mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-09 19:00:08 +00:00
cb8023f938
RTLD_BOOTSTRAP is defined.
570 lines
16 KiB
C
570 lines
16 KiB
C
/* Machine-dependent ELF dynamic relocation inline functions. Alpha version.
|
|
Copyright (C) 1996,1997,1998,1999,2000,2001 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Richard Henderson <rth@tamu.edu>.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public
|
|
License along with the GNU C Library; see the file COPYING.LIB. If not,
|
|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
/* This was written in the absence of an ABI -- don't expect
|
|
it to remain unchanged. */
|
|
|
|
#ifndef dl_machine_h
|
|
#define dl_machine_h 1
|
|
|
|
#define ELF_MACHINE_NAME "alpha"
|
|
|
|
#include <string.h>
|
|
|
|
|
|
/* Return nonzero iff ELF header is compatible with the running host. */
|
|
static inline int
|
|
elf_machine_matches_host (const Elf64_Ehdr *ehdr)
|
|
{
|
|
return ehdr->e_machine == EM_ALPHA;
|
|
}
|
|
|
|
/* Return the link-time address of _DYNAMIC. The multiple-got-capable
|
|
linker no longer allocates the first .got entry for this. But not to
|
|
worry, no special tricks are needed. */
|
|
static inline Elf64_Addr
|
|
elf_machine_dynamic (void)
|
|
{
|
|
#ifndef NO_AXP_MULTI_GOT_LD
|
|
return (Elf64_Addr) &_DYNAMIC;
|
|
#else
|
|
register Elf64_Addr *gp __asm__ ("$29");
|
|
return gp[-4096];
|
|
#endif
|
|
}
|
|
|
|
/* Return the run-time load address of the shared object. */
|
|
static inline Elf64_Addr
|
|
elf_machine_load_address (void)
|
|
{
|
|
/* NOTE: While it is generally unfriendly to put data in the text
|
|
segment, it is only slightly less so when the "data" is an
|
|
instruction. While we don't have to worry about GLD just yet, an
|
|
optimizing linker might decide that our "data" is an unreachable
|
|
instruction and throw it away -- with the right switches, DEC's
|
|
linker will do this. What ought to happen is we should add
|
|
something to GAS to allow us access to the new GPREL_HI32/LO32
|
|
relocation types stolen from OSF/1 3.0. */
|
|
/* This code relies on the fact that BRADDR relocations do not
|
|
appear in dynamic relocation tables. Not that that would be very
|
|
useful anyway -- br/bsr has a 4MB range and the shared libraries
|
|
are usually many many terabytes away. */
|
|
|
|
Elf64_Addr dot;
|
|
long int zero_disp;
|
|
|
|
asm("br %0, 1f\n\t"
|
|
".weak __load_address_undefined\n\t"
|
|
"br $0, __load_address_undefined\n"
|
|
"1:"
|
|
: "=r"(dot));
|
|
|
|
zero_disp = *(int *)dot;
|
|
zero_disp = (zero_disp << 43) >> 41;
