mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-10 11:20:10 +00:00
518 lines
14 KiB
ArmAsm
518 lines
14 KiB
ArmAsm
/* strchr/strchrnul optimized with 256-bit EVEX instructions.
|
|
Copyright (C) 2021-2024 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include <isa-level.h>
|
|
|
|
#if ISA_SHOULD_BUILD (4)
|
|
|
|
# include <sysdep.h>
|
|
|
|
# ifndef STRCHR
|
|
# define STRCHR __strchr_evex
|
|
# endif
|
|
|
|
# ifndef VEC_SIZE
|
|
# include "x86-evex256-vecs.h"
|
|
# endif
|
|
|
|
# ifdef USE_AS_WCSCHR
|
|
# define VPBROADCAST vpbroadcastd
|
|
# define VPCMP vpcmpd
|
|
# define VPCMPEQ vpcmpeqd
|
|
# define VPTESTN vptestnmd
|
|
# define VPTEST vptestmd
|
|
# define VPMINU vpminud
|
|
# define CHAR_REG esi
|
|
# define SHIFT_REG rcx
|
|
# define CHAR_SIZE 4
|
|
|
|
# define USE_WIDE_CHAR
|
|
# else
|
|
# define VPBROADCAST vpbroadcastb
|
|
# define VPCMP vpcmpb
|
|
# define VPCMPEQ vpcmpeqb
|
|
# define VPTESTN vptestnmb
|
|
# define VPTEST vptestmb
|
|
# define VPMINU vpminub
|
|
# define CHAR_REG sil
|
|
# define SHIFT_REG rdi
|
|
# define CHAR_SIZE 1
|
|
# endif
|
|
|
|
# include "reg-macros.h"
|
|
|
|
# if VEC_SIZE == 64
|
|
# define MASK_GPR rcx
|
|
# define LOOP_REG rax
|
|
|
|
# define COND_MASK(k_reg) {%k_reg}
|
|
# else
|
|
# define MASK_GPR rax
|
|
# define LOOP_REG rdi
|
|
|
|
# define COND_MASK(k_reg)
|
|
# endif
|
|
|
|
# define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE)
|
|
|
|
|
|
# if CHAR_PER_VEC == 64
|
|
# define LAST_VEC_OFFSET (VEC_SIZE * 3)
|
|
# define TESTZ(reg) incq %VGPR_SZ(reg, 64)
|
|
# else
|
|
|
|
# if CHAR_PER_VEC == 32
|
|
# define TESTZ(reg) incl %VGPR_SZ(reg, 32)
|
|
# elif CHAR_PER_VEC == 16
|
|
# define TESTZ(reg) incw %VGPR_SZ(reg, 16)
|
|
# else
|
|
# define TESTZ(reg) incb %VGPR_SZ(reg, 8)
|
|
# endif
|
|
|
|
# define LAST_VEC_OFFSET (VEC_SIZE * 2)
|
|
# endif
|
|
|
|
# define VMATCH VMM(0)
|
|
|
|
# define PAGE_SIZE 4096
|
|
|
|
.section SECTION(.text), "ax", @progbits
|
|
ENTRY_P2ALIGN (STRCHR, 6)
|
|
/* Broadcast CHAR to VEC_0. */
|
|
VPBROADCAST %esi, %VMATCH
|
|
movl %edi, %eax
|
|
andl $(PAGE_SIZE - 1), %eax
|
|
/* Check if we cross page boundary with one vector load.
