
|
else if (x <= 0.375)
|
|
{
|
|
z = x - L(0.25);
|
|
p = z * neval (z, RN1r25, NRN1r25) / deval (z, RD1r25, NRD1r25);
|
|
p += lgam1r25b;
|
|
p += lgam1r25a;
|
|
}
|
|
else if (x <= 0.625)
|
|
{
|
|
z = x + (1 - x0a);
|
|
z = z - x0b;
|
|
p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
|
|
p = p * z * z;
|
|
p = p + y0b;
|
|
p = p + y0a;
|
|
}
|
|
else if (x <= 0.875)
|
|
{
|
|
z = x - L(0.75);
|
|
p = z * neval (z, RN1r75, NRN1r75) / deval (z, RD1r75, NRD1r75);
|
|
p += lgam1r75b;
|
|
p += lgam1r75a;
|
|
}
|
|
else
|
|
{
|
|
z = x - 1;
|
|
p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2);
|
|
}
|
|
p = p - __logl (x);
|
|
break;
|
|
|
|
case 1:
|
|
if (x < L(0.875))
|
|
{
|
|
if (x <= 0.625)
|
|
{
|
|
z = x + (1 - x0a);
|
|
z = z - x0b;
|
|
p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
|
|
p = p * z * z;
|
|
p = p + y0b;
|
|
p = p + y0a;
|
|
}
|
|
else if (x <= 0.875)
|
|
{
|
|
z = x - L(0.75);
|
|
p = z * neval (z, RN1r75, NRN1r75)
|
|
/ deval (z, RD1r75, NRD1r75);
|
|
p += lgam1r75b;
|
|
p += lgam1r75a;
|
|
}
|
|
else
|
|
{
|
|
z = x - 1;
|
|
p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2);
|
|
}
|
|
p = p - __logl (x);
|
|
}
|
|
else if (x < 1)
|
|
{
|
|
z = x - 1;
|
|
p = z * neval (z, RNr9, NRNr9) / deval (z, RDr9, NRDr9);
|
|
}
|
|
else if (x == 1)
|
|
p = 0;
|
|
else if (x <= L(1.125))
|
|
{
|
|
z = x - 1;
|
|
p = z * neval (z, RN1, NRN1) / deval (z, RD1, NRD1);
|
|
}
|
|
else if (x <= 1.375)
|
|
{
|
|
z = x - L(1.25);
|
|
p = z * neval (z, RN1r25, NRN1r25) / deval (z, RD1r25, NRD1r25);
|
|
p += lgam1r25b;
|
|
p += lgam1r25a;
|
|
}
|
|
else
|
|
{
|
|
/* 1.375 <= x+x0 <= 1.625 */
|
|
z = x - x0a;
|
|
z = z - x0b;
|
|
p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
|
|
p = p * z * z;
|
|
p = p + y0b;
|
|
p = p + y0a;
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
if (x < L(1.625))
|
|
{
|
|
z = x - x0a;
|
|
z = z - x0b;
|
|
p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
|
|
p = p * z * z;
|
|
p = p + y0b;
|
|
p = p + y0a;
|
|
}
|
|
else if (x < L(1.875))
|
|
{
|
|
z = x - L(1.75);
|
|
p = z * neval (z, RN1r75, NRN1r75) / deval (z, RD1r75, NRD1r75);
|
|
p += lgam1r75b;
|
|
p += lgam1r75a;
|
|
}
|
|
else if (x == 2)
|
|
p = 0;
|
|
else if (x < L(2.375))
|
|
{
|
|
z = x - 2;
|
|
p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2);
|
|
}
|
|
else
|
|
{
|
|
z = x - L(2.5);
|
|
p = z * neval (z, RN2r5, NRN2r5) / deval (z, RD2r5, NRD2r5);
|
|
p += lgam2r5b;
|
|
p += lgam2r5a;
|
|
}
|
|
break;
|
|
|
|
case 3:
|
|
if (x < 2.75)
|
|
{
|
|
z = x - L(2.5);
|
|
p = z * neval (z, RN2r5, NRN2r5) / deval (z, RD2r5, NRD2r5);
|
|
p += lgam2r5b;
|
|
p += lgam2r5a;
|
|
}
|
|
else
|
|
{
|
|
z = x - 3;
|
|
p = z * neval (z, RN3, NRN3) / deval (z, RD3, NRD3);
|
|
p += lgam3b;
|
|
p += lgam3a;
|
|
}
|
|
break;
|
|
|
|
case 4:
|
|
z = x - 4;
|
|
p = z * neval (z, RN4, NRN4) / deval (z, RD4, NRD4);
|
|
p += lgam4b;
|
|
p += lgam4a;
|
|
break;
|
|
|
|
case 5:
|
|
z = x - 5;
|
|
p = z * neval (z, RN5, NRN5) / deval (z, RD5, NRD5);
|
|
p += lgam5b;
|
|
p += lgam5a;
|
|
break;
|
|
|
|
case 6:
|
|
z = x - 6;
|
|
p = z * neval (z, RN6, NRN6) / deval (z, RD6, NRD6);
|
|
p += lgam6b;
|
|
p += lgam6a;
|
|
break;
|
|
|
|
case 7:
|
|
z = x - 7;
|
|
p = z * neval (z, RN7, NRN7) / deval (z, RD7, NRD7);
|
|
p += lgam7b;
|
|
p += lgam7a;
|
|
break;
|
|
|
|
case 8:
|
|
z = x - 8;
|
|
p = z * neval (z, RN8, NRN8) / deval (z, RD8, NRD8);
|
|
p += lgam8b;
|
|
p += lgam8a;
|
|
break;
|
|
|
|
case 9:
|
|
z = x - 9;
|
|
p = z * neval (z, RN9, NRN9) / deval (z, RD9, NRD9);
|
|
p += lgam9b;
|
|
p += lgam9a;
|
|
break;
|
|
|
|
case 10:
|
|
z = x - 10;
|
|
p = z * neval (z, RN10, NRN10) / deval (z, RD10, NRD10);
|
|
p += lgam10b;
|
|
p += lgam10a;
|
|
break;
|
|
|
|
case 11:
|
|
z = x - 11;
|
|
p = z * neval (z, RN11, NRN11) / deval (z, RD11, NRD11);
|
|
p += lgam11b;
|
|
p += lgam11a;
|
|
break;
|
|
|
|
case 12:
|
|
z = x - 12;
|
|
p = z * neval (z, RN12, NRN12) / deval (z, RD12, NRD12);
|
|
p += lgam12b;
|
|
p += lgam12a;
|
|
break;
|
|
|
|
case 13:
|
|
z = x - 13;
|
|
p = z * neval (z, RN13, NRN13) / deval (z, RD13, NRD13);
|
|
p += lgam13b;
|
|
p += lgam13a;
|
|
break;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
if (x > MAXLGM)
|
|
return (*signgamp * huge * huge);
|
|
|
|
if (x > L(0x1p120))
|
|
return x * (__logl (x) - 1);
|
|
q = ls2pi - x;
|
|
q = (x - L(0.5)) * __logl (x) + q;
|
|
if (x > L(1.0e18))
|
|
return (q);
|
|
|
|
p = 1 / (x * x);
|
|
q += neval (p, RASY, NRASY) / x;
|
|
return (q);
|
|
}
|
|
strong_alias (__ieee754_lgammal_r, __lgammal_r_finite)
|