|
|
|
|
return dot + 4 + zero_disp;
|
|
}
|
|
|
|
/* Set up the loaded object described by L so its unrelocated PLT
|
|
entries will jump to the on-demand fixup code in dl-runtime.c. */
|
|
|
|
static inline int
|
|
elf_machine_runtime_setup (struct link_map *l, int lazy, int profile)
|
|
{
|
|
Elf64_Addr plt;
|
|
extern void _dl_runtime_resolve (void);
|
|
extern void _dl_runtime_profile (void);
|
|
|
|
if (l->l_info[DT_JMPREL] && lazy)
|
|
{
|
|
/* The GOT entries for the functions in the PLT have not been
|
|
filled in yet. Their initial contents are directed to the
|
|
PLT which arranges for the dynamic linker to be called. */
|
|
plt = D_PTR (l, l_info[DT_PLTGOT]);
|
|
|
|
/* This function will be called to perform the relocation. */
|
|
if (!profile)
|
|
*(Elf64_Addr *)(plt + 16) = (Elf64_Addr) &_dl_runtime_resolve;
|
|
else
|
|
{
|
|
*(Elf64_Addr *)(plt + 16) = (Elf64_Addr) &_dl_runtime_profile;
|
|
|
|
if (_dl_name_match_p (_dl_profile, l))
|
|
{
|
|
/* This is the object we are looking for. Say that we really
|
|
want profiling and the timers are started. */
|
|
_dl_profile_map = l;
|
|
}
|
|
}
|
|
|
|
/* Identify this shared object */
|
|
*(Elf64_Addr *)(plt + 24) = (Elf64_Addr) l;
|
|
|
|
/* If the first instruction of the plt entry is not
|
|
"br $28, plt0", we cannot do lazy relocation. */
|
|
lazy = (*(unsigned int *)(plt + 32) == 0xc39ffff7);
|
|
}
|
|
|
|
return lazy;
|
|
}
|
|
|
|
/* This code is used in dl-runtime.c to call the `fixup' function
|
|
and then redirect to the address it returns. */
|
|
#define TRAMPOLINE_TEMPLATE(tramp_name, fixup_name, IMB) \
|
|
extern void tramp_name (void); \
|
|
asm ( "\
|
|
.globl " #tramp_name "
|
|
.ent " #tramp_name "
|
|
" #tramp_name ":
|
|
lda $sp, -44*8($sp)
|
|
.frame $sp, 44*8, $26
|
|
/* Preserve all integer registers that C normally doesn't. */
|
|
stq $26, 0*8($sp)
|
|
stq $0, 1*8($sp)
|
|
stq $1, 2*8($sp)
|
|
stq $2, 3*8($sp)
|
|
stq $3, 4*8($sp)
|
|
stq $4, 5*8($sp)
|
|
stq $5, 6*8($sp)
|
|
stq $6, 7*8($sp)
|
|
stq $7, 8*8($sp)
|
|
stq $8, 9*8($sp)
|
|
stq $16, 10*8($sp)
|
|
stq $17, 11*8($sp)
|
|
stq $18, 12*8($sp)
|
|
stq $19, 13*8($sp)
|
|
stq $20, 14*8($sp)
|
|
stq $21, 15*8($sp)
|
|
stq $22, 16*8($sp)
|
|
stq $23, 17*8($sp)
|
|
stq $24, 18*8($sp)
|
|
stq $25, 19*8($sp)
|
|
stq $29, 20*8($sp)
|
|
stt $f0, 21*8($sp)
|
|
stt $f1, 22*8($sp)
|
|
stt $f10, 23*8($sp)
|
|
stt $f11, 24*8($sp)
|
|
stt $f12, 25*8($sp)
|
|
stt $f13, 26*8($sp)
|
|
stt $f14, 27*8($sp)
|
|
stt $f15, 28*8($sp)
|
|
stt $f16, 29*8($sp)
|
|
stt $f17, 30*8($sp)
|
|
stt $f18, 31*8($sp)