|
|
Otherwise it is safe to use an unaligned load. */
|
|
cmpl $(PAGE_SIZE - VEC_SIZE), %eax
|
|
ja L(cross_page_boundary)
|
|
|
|
|
|
/* Check the first VEC_SIZE bytes. Search for both CHAR and the
|
|
null bytes. */
|
|
VMOVU (%rdi), %VMM(1)
|
|
/* Leaves only CHARS matching esi as 0. */
|
|
vpxorq %VMM(1), %VMATCH, %VMM(2)
|
|
VPMINU %VMM(2), %VMM(1), %VMM(2)
|
|
/* Each bit in K0 represents a CHAR or a null byte in VEC_1. */
|
|
VPTESTN %VMM(2), %VMM(2), %k0
|
|
KMOV %k0, %VRAX
|
|
# if VEC_SIZE == 64 && defined USE_AS_STRCHRNUL
|
|
/* If VEC_SIZE == 64 && STRCHRNUL use bsf to test condition so
|
|
that all logic for match/null in first VEC first in 1x cache
|
|
lines. This has a slight cost to larger sizes. */
|
|
bsf %VRAX, %VRAX
|
|
jz L(aligned_more)
|
|
# else
|
|
test %VRAX, %VRAX
|
|
jz L(aligned_more)
|
|
bsf %VRAX, %VRAX
|
|
# endif
|
|
# ifndef USE_AS_STRCHRNUL
|
|
/* Found CHAR or the null byte. */
|
|
cmp (%rdi, %rax, CHAR_SIZE), %CHAR_REG
|
|
/* NB: Use a branch instead of cmovcc here. The expectation is
|
|
that with strchr the user will branch based on input being
|
|
null. Since this branch will be 100% predictive of the user
|
|
branch a branch miss here should save what otherwise would
|
|
be branch miss in the user code. Otherwise using a branch 1)
|
|
saves code size and 2) is faster in highly predictable
|
|
environments. */
|
|
jne L(zero)
|
|
# endif
|
|
# ifdef USE_AS_WCSCHR
|
|
/* NB: Multiply wchar_t count by 4 to get the number of bytes.
|
|
*/
|
|
leaq (%rdi, %rax, CHAR_SIZE), %rax
|
|
# else
|
|
addq %rdi, %rax
|
|
# endif
|
|
ret
|
|
|
|
# ifndef USE_AS_STRCHRNUL
|
|
L(zero):
|
|
xorl %eax, %eax
|
|
ret
|
|
# endif
|
|
|
|
.p2align 4,, 2
|
|
L(first_vec_x3):
|
|
subq $-(VEC_SIZE * 2), %rdi
|
|
# if VEC_SIZE == 32
|
|
/* Reuse L(first_vec_x3) for last VEC2 only for VEC_SIZE == 32.
|
|
For VEC_SIZE == 64 the registers don't match. */
|
|
L(last_vec_x2):
|
|
# endif
|
|
L(first_vec_x1):
|
|
/* Use bsf here to save 1-byte keeping keeping the block in 1x
|
|
fetch block. eax guaranteed non-zero. */
|
|
bsf %VRCX, %VRCX
|
|
# ifndef USE_AS_STRCHRNUL
|
|
/* Found CHAR or the null byte. */
|
|
cmp (VEC_SIZE)(%rdi, %rcx, CHAR_SIZE), %CHAR_REG
|
|
jne L(zero)
|
|
# endif
|
|
/* NB: Multiply sizeof char type (1 or 4) to get the number of
|
|
bytes. */
|
|
leaq (VEC_SIZE)(%rdi, %rcx, CHAR_SIZE), %rax
|
|
ret
|
|
|
|
.p2align 4,, 2
|
|
L(first_vec_x4):
|
|
subq $-(VEC_SIZE * 2), %rdi
|
|
L(first_vec_x2):
|
|
# ifndef USE_AS_STRCHRNUL
|
|
/* Check to see if first match was CHAR (k0) or null (k1). */
|
|
KMOV %k0, %VRAX
|
