mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-07 01:50:07 +00:00
169 lines
4.7 KiB
C
169 lines
4.7 KiB
C
/* Copyright (C) 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public
|
|
License along with the GNU C Library; see the file COPYING.LIB. If
|
|
not, write to the Free Software Foundation, Inc., 675 Mass Ave,
|
|
Cambridge, MA 02139, USA. */
|
|
|
|
#ifdef __GNUC__
|
|
|
|
#include <sys/cdefs.h>
|
|
|
|
#ifdef __NO_MATH_INLINES
|
|
/* This is used when defining the functions themselves. Define them with
|
|
__ names, and with `static inline' instead of `extern inline' so the
|
|
bodies will always be used, never an external function call. */
|
|
#define __m81_u(x) __CONCAT(__,x)
|
|
#define __m81_inline static __inline
|
|
#else
|
|
#define __m81_u(x) x
|
|
#define __m81_inline exter __inline
|
|
#define __MATH_INLINES 1
|
|
#endif
|
|
|
|
#define __inline_mathop2(func, op) \
|
|
__m81_inline __CONSTVALUE double \
|
|
__m81_u(func)(double __mathop_x) \
|
|
{ \
|
|
double __result; \
|
|
__asm("f" __STRING(op) "%.x %1, %0" : "=f" (__result) : "f" (__mathop_x));\
|
|
return __result; \
|
|
}
|
|
#define __inline_mathop(op) __inline_mathop2(op, op)
|
|
|
|
__inline_mathop(acos)
|
|
__inline_mathop(asin)
|
|
__inline_mathop(atan)
|
|
__inline_mathop(cos)
|
|
__inline_mathop(sin)
|
|
__inline_mathop(tan)
|
|
__inline_mathop(cosh)
|
|
__inline_mathop(sinh)
|
|
__inline_mathop(tanh)
|
|
__inline_mathop2(exp, etox)
|
|
__inline_mathop2(fabs, abs)
|
|
__inline_mathop(log10)
|
|
__inline_mathop2(log, logn)
|
|
__inline_mathop2(floor, intrz)
|
|
__inline_mathop(sqrt)
|
|
|
|
__inline_mathop2(__rint, int)
|
|
__inline_mathop2(__expm1, etoxm1)
|
|
|
|
#ifdef __USE_MISC
|
|
__inline_mathop2(rint, int)
|
|
__inline_mathop2(expm1, etoxm1)
|
|
__inline_mathop2(log1p, lognp1)
|
|
__inline_mathop(atanh)
|
|
#endif
|
|
|
|
__m81_inline __CONSTVALUE double
|
|
__m81_u(__drem)(double __x, double __y)
|
|
{
|
|
double __result;
|
|
__asm("frem%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x));
|
|
return __result;
|
|
}
|
|
|
|
__m81_inline __CONSTVALUE double
|
|
__m81_u(ldexp)(double __x, int __e)
|
|
{
|
|
double __result;
|
|
double __double_e = (double) __e;
|
|
__asm("fscale%.x %1, %0" : "=f" (__result) : "f" (__double_e), "0" (__x));
|
|
return __result;
|
|
}
|
|
|
|
__m81_inline __CONSTVALUE double
|
|
__m81_u(fmod)(double __x, double __y)
|
|
{
|
|
double __result;
|
|
__asm("fmod%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x));
|
|
return __result;
|
|
}
|
|
|
|
__m81_inline double
|
|
__m81_u(frexp)(double __value, int *__expptr)
|
|
{
|
|
double __mantissa, __exponent;
|
|
__asm("fgetexp%.x %1, %0" : "=f" (__exponent) : "f" (__value));
|
|
__asm("fgetman%.x %1, %0" : "=f" (__mantissa) : "f" (__value));
|
|
*__expptr = (int) __exponent;
|
|
return __mantissa;
|
|
}
|
|
|
|
__m81_inline __CONSTVALUE double
|
|
__m81_u(pow)(double __x, double __y)
|
|
{
|
|
double __result;
|
|
if (__y == 0.0 || __x == 1.0)
|
|
__result = 1.0;
|
|
else if (__y == 1.0)
|
|
__result = __x;
|
|
else if (__y == 2.0)
|
|
__result = __x * __x;
|
|
else if (__x == 10.0)
|
|
__asm("ftentox%.x %1, %0" : "=f" (__result) : "f" (__y));
|
|
else if (__x == 2.0)
|
|
__asm("ftwotox%.x %1, %0" : "=f" (__result) : "f" (__y));
|
|
else
|
|
__result = __m81_u(exp)(__y * __m81_u(log)(__x));
|
|
return __result;
|
|
}
|
|
|
|
__m81_inline __CONSTVALUE double
|
|
__m81_u(ceil)(double __x)
|
|
{
|
|
double __result;
|
|
unsigned long int __ctrl_reg;
|
|
__asm("fmove%.l fpcr, %0" : "=g" (__ctrl_reg));
|
|
/* Set rounding towards positive infinity. */
|
|
__asm("fmove%.l %0, fpcr" : /* No outputs. */ : "g" (__ctrl_reg | 0x30));
|
|
/* Convert X to an integer, using +Inf rounding. */
|
|
__asm("fint%.x %1, %0" : "=f" (__result) : "f" (__x));
|
|
/* Restore the previous rounding mode. */
|
|
__asm("fmove%.l %0, fpcr" : /* No outputs. */ : "g" (__ctrl_reg));
|
|
return __result;
|
|
}
|
|
|
|
__m81_inline double
|
|
__m81_u(modf)(double __value, double *__iptr)
|
|
{
|
|
double __modf_int = __m81_u(floor)(__value);
|
|
*__iptr = __modf_int;
|
|
return __value - __modf_int;
|
|
}
|
|
|
|
__m81_inline __CONSTVALUE int
|
|
__m81_u(__isinf)(double __value)
|
|
{
|
|
/* There is no branch-condition for infinity,
|
|
so we must extract and examine the condition codes manually. */
|
|
unsigned long int __fpsr;
|
|
__asm("ftst%.x %1\n"
|
|
"fmove%.l fpsr, %0" : "=g" (__fpsr) : "f" (__value));
|
|
return (__fpsr & (2 << (3 * 8))) ? (__value < 0 ? -1 : 1) : 0;
|
|
}
|
|
|
|
__m81_inline __CONSTVALUE int
|
|
__m81_u(__isnan)(double __value)
|
|
{
|
|
char __result;
|
|
__asm("ftst%.x %1\n"
|
|
"fsun %0" : "=g" (__result) : "f" (__value));
|
|
return __result;
|
|
}
|
|
|
|
#endif /* GCC. */
|