mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-26 23:10:06 +00:00
155 lines
3.9 KiB
C
155 lines
3.9 KiB
C
/* Complex cosine hyperbole function for long double.
|
|
Copyright (C) 1997-2015 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <complex.h>
|
|
#include <fenv.h>
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <float.h>
|
|
|
|
__complex__ long double
|
|
__ccoshl (__complex__ long double x)
|
|
{
|
|
__complex__ long double retval;
|
|
int rcls = fpclassify (__real__ x);
|
|
int icls = fpclassify (__imag__ x);
|
|
|
|
if (__glibc_likely (rcls >= FP_ZERO))
|
|
{
|
|
/* Real part is finite. */
|
|
if (__glibc_likely (icls >= FP_ZERO))
|
|
{
|
|
/* Imaginary part is finite. */
|
|
const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l);
|
|
long double sinix, cosix;
|
|
|
|
if (__glibc_likely (icls != FP_SUBNORMAL))
|
|
{
|
|
__sincosl (__imag__ x, &sinix, &cosix);
|
|
}
|
|
else
|
|
{
|
|
sinix = __imag__ x;
|
|
cosix = 1.0;
|
|
}
|
|
|
|
if (fabsl (__real__ x) > t)
|
|
{
|
|
long double exp_t = __ieee754_expl (t);
|
|
long double rx = fabsl (__real__ x);
|
|
if (signbit (__real__ x))
|
|
sinix = -sinix;
|
|
rx -= t;
|
|
sinix *= exp_t / 2.0L;
|
|
cosix *= exp_t / 2.0L;
|
|
if (rx > t)
|
|
{
|
|
rx -= t;
|
|
sinix *= exp_t;
|
|
cosix *= exp_t;
|
|
}
|
|
if (rx > t)
|
|
{
|
|
/* Overflow (original real part of x > 3t). */
|
|
__real__ retval = LDBL_MAX * cosix;
|
|
__imag__ retval = LDBL_MAX * sinix;
|
|
}
|
|
else
|
|
{
|
|
long double exp_val = __ieee754_expl (rx);
|
|
__real__ retval = exp_val * cosix;
|
|
__imag__ retval = exp_val * sinix;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
__real__ retval = __ieee754_coshl (__real__ x) * cosix;
|
|
__imag__ retval = __ieee754_sinhl (__real__ x) * sinix;
|
|
}
|
|
|
|
if (fabsl (__real__ retval) < LDBL_MIN)
|
|
{
|
|
volatile long double force_underflow
|
|
= __real__ retval * __real__ retval;
|
|
(void) force_underflow;
|
|
}
|
|
if (fabsl (__imag__ retval) < LDBL_MIN)
|
|
{
|
|
volatile long double force_underflow
|
|
= __imag__ retval * __imag__ retval;
|
|
(void) force_underflow;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
__imag__ retval = __real__ x == 0.0 ? 0.0 : __nanl ("");
|
|
__real__ retval = __nanl ("") + __nanl ("");
|
|
|
|
if (icls == FP_INFINITE)
|
|
feraiseexcept (FE_INVALID);
|
|
}
|
|
}
|
|
else if (__glibc_likely (rcls == FP_INFINITE))
|
|
{
|
|
/* Real part is infinite. */
|
|
if (__glibc_likely (icls > FP_ZERO))
|
|
{
|
|
/* Imaginary part is finite. */
|
|
long double sinix, cosix;
|
|
|
|
if (__glibc_likely (icls != FP_SUBNORMAL))
|
|
{
|
|
__sincosl (__imag__ x, &sinix, &cosix);
|
|
}
|
|
else
|
|
{
|
|
sinix = __imag__ x;
|
|
cosix = 1.0;
|
|
}
|
|
|
|
__real__ retval = __copysignl (HUGE_VALL, cosix);
|
|
__imag__ retval = (__copysignl (HUGE_VALL, sinix)
|
|
* __copysignl (1.0, __real__ x));
|
|
}
|
|
else if (icls == FP_ZERO)
|
|
{
|
|
/* Imaginary part is 0.0. */
|
|
__real__ retval = HUGE_VALL;
|
|
__imag__ retval = __imag__ x * __copysignl (1.0, __real__ x);
|
|
}
|
|
else
|
|
{
|
|
/* The addition raises the invalid exception. */
|
|
__real__ retval = HUGE_VALL;
|
|
__imag__ retval = __nanl ("") + __nanl ("");
|
|
|
|
if (icls == FP_INFINITE)
|
|
feraiseexcept (FE_INVALID);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
__real__ retval = __nanl ("");
|
|
__imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nanl ("");
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
weak_alias (__ccoshl, ccoshl)
|