|
|
stt $f19, 32*8($sp)
|
|
stt $f20, 33*8($sp)
|
|
stt $f21, 34*8($sp)
|
|
stt $f22, 35*8($sp)
|
|
stt $f23, 36*8($sp)
|
|
stt $f24, 37*8($sp)
|
|
stt $f25, 38*8($sp)
|
|
stt $f26, 39*8($sp)
|
|
stt $f27, 40*8($sp)
|
|
stt $f28, 41*8($sp)
|
|
stt $f29, 42*8($sp)
|
|
stt $f30, 43*8($sp)
|
|
.mask 0x27ff01ff, -44*8
|
|
.fmask 0xfffffc03, -(44-21)*8
|
|
/* Set up our $gp */
|
|
br $gp, .+4
|
|
ldgp $gp, 0($gp)
|
|
.prologue 0
|
|
/* Set up the arguments for fixup: */
|
|
/* $16 = link_map out of plt0 */
|
|
/* $17 = offset of reloc entry = ($28 - $27 - 20) /12 * 24 */
|
|
/* $18 = return address */
|
|
subq $28, $27, $17
|
|
ldq $16, 8($27)
|
|
subq $17, 20, $17
|
|
mov $26, $18
|
|
addq $17, $17, $17
|
|
/* Do the fixup */
|
|
bsr $26, " ASM_ALPHA_NG_SYMBOL_PREFIX #fixup_name "..ng
|
|
/* Move the destination address into position. */
|
|
mov $0, $27
|
|
/* Restore program registers. */
|
|
ldq $26, 0*8($sp)
|
|
ldq $0, 1*8($sp)
|
|
ldq $1, 2*8($sp)
|
|
ldq $2, 3*8($sp)
|
|
ldq $3, 4*8($sp)
|
|
ldq $4, 5*8($sp)
|
|
ldq $5, 6*8($sp)
|
|
ldq $6, 7*8($sp)
|
|
ldq $7, 8*8($sp)
|
|
ldq $8, 9*8($sp)
|
|
ldq $16, 10*8($sp)
|
|
ldq $17, 11*8($sp)
|
|
ldq $18, 12*8($sp)
|
|
ldq $19, 13*8($sp)
|
|
ldq $20, 14*8($sp)
|
|
ldq $21, 15*8($sp)
|
|
ldq $22, 16*8($sp)
|
|
ldq $23, 17*8($sp)
|
|
ldq $24, 18*8($sp)
|
|
ldq $25, 19*8($sp)
|
|
ldq $29, 20*8($sp)
|
|
ldt $f0, 21*8($sp)
|
|
ldt $f1, 22*8($sp)
|
|
ldt $f10, 23*8($sp)
|
|
ldt $f11, 24*8($sp)
|
|
ldt $f12, 25*8($sp)
|
|
ldt $f13, 26*8($sp)
|
|
ldt $f14, 27*8($sp)
|
|
ldt $f15, 28*8($sp)
|
|
ldt $f16, 29*8($sp)
|
|
ldt $f17, 30*8($sp)
|
|
ldt $f18, 31*8($sp)
|
|
ldt $f19, 32*8($sp)
|
|
ldt $f20, 33*8($sp)
|
|
ldt $f21, 34*8($sp)
|
|
ldt $f22, 35*8($sp)
|
|
ldt $f23, 36*8($sp)
|
|
ldt $f24, 37*8($sp)
|
|
ldt $f25, 38*8($sp)
|
|
ldt $f26, 39*8($sp)
|
|
ldt $f27, 40*8($sp)
|
|
ldt $f28, 41*8($sp)
|
|
ldt $f29, 42*8($sp)
|
|
ldt $f30, 43*8($sp)
|
|
/* Flush the Icache after having modified the .plt code. */
|
|
" #IMB "
|
|
/* Clean up and turn control to the destination */
|
|
lda $sp, 44*8($sp)
|
|
jmp $31, ($27)
|
|
.end " #tramp_name)
|
|
|
|
#ifndef PROF
|
|
#define ELF_MACHINE_RUNTIME_TRAMPOLINE \
|
|
TRAMPOLINE_TEMPLATE (_dl_runtime_resolve, fixup, imb); \
|
|
TRAMPOLINE_TEMPLATE (_dl_runtime_profile, profile_fixup, /* nop */);
|
|
#else
|
|
#define ELF_MACHINE_RUNTIME_TRAMPOLINE \
|
|
TRAMPOLINE_TEMPLATE (_dl_runtime_resolve, fixup, imb); \
|
|
strong_alias (_dl_runtime_resolve, _dl_runtime_profile);
|
|
#endif
|
|
|
|
/* Initial entry point code for the dynamic linker.