|
tzcnt %VRAX, %VRAX
|
|
KMOV %k1, %VRCX
|
|
/* bzhil will not be 0 if first match was null. */
|
|
bzhi %VRAX, %VRCX, %VRCX
|
|
jne L(zero)
|
|
# else
|
|
/* Combine CHAR and null matches. */
|
|
KOR %k0, %k1, %k0
|
|
KMOV %k0, %VRAX
|
|
bsf %VRAX, %VRAX
|
|
# endif
|
|
/* NB: Multiply sizeof char type (1 or 4) to get the number of
|
|
bytes. */
|
|
leaq (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %rax
|
|
ret
|
|
|
|
# ifdef USE_AS_STRCHRNUL
|
|
/* We use this as a hook to get imm8 encoding for the jmp to
|
|
L(page_cross_boundary). This allows the hot case of a
|
|
match/null-term in first VEC to fit entirely in 1 cache
|
|
line. */
|
|
L(cross_page_boundary):
|
|
jmp L(cross_page_boundary_real)
|
|
# endif
|
|
|
|
.p2align 4
|
|
L(aligned_more):
|
|
L(cross_page_continue):
|
|
/* Align data to VEC_SIZE. */
|
|
andq $-VEC_SIZE, %rdi
|
|
|
|
/* Check the next 4 * VEC_SIZE. Only one VEC_SIZE at a time
|
|
since data is only aligned to VEC_SIZE. Use two alternating
|
|
methods for checking VEC to balance latency and port
|
|
contention. */
|
|
|
|
/* Method(1) with 8c latency:
|
|
For VEC_SIZE == 32:
|
|
p0 * 1.83, p1 * 0.83, p5 * 1.33
|
|
For VEC_SIZE == 64:
|
|
p0 * 2.50, p1 * 0.00, p5 * 1.50 */
|
|
VMOVA (VEC_SIZE)(%rdi), %VMM(1)
|
|
/* Leaves only CHARS matching esi as 0. */
|
|
vpxorq %VMM(1), %VMATCH, %VMM(2)
|
|
VPMINU %VMM(2), %VMM(1), %VMM(2)
|
|
/* Each bit in K0 represents a CHAR or a null byte in VEC_1. */
|
|
VPTESTN %VMM(2), %VMM(2), %k0
|
|
KMOV %k0, %VRCX
|
|
test %VRCX, %VRCX
|
|
jnz L(first_vec_x1)
|
|
|
|
/* Method(2) with 6c latency:
|
|
For VEC_SIZE == 32:
|
|
p0 * 1.00, p1 * 0.00, p5 * 2.00
|
|
For VEC_SIZE == 64:
|
|
p0 * 1.00, p1 * 0.00, p5 * 2.00 */
|
|
VMOVA (VEC_SIZE * 2)(%rdi), %VMM(1)
|
|
/* Each bit in K0 represents a CHAR in VEC_1. */
|
|
VPCMPEQ %VMM(1), %VMATCH, %k0
|
|
/* Each bit in K1 represents a CHAR in VEC_1. */
|
|
VPTESTN %VMM(1), %VMM(1), %k1
|
|
KORTEST %k0, %k1
|
|
jnz L(first_vec_x2)
|
|
|
|
/* By swapping between Method 1/2 we get more fair port
|
|
distrubition and better throughput. */
|
|
|
|
VMOVA (VEC_SIZE * 3)(%rdi), %VMM(1)
|
|
/* Leaves only CHARS matching esi as 0. */
|
|
vpxorq %VMM(1), %VMATCH, %VMM(2)
|
|
VPMINU %VMM(2), %VMM(1), %VMM(2)
|
|
/* Each bit in K0 represents a CHAR or a null byte in VEC_1. */
|
|
VPTESTN %VMM(2), %VMM(2), %k0
|
|
KMOV %k0, %VRCX
|
|
test %VRCX, %VRCX
|
|
jnz L(first_vec_x3)
|
|
|
|
VMOVA (VEC_SIZE * 4)(%rdi), %VMM(1)
|
|
/* Each bit in K0 represents a CHAR in VEC_1. */
|
|
VPCMPEQ %VMM(1), %VMATCH, %k0
|
|
/* Each bit in K1 represents a CHAR in VEC_1. */
