mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-15 21:40:05 +00:00
220622dde5
This patch adds a new macro, libm_alias_finite, to define all _finite symbol. It sets all _finite symbol as compat symbol based on its first version (obtained from the definition at built generated first-versions.h). The <fn>f128_finite symbols were introduced in GLIBC 2.26 and so need special treatment in code that is shared between long double and float128. It is done by adding a list, similar to internal symbol redifinition, on sysdeps/ieee754/float128/float128_private.h. Alpha also needs some tricky changes to ensure we still emit 2 compat symbols for sqrt(f). Passes buildmanyglibc. Co-authored-by: Adhemerval Zanella <adhemerval.zanella@linaro.org> Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
82 lines
2.2 KiB
C
82 lines
2.2 KiB
C
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
|
|
/* __ieee754_sinh(x)
|
|
* Method :
|
|
* mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
|
|
* 1. Replace x by |x| (sinh(-x) = -sinh(x)).
|
|
* 2.
|
|
* E + E/(E+1)
|
|
* 0 <= x <= 40 : sinh(x) := --------------, E=expm1(x)
|
|
* 2
|
|
*
|
|
* 40 <= x <= lnovft : sinh(x) := exp(x)/2
|
|
* lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2)
|
|
* ln2ovft < x : sinh(x) := x*shuge (overflow)
|
|
*
|
|
* Special cases:
|
|
* sinh(x) is |x| if x is +INF, -INF, or NaN.
|
|
* only sinh(0)=0 is exact for finite x.
|
|
*/
|
|
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <math-underflow.h>
|
|
#include <libm-alias-finite.h>
|
|
|
|
static const long double one = 1.0, shuge = 1.0e307;
|
|
|
|
long double
|
|
__ieee754_sinhl(long double x)
|
|
{
|
|
long double t,w,h;
|
|
int64_t ix,jx;
|
|
double xhi;
|
|
|
|
/* High word of |x|. */
|
|
xhi = ldbl_high (x);
|
|
EXTRACT_WORDS64 (jx, xhi);
|
|
ix = jx&0x7fffffffffffffffLL;
|
|
|
|
/* x is INF or NaN */
|
|
if(ix>=0x7ff0000000000000LL) return x+x;
|
|
|
|
h = 0.5;
|
|
if (jx<0) h = -h;
|
|
/* |x| in [0,40], return sign(x)*0.5*(E+E/(E+1))) */
|
|
if (ix < 0x4044000000000000LL) { /* |x|<40 */
|
|
if (ix<0x3c90000000000000LL) { /* |x|<2**-54 */
|
|
math_check_force_underflow (x);
|
|
if(shuge+x>one) return x;/* sinhl(tiny) = tiny with inexact */
|
|
}
|
|
t = __expm1l(fabsl(x));
|
|
if(ix<0x3ff0000000000000LL) return h*(2.0*t-t*t/(t+one));
|
|
w = t/(t+one);
|
|
return h*(t+w);
|
|
}
|
|
|
|
/* |x| in [40, log(maxdouble)] return 0.5*exp(|x|) */
|
|
if (ix < 0x40862e42fefa39efLL) return h*__ieee754_expl(fabsl(x));
|
|
|
|
/* |x| in [log(maxdouble), overflowthresold] */
|
|
if (ix <= 0x408633ce8fb9f87eLL) {
|
|
w = __ieee754_expl(0.5*fabsl(x));
|
|
t = h*w;
|
|
return t*w;
|
|
}
|
|
|
|
/* |x| > overflowthresold, sinh(x) overflow */
|
|
return x*shuge;
|
|
}
|
|
libm_alias_finite (__ieee754_sinhl, __sinhl)
|