|
|
The C function `_dl_start' is the real entry point;
|
|
its return value is the user program's entry point. */
|
|
|
|
#define RTLD_START asm ("\
|
|
.text
|
|
.set at
|
|
.globl _start
|
|
.ent _start
|
|
_start:
|
|
br $gp, 0f
|
|
0: ldgp $gp, 0($gp)
|
|
.prologue 0
|
|
/* Pass pointer to argument block to _dl_start. */
|
|
mov $sp, $16
|
|
bsr $26, "ASM_ALPHA_NG_SYMBOL_PREFIX"_dl_start..ng
|
|
.end _start
|
|
/* FALLTHRU */
|
|
.globl _dl_start_user
|
|
.ent _dl_start_user
|
|
_dl_start_user:
|
|
.frame $30,0,$31,0
|
|
.prologue 0
|
|
/* Save the user entry point address in s0. */
|
|
mov $0, $9
|
|
/* Store the highest stack address. */
|
|
stq $30, __libc_stack_end
|
|
/* See if we were run as a command with the executable file
|
|
name as an extra leading argument. */
|
|
ldl $1, _dl_skip_args
|
|
bne $1, $fixup_stack
|
|
$fixup_stack_ret:
|
|
/* The special initializer gets called with the stack just
|
|
as the application's entry point will see it; it can
|
|
switch stacks if it moves these contents over. */
|
|
" RTLD_START_SPECIAL_INIT "
|
|
/* Call _dl_init(_dl_loaded, argc, argv, envp) to run initializers. */
|
|
ldq $16, _dl_loaded
|
|
ldq $17, 0($sp)
|
|
lda $18, 8($sp)
|
|
s8addq $17, 8, $19
|
|
addq $19, $18, $19
|
|
jsr $26, _dl_init
|
|
/* Pass our finalizer function to the user in $0. */
|
|
lda $0, _dl_fini
|
|
/* Jump to the user's entry point. */
|
|
mov $9, $27
|
|
jmp ($9)
|
|
$fixup_stack:
|
|
/* Adjust the stack pointer to skip _dl_skip_args words. This
|
|
involves copying everything down, since the stack pointer must
|
|
always be 16-byte aligned. */
|
|
ldq $2, 0($sp)
|
|
ldq $5, _dl_argv
|
|
subq $31, $1, $6
|
|
subq $2, $1, $2
|
|
s8addq $6, $5, $5
|
|
mov $sp, $4
|
|
s8addq $1, $sp, $3
|
|
stq $2, 0($sp)
|
|
stq $5, _dl_argv
|
|
/* Copy down argv. */
|
|
0: ldq $5, 8($3)
|
|
addq $4, 8, $4
|
|
addq $3, 8, $3
|
|
stq $5, 0($4)
|
|
bne $5, 0b
|
|
/* Copy down envp. */
|
|
1: ldq $5, 8($3)
|
|
addq $4, 8, $4
|
|
addq $3, 8, $3
|
|
stq $5, 0($4)
|
|
bne $5, 1b
|
|
/* Copy down auxiliary table. */
|
|
2: ldq $5, 8($3)
|
|
ldq $6, 16($3)
|
|
addq $4, 16, $4
|
|
addq $3, 16, $3
|
|
stq $5, -8($4)
|
|
stq $6, 0($4)
|
|
bne $5, 2b
|
|
br $fixup_stack_ret
|
|
.end _dl_start_user
|
|
.set noat
|
|
.previous");
|
|
|
|
#ifndef RTLD_START_SPECIAL_INIT
|
|
#define RTLD_START_SPECIAL_INIT /* nothing */
|
|
#endif
|
|
|
|
/* Nonzero iff TYPE describes relocation of a PLT entry, so
|
|
PLT entries should not be allowed to define the value. */
|
|
#define elf_machine_lookup_noplt_p(type) ((type) == R_ALPHA_JMP_SLOT)
|
|
|
|
/* Nonzero iff TYPE should not be allowed to resolve to one of
|
|
the main executable's symbols, as for a COPY reloc, which we don't use. */
