mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-20 03:50:07 +00:00
3e2ee7271d
* sysdeps/unix/sysv/linux/poll.c: Don't define as stub. Use simulation of system call using select. * sysdeps/unix/sysv/linux/signal.c: Use POSIX implementation. * sysdeps/unix/sysv/linux/statbuf.h: Define _STAT_VER. * sysdeps/unix/sysv/linux/i386/sigaction.c: Correct parameter name usage (new->act, old->oact). Correct asm statement because of gcc strangeness. * sysdeps/i386/i586/strchr.S: Correct typos: cmp -> cmpb. * sunrpc/clnt_perr.c: Remove declaration of sys_errlist. They conflict with the ones in stdio.h. * string/tester.c: %Z is no complete format. Change to %Zd. * sysdeps/mach/hurd/symlink.c (__symlink): Ditto.
335 lines
8.1 KiB
ArmAsm
335 lines
8.1 KiB
ArmAsm
/* strchr -- find character CH in a NUL terminated string.
|
|
Highly optimized version for ix85, x>=5.
|
|
Copyright (C) 1995 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper, <drepper@gnu.ai.mit.edu>.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public
|
|
License along with the GNU C Library; see the file COPYING.LIB. If
|
|
not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include <sysdep.h>
|
|
|
|
/* This version is especially optimized for the i586 (and following?)
|
|
processors. This is mainly done by using the two pipelines. The
|
|
version optimized for i486 is weak in this aspect because to get
|
|
as much parallelism we have to executs some *more* instructions.
|
|
|
|
The code below is structured to reflect the pairing of the instructions
|
|
as *I think* it is. I have no processor data book to verify this.
|
|
If you find something you think is incorrect let me know. */
|
|
|
|
|
|
/* The magic value which is used throughout in the whole code. */
|
|
#define magic 0xfefefeff
|
|
|
|
/*
|
|
INPUT PARAMETERS:
|
|
str (sp + 4)
|
|
ch (sp + 8)
|
|
*/
|
|
|
|
.text
|
|
ENTRY (strchr)
|
|
pushl %edi /* Save callee-safe registers. */
|
|
pushl %esi
|
|
|
|
pushl %ebx
|
|
pushl %ebp
|
|
|
|
movl 20(%esp), %eax /* get string pointer */
|
|
movl 24(%esp), %edx /* get character we are looking for */
|
|
|
|
movl %eax, %edi /* duplicate string pointer for later */
|
|
xorl %ecx, %ecx /* clear %ecx */
|
|
|
|
/* At the moment %edx contains C. What we need for the
|
|
algorithm is C in all bytes of the dword. Avoid
|
|
operations on 16 bit words because these require an
|
|
prefix byte (and one more cycle). */
|
|
movb %dl, %dh /* now it is 0|0|c|c */
|
|
movb %dl, %cl /* we construct the lower half in %ecx */
|
|
|
|
shll $16, %edx /* now %edx is c|c|0|0 */
|
|
movb %cl, %ch /* now %ecx is 0|0|c|c */
|
|
|
|
orl %ecx, %edx /* and finally c|c|c|c */
|
|
andl $3, %edi /* mask alignment bits */
|
|
|
|
jz L11 /* alignment is 0 => start loop */
|
|
|
|
movb (%eax), %cl /* load single byte */
|
|
cmpb %cl, %dl /* is byte == C? */
|
|
|
|
je L2 /* aligned => return pointer */
|
|
|
|
cmpb $0, %cl /* is byte NUL? */
|
|
je L3 /* yes => return NULL */
|
|
|
|
incl %eax /* increment pointer */
|
|
cmp $3, %edi /* was alignment == 3? */
|
|
|
|
je L11 /* yes => start loop */
|
|
|
|
movb (%eax), %cl /* load single byte */
|
|
cmpb %cl, %dl /* is byte == C? */
|
|
|
|
je L2 /* aligned => return pointer */
|
|
|
|
cmpb $0, %cl /* is byte NUL? */
|
|
je L3 /* yes => return NULL */
|
|
|
|
incl %eax /* increment pointer */
|
|
cmp $2, %edi /* was alignment == 2? */
|
|
|
|
je L11 /* yes => start loop */
|
|
|
|
movb (%eax), %cl /* load single byte */
|
|
cmpb %cl, %dl /* is byte == C? */
|
|
|
|
je L2 /* aligned => return pointer */
|
|
|
|
cmpb $0, %cl /* is byte NUL? */
|
|
je L3 /* yes => return NULL */
|
|
|
|
incl %eax /* increment pointer */
|
|
|
|
/* The following code is the preparation for the loop. The
|
|
four instruction up to `L1' will not be executed in the loop
|
|
because the same code is found at the end of the loop, but
|
|
there it is executed in parallel with other instructions. */
|
|
L11: movl (%eax), %ecx
|
|
movl $magic, %ebp
|
|
|
|
movl $magic, %edi
|
|
addl %ecx, %ebp
|
|
|
|
/* The main loop: it looks complex and indeed it is. I would
|
|
love to say `it was hard to write, so it should he hard to
|
|
read' but I will give some more hints. To fully understand
|
|
this code you should first take a look at the i486 version.