|
|
VPTESTN %VMM(1), %VMM(1), %k1
|
|
KORTEST %k0, %k1
|
|
jnz L(first_vec_x4)
|
|
|
|
/* Align data to VEC_SIZE * 4 for the loop. */
|
|
# if VEC_SIZE == 64
|
|
/* Use rax for the loop reg as it allows to the loop to fit in
|
|
exactly 2-cache-lines. (more efficient imm32 + gpr
|
|
encoding). */
|
|
leaq (VEC_SIZE)(%rdi), %rax
|
|
/* No partial register stalls on evex512 processors. */
|
|
xorb %al, %al
|
|
# else
|
|
/* For VEC_SIZE == 32 continue using rdi for loop reg so we can
|
|
reuse more code and save space. */
|
|
addq $VEC_SIZE, %rdi
|
|
andq $-(VEC_SIZE * 4), %rdi
|
|
# endif
|
|
.p2align 4
|
|
L(loop_4x_vec):
|
|
/* Check 4x VEC at a time. No penalty for imm32 offset with evex
|
|
encoding (if offset % VEC_SIZE == 0). */
|
|
VMOVA (VEC_SIZE * 4)(%LOOP_REG), %VMM(1)
|
|
VMOVA (VEC_SIZE * 5)(%LOOP_REG), %VMM(2)
|
|
VMOVA (VEC_SIZE * 6)(%LOOP_REG), %VMM(3)
|
|
VMOVA (VEC_SIZE * 7)(%LOOP_REG), %VMM(4)
|
|
|
|
/* Collect bits where VEC_1 does NOT match esi. This is later
|
|
use to mask of results (getting not matches allows us to
|
|
save an instruction on combining). */
|
|
VPCMP $4, %VMATCH, %VMM(1), %k1
|
|
|
|
/* Two methods for loop depending on VEC_SIZE. This is because
|
|
with zmm registers VPMINU can only run on p0 (as opposed to
|
|
p0/p1 for ymm) so it is less preferred. */
|
|
# if VEC_SIZE == 32
|
|
/* For VEC_2 and VEC_3 use xor to set the CHARs matching esi to
|
|
zero. */
|
|
vpxorq %VMM(2), %VMATCH, %VMM(6)
|
|
vpxorq %VMM(3), %VMATCH, %VMM(7)
|
|
|
|
/* Find non-matches in VEC_4 while combining with non-matches
|
|
from VEC_1. NB: Try and use masked predicate execution on
|
|
instructions that have mask result as it has no latency
|
|
penalty. */
|
|
VPCMP $4, %VMATCH, %VMM(4), %k4{%k1}
|
|
|
|
/* Combined zeros from VEC_1 / VEC_2 (search for null term). */
|
|
VPMINU %VMM(1), %VMM(2), %VMM(2)
|
|
|
|
/* Use min to select all zeros from either xor or end of
|
|
string). */
|
|
VPMINU %VMM(3), %VMM(7), %VMM(3)
|
|
VPMINU %VMM(2), %VMM(6), %VMM(2)
|
|
|
|
/* Combined zeros from VEC_2 / VEC_3 (search for null term). */
|
|
VPMINU %VMM(3), %VMM(4), %VMM(4)
|
|
|
|
/* Combined zeros from VEC_2 / VEC_4 (this has all null term and
|
|
esi matches for VEC_2 / VEC_3). */
|
|
VPMINU %VMM(2), %VMM(4), %VMM(4)
|
|
# else
|
|
/* Collect non-matches for VEC_2. */
|
|
VPCMP $4, %VMM(2), %VMATCH, %k2
|
|
|
|
/* Combined zeros from VEC_1 / VEC_2 (search for null term). */
|
|
VPMINU %VMM(1), %VMM(2), %VMM(2)
|
|
|
|
/* Find non-matches in VEC_3/VEC_4 while combining with non-
|
|
matches from VEC_1/VEC_2 respectively. */
|