|
|
#define elf_machine_lookup_noexec_p(type) (0)
|
|
|
|
/* A reloc type used for ld.so cmdline arg lookups to reject PLT entries. */
|
|
#define ELF_MACHINE_JMP_SLOT R_ALPHA_JMP_SLOT
|
|
|
|
/* The alpha never uses Elf64_Rel relocations. */
|
|
#define ELF_MACHINE_NO_REL 1
|
|
|
|
/* Fix up the instructions of a PLT entry to invoke the function
|
|
rather than the dynamic linker. */
|
|
static inline Elf64_Addr
|
|
elf_machine_fixup_plt (struct link_map *l, lookup_t t,
|
|
const Elf64_Rela *reloc,
|
|
Elf64_Addr *got_addr, Elf64_Addr value)
|
|
{
|
|
const Elf64_Rela *rela_plt;
|
|
Elf64_Word *plte;
|
|
long int edisp;
|
|
|
|
/* Store the value we are going to load. */
|
|
*got_addr = value;
|
|
|
|
/* Recover the PLT entry address by calculating reloc's index into the
|
|
.rela.plt, and finding that entry in the .plt. */
|
|
rela_plt = (void *) D_PTR (l, l_info[DT_JMPREL]);
|
|
plte = (void *) (D_PTR (l, l_info[DT_PLTGOT]) + 32);
|
|
plte += 3 * (reloc - rela_plt);
|
|
|
|
/* Find the displacement from the plt entry to the function. */
|
|
edisp = (long int) (value - (Elf64_Addr)&plte[3]) / 4;
|
|
|
|
if (edisp >= -0x100000 && edisp < 0x100000)
|
|
{
|
|
/* If we are in range, use br to perfect branch prediction and
|
|
elide the dependency on the address load. This case happens,
|
|
e.g., when a shared library call is resolved to the same library. */
|
|
|
|
int hi, lo;
|
|
hi = value - (Elf64_Addr)&plte[0];
|
|
lo = (short int) hi;
|
|
hi = (hi - lo) >> 16;
|
|
|
|
/* Emit "lda $27,lo($27)" */
|
|
plte[1] = 0x237b0000 | (lo & 0xffff);
|
|
|
|
/* Emit "br $31,function" */
|
|
plte[2] = 0xc3e00000 | (edisp & 0x1fffff);
|
|
|
|
/* Think about thread-safety -- the previous instructions must be
|
|
committed to memory before the first is overwritten. */
|
|
__asm__ __volatile__("wmb" : : : "memory");
|
|
|
|
/* Emit "ldah $27,hi($27)" */
|
|
plte[0] = 0x277b0000 | (hi & 0xffff);
|
|
}
|
|
else
|
|
{
|
|
/* Don't bother with the hint since we already know the hint is
|
|
wrong. Eliding it prevents the wrong page from getting pulled
|
|
into the cache. */
|
|
|
|
int hi, lo;
|
|
hi = (Elf64_Addr)got_addr - (Elf64_Addr)&plte[0];
|
|
lo = (short)hi;
|
|
hi = (hi - lo) >> 16;
|
|
|
|
/* Emit "ldq $27,lo($27)" */
|
|
plte[1] = 0xa77b0000 | (lo & 0xffff);
|
|
|
|
/* Emit "jmp $31,($27)" */
|
|
plte[2] = 0x6bfb0000;
|
|
|
|
/* Think about thread-safety -- the previous instructions must be
|
|
committed to memory before the first is overwritten. */
|
|
__asm__ __volatile__("wmb" : : : "memory");
|
|
|
|
/* Emit "ldah $27,hi($27)" */
|
|
plte[0] = 0x277b0000 | (hi & 0xffff);
|
|
}
|
|
|
|
/* At this point, if we've been doing runtime resolution, Icache is dirty.