|
|
The basic algorithm is the same, but here the code organized
|
|
in a way which permits to use both pipelines all the time.
|
|
|
|
I tried to make it a bit more understandable by indenting
|
|
the code according to stage in the algorithm. It goes as
|
|
follows:
|
|
check for 0 in 1st word
|
|
check for C in 1st word
|
|
check for 0 in 2nd word
|
|
check for C in 2nd word
|
|
check for 0 in 3rd word
|
|
check for C in 3rd word
|
|
check for 0 in 4th word
|
|
check for C in 4th word
|
|
|
|
Please note that doing the test for NUL before the test for
|
|
C allows us to overlap the test for 0 in the next word with
|
|
the test for C. */
|
|
|
|
L1: xorl %ecx, %ebp /* (word^magic) */
|
|
addl %ecx, %edi /* add magic word */
|
|
|
|
leal 4(%eax), %eax /* increment pointer */
|
|
jnc L4 /* previous addl caused overflow? */
|
|
|
|
movl %ecx, %ebx /* duplicate original word */
|
|
orl $magic, %ebp /* (word^magic)|magic */
|
|
|
|
addl $1, %ebp /* (word^magic)|magic == 0xffffffff? */
|
|
jne L4 /* yes => we found word with NUL */
|
|
|
|
movl $magic, %esi /* load magic value */
|
|
xorl %edx, %ebx /* clear words which are C */
|
|
|
|
movl (%eax), %ecx
|
|
addl %ebx, %esi /* (word+magic) */
|
|
|
|
movl $magic, %edi
|
|
jnc L5 /* previous addl caused overflow? */
|
|
|
|
movl %edi, %ebp
|
|
xorl %ebx, %esi /* (word+magic)^word */
|
|
|
|
addl %ecx, %ebp
|
|
orl $magic, %esi /* ((word+magic)^word)|magic */
|
|
|
|
addl $1, %esi /* ((word+magic)^word)|magic==0xf..f?*/
|
|
jne L5 /* yes => we found word with C */
|
|
|
|
xorl %ecx, %ebp
|
|
addl %ecx, %edi
|
|
|
|
leal 4(%eax), %eax
|
|
jnc L4
|
|
|
|
movl %ecx, %ebx
|
|
orl $magic, %ebp
|
|
|
|
addl $1, %ebp
|
|
jne L4
|
|
|
|
movl $magic, %esi
|
|
xorl %edx, %ebx
|
|
|
|
movl (%eax), %ecx
|
|
addl %ebx, %esi
|
|
|
|
movl $magic, %edi
|
|
jnc L5
|
|
|
|
movl %edi, %ebp
|
|
xorl %ebx, %esi
|
|
|
|
addl %ecx, %ebp
|
|
orl $magic, %esi
|
|
|
|
addl $1, %esi
|
|
jne L5
|
|
|
|
xorl %ecx, %ebp
|
|
addl %ecx, %edi
|
|
|
|
leal 4(%eax), %eax
|
|
jnc L4
|
|
|
|
movl %ecx, %ebx
|
|
orl $magic, %ebp
|
|
|
|
addl $1, %ebp
|
|
jne L4
|
|
|
|
movl $magic, %esi
|
|
xorl %edx, %ebx
|
|
|
|
movl (%eax), %ecx
|
|
addl %ebx, %esi
|
|
|
|
movl $magic, %edi
|
|
jnc L5
|
|
|
|
movl %edi, %ebp
|
|
xorl %ebx, %esi
|
|
|
|
addl %ecx, %ebp
|
|
orl $magic, %esi
|
|
|
|