|
VPCMP $4, %VMM(3), %VMATCH, %k3{%k1}
|
|
VPCMP $4, %VMM(4), %VMATCH, %k4{%k2}
|
|
|
|
/* Finish combining zeros in all VECs. */
|
|
VPMINU %VMM(3), %VMM(4), %VMM(4)
|
|
|
|
/* Combine in esi matches for VEC_3 (if there was a match with
|
|
esi, the corresponding bit in %k3 is zero so the
|
|
VPMINU_MASKZ will have a zero in the result). NB: This make
|
|
the VPMINU 3c latency. The only way to avoid it is to
|
|
create a 12c dependency chain on all the `VPCMP $4, ...`
|
|
which has higher total latency. */
|
|
VPMINU %VMM(2), %VMM(4), %VMM(4){%k3}{z}
|
|
# endif
|
|
VPTEST %VMM(4), %VMM(4), %k0{%k4}
|
|
KMOV %k0, %VRDX
|
|
subq $-(VEC_SIZE * 4), %LOOP_REG
|
|
|
|
/* TESTZ is inc using the proper register width depending on
|
|
CHAR_PER_VEC. An esi match or null-term match leaves a zero-
|
|
bit in rdx so inc won't overflow and won't be zero. */
|
|
TESTZ (rdx)
|
|
jz L(loop_4x_vec)
|
|
|
|
VPTEST %VMM(1), %VMM(1), %k0{%k1}
|
|
KMOV %k0, %VGPR(MASK_GPR)
|
|
TESTZ (MASK_GPR)
|
|
# if VEC_SIZE == 32
|
|
/* We can reuse the return code in page_cross logic for VEC_SIZE
|
|
== 32. */
|
|
jnz L(last_vec_x1_vec_size32)
|
|
# else
|
|
jnz L(last_vec_x1_vec_size64)
|
|
# endif
|
|
|
|
|
|
/* COND_MASK integrates the esi matches for VEC_SIZE == 64. For
|
|
VEC_SIZE == 32 they are already integrated. */
|
|
VPTEST %VMM(2), %VMM(2), %k0 COND_MASK(k2)
|
|
KMOV %k0, %VRCX
|
|
TESTZ (rcx)
|
|
jnz L(last_vec_x2)
|
|
|
|
VPTEST %VMM(3), %VMM(3), %k0 COND_MASK(k3)
|
|
KMOV %k0, %VRCX
|
|
# if CHAR_PER_VEC == 64
|
|
TESTZ (rcx)
|
|
jnz L(last_vec_x3)
|
|
# else
|
|
salq $CHAR_PER_VEC, %rdx
|
|
TESTZ (rcx)
|
|
orq %rcx, %rdx
|
|
# endif
|
|
|
|
bsfq %rdx, %rdx
|
|
|
|
# ifndef USE_AS_STRCHRNUL
|
|
/* Check if match was CHAR or null. */
|
|
cmp (LAST_VEC_OFFSET)(%LOOP_REG, %rdx, CHAR_SIZE), %CHAR_REG
|
|
jne L(zero_end)
|
|
# endif
|
|
/* NB: Multiply sizeof char type (1 or 4) to get the number of
|
|
bytes. */
|
|
leaq (LAST_VEC_OFFSET)(%LOOP_REG, %rdx, CHAR_SIZE), %rax
|
|
ret
|
|
|
|
# ifndef USE_AS_STRCHRNUL
|
|
L(zero_end):
|
|
xorl %eax, %eax
|
|
ret
|
|
# endif
|
|
|
|
|
|
/* Separate return label for last VEC1 because for VEC_SIZE ==
|
|
32 we can reuse return code in L(page_cross) but VEC_SIZE ==
|
|
64 has mismatched registers. */
|
|
# if VEC_SIZE == 64
|
|
.p2align 4,, 8
|
|
L(last_vec_x1_vec_size64):
|
|
bsf %VRCX, %VRCX
|
|
# ifndef USE_AS_STRCHRNUL
|
|
/* Check if match was null. */
|
|
cmp (%rax, %rcx, CHAR_SIZE), %CHAR_REG
|
|
jne L(zero_end)
|
|
# endif
|
|
# ifdef USE_AS_WCSCHR
|
|
/* NB: Multiply wchar_t count by 4 to get the number of bytes.