|
|
This will be taken care of in _dl_runtime_resolve. If instead we are
|
|
doing this as part of non-lazy startup relocation, that bit of code
|
|
hasn't made it into Icache yet, so there's nothing to clean up. */
|
|
|
|
return value;
|
|
}
|
|
|
|
/* Return the final value of a plt relocation. */
|
|
static inline Elf64_Addr
|
|
elf_machine_plt_value (struct link_map *map, const Elf64_Rela *reloc,
|
|
Elf64_Addr value)
|
|
{
|
|
return value + reloc->r_addend;
|
|
}
|
|
|
|
#endif /* !dl_machine_h */
|
|
|
|
#ifdef RESOLVE
|
|
|
|
/* Perform the relocation specified by RELOC and SYM (which is fully resolved).
|
|
MAP is the object containing the reloc. */
|
|
static inline void
|
|
elf_machine_rela (struct link_map *map,
|
|
const Elf64_Rela *reloc,
|
|
const Elf64_Sym *sym,
|
|
const struct r_found_version *version,
|
|
Elf64_Addr *const reloc_addr)
|
|
{
|
|
unsigned long int const r_type = ELF64_R_TYPE (reloc->r_info);
|
|
|
|
#ifndef RTLD_BOOTSTRAP
|
|
/* This is defined in rtld.c, but nowhere in the static libc.a; make the
|
|
reference weak so static programs can still link. This declaration
|
|
cannot be done when compiling rtld.c (i.e. #ifdef RTLD_BOOTSTRAP)
|
|
because rtld.c contains the common defn for _dl_rtld_map, which is
|
|
incompatible with a weak decl in the same file. */
|
|
weak_extern (_dl_rtld_map);
|
|
#endif
|
|
|
|
/* We cannot use a switch here because we cannot locate the switch
|
|
jump table until we've self-relocated. */
|
|
|
|
if (r_type == R_ALPHA_RELATIVE)
|
|
{
|
|
#ifndef RTLD_BOOTSTRAP
|
|
/* Already done in dynamic linker. */
|
|
if (map != &_dl_rtld_map)
|
|
#endif
|
|
{
|
|
/* XXX Make some timings. Maybe it's preverable to test for
|
|
unaligned access and only do it the complex way if necessary. */
|
|
void *reloc_addr_1 = reloc_addr;
|
|
Elf64_Addr reloc_addr_val;
|
|
|
|
/* Load value without causing unaligned trap. */
|
|
memcpy (&reloc_addr_val, reloc_addr_1, 8);
|
|
reloc_addr_val += map->l_addr;
|
|
|
|
/* Store value without causing unaligned trap. */
|
|
memcpy (reloc_addr_1, &reloc_addr_val, 8);
|
|
}
|
|
}
|
|
#ifndef RTLD_BOOTSTRAP
|
|
else if (r_type == R_ALPHA_NONE)
|
|
return;
|
|
#endif
|
|
else
|
|
{
|
|
Elf64_Addr loadbase, sym_value;
|
|
|
|
loadbase = RESOLVE (&sym, version, r_type);
|
|
sym_value = sym ? loadbase + sym->st_value : 0;
|
|
sym_value += reloc->r_addend;
|
|
|
|
if (r_type == R_ALPHA_GLOB_DAT)
|
|
*reloc_addr = sym_value;
|
|
else if (r_type == R_ALPHA_JMP_SLOT)
|
|
elf_machine_fixup_plt (map, 0, reloc, reloc_addr, sym_value);
|
|
#ifndef RTLD_BOOTSTRAP
|
|
else if (r_type == R_ALPHA_REFQUAD)
|
|
{
|
|
void *reloc_addr_1 = reloc_addr;
|
|
Elf64_