addl $1, %esi
|
|
jne L5
|
|
|
|
xorl %ecx, %ebp
|
|
addl %ecx, %edi
|
|
|
|
leal 4(%eax), %eax
|
|
jnc L4
|
|
|
|
movl %ecx, %ebx
|
|
orl $magic, %ebp
|
|
|
|
addl $1, %ebp
|
|
jne L4
|
|
|
|
movl $magic, %esi
|
|
xorl %edx, %ebx
|
|
|
|
movl (%eax), %ecx
|
|
addl %ebx, %esi
|
|
|
|
movl $magic, %edi
|
|
jnc L5
|
|
|
|
movl %edi, %ebp
|
|
xorl %ebx, %esi
|
|
|
|
addl %ecx, %ebp
|
|
orl $magic, %esi
|
|
|
|
addl $1, %esi
|
|
|
|
je L1
|
|
|
|
/* We know there is no NUL byte but a C byte in the word.
|
|
%ebx contains NUL in this particular byte. */
|
|
L5: subl $4, %eax /* adjust pointer */
|
|
testb %bl, %bl /* first byte == C? */
|
|
|
|
jz L2 /* yes => return pointer */
|
|
|
|
incl %eax /* increment pointer */
|
|
testb %bh, %bh /* second byte == C? */
|
|
|
|
jz L2 /* yes => return pointer */
|
|
|
|
shrl $16, %ebx /* make upper bytes accessible */
|
|
incl %eax /* increment pointer */
|
|
|
|
cmp $0, %bl /* third byte == C */
|
|
je L2 /* yes => return pointer */
|
|
|
|
incl %eax /* increment pointer */
|
|
|
|
L2: popl %ebp /* restore saved registers */
|
|
popl %ebx
|
|
|
|
popl %esi
|
|
popl %edi
|
|
|
|
ret
|
|
|
|
/* We know there is a NUL byte in the word. But we have to test
|
|
whether there is an C byte before it in the word. */
|
|
L4: subl $4, %eax /* adjust pointer */
|
|
cmpb %dl, %cl /* first byte == C? */
|
|
|
|
je L2 /* yes => return pointer */
|
|
|
|
cmpb $0, %cl /* first byte == NUL? */
|
|
je L3 /* yes => return NULL */
|
|
|
|
incl %eax /* increment pointer */
|
|
|
|
cmpb %dl, %ch /* second byte == C? */
|
|
je L2 /* yes => return pointer */
|
|
|
|
cmpb $0, %ch /* second byte == NUL? */
|
|
je L3 /* yes => return NULL */
|
|
|
|
shrl $16, %ecx /* make upper bytes accessible */
|
|
incl %eax /* increment pointer */
|
|
|
|
cmpb %dl, %cl /* third byte == C? */
|
|
je L2 /* yes => return pointer */
|
|
|
|
cmpb $0, %cl /* third byte == NUL? */
|
|
je L3 /* yes => return NULL */
|
|
|
|
incl %eax /* increment pointer */
|
|
|
|
/* The test four the fourth byte is necessary! */
|
|
cmpb %dl, %ch /* fourth byte == C? */
|
|
je L2 /* yes => return pointer */
|
|
|
|
L3: xorl %eax, %eax /* set return value = NULL */
|
|
|
|
popl %ebp /* restore saved registers */
|
|
popl %ebx
|
|
|
|
popl %esi
|
|
popl %edi
|
|
|
|
ret
|
|
|
|
#undef index
|
|
weak_alias (strchr, index)
|