|
|
*/
|
|
leaq (%rax, %rcx, CHAR_SIZE), %rax
|
|
# else
|
|
addq %rcx, %rax
|
|
# endif
|
|
ret
|
|
|
|
/* Since we can't combine the last 2x matches for CHAR_PER_VEC
|
|
== 64 we need return label for last VEC3. */
|
|
# if CHAR_PER_VEC == 64
|
|
.p2align 4,, 8
|
|
L(last_vec_x3):
|
|
addq $VEC_SIZE, %LOOP_REG
|
|
# endif
|
|
|
|
/* Duplicate L(last_vec_x2) for VEC_SIZE == 64 because we can't
|
|
reuse L(first_vec_x3) due to register mismatch. */
|
|
L(last_vec_x2):
|
|
bsf %VGPR(MASK_GPR), %VGPR(MASK_GPR)
|
|
# ifndef USE_AS_STRCHRNUL
|
|
/* Check if match was null. */
|
|
cmp (VEC_SIZE * 1)(%LOOP_REG, %MASK_GPR, CHAR_SIZE), %CHAR_REG
|
|
jne L(zero_end)
|
|
# endif
|
|
/* NB: Multiply sizeof char type (1 or 4) to get the number of
|
|
bytes. */
|
|
leaq (VEC_SIZE * 1)(%LOOP_REG, %MASK_GPR, CHAR_SIZE), %rax
|
|
ret
|
|
# endif
|
|
|
|
/* Cold case for crossing page with first load. */
|
|
.p2align 4,, 10
|
|
# ifndef USE_AS_STRCHRNUL
|
|
L(cross_page_boundary):
|
|
# endif
|
|
L(cross_page_boundary_real):
|
|
/* Align rdi. */
|
|
xorq %rdi, %rax
|
|
VMOVA (PAGE_SIZE - VEC_SIZE)(%rax), %VMM(1)
|
|
/* Use high latency method of getting matches to save code size.
|
|
*/
|
|
|
|
/* K1 has 1s where VEC(1) does NOT match esi. */
|
|
VPCMP $4, %VMM(1), %VMATCH, %k1
|
|
/* K0 has ones where K1 is 1 (non-match with esi), and non-zero
|
|
(null). */
|
|
VPTEST %VMM(1), %VMM(1), %k0{%k1}
|
|
KMOV %k0, %VRAX
|
|
/* Remove the leading bits. */
|
|
# ifdef USE_AS_WCSCHR
|
|
movl %edi, %VGPR_SZ(SHIFT_REG, 32)
|
|
/* NB: Divide shift count by 4 since each bit in K1 represent 4
|
|
bytes. */
|
|
sarl $2, %VGPR_SZ(SHIFT_REG, 32)
|
|
andl $(CHAR_PER_VEC - 1), %VGPR_SZ(SHIFT_REG, 32)
|
|
|
|
/* if wcsrchr we need to reverse matches as we can't rely on
|
|
signed shift to bring in ones. There is not sarx for
|
|
gpr8/16. Also not we can't use inc here as the lower bits
|
|
represent matches out of range so we can't rely on overflow.
|
|
*/
|
|
xorl $((1 << CHAR_PER_VEC)- 1), %eax
|
|
# endif
|
|
/* Use arithmetic shift so that leading 1s are filled in. */
|
|
sarx %VGPR(SHIFT_REG), %VRAX, %VRAX
|
|
/* If eax is all ones then no matches for esi or NULL. */
|
|
|
|
# ifdef USE_AS_WCSCHR
|
|
test %VRAX, %VRAX
|
|
# else
|
|
inc %VRAX
|
|
# endif
|
|
jz L(cross_page_continue)
|
|
|
|
.p2align 4,, 10
|
|
L(last_vec_x1_vec_size32):
|
|
bsf %VRAX, %VRAX
|
|
# ifdef USE_AS_WCSCHR
|
|
/* NB: Multiply wchar_t count by 4 to get the number of bytes.
|
|
*/
|
|
leaq (%rdi, %rax, CHAR_SIZE), %rax
|
|
# else
|
|
addq %rdi, %rax
|
|
# endif
|
|
# ifndef USE_AS_STRCHRNUL
|
|
/* Check to see if match was CHAR or null. */
|
|
cmp (%rax), %CHAR_REG
|
|
jne L(zero_end_0)
|
|
# endif
|
|
ret
|
|
# ifndef USE_AS_STRCHRNUL
|
|
L(zero_end_0):
|
|
xorl %eax, %eax
|
|
ret
|
|
# endif
|
|
|
|
END (STRCHR)
|
|
#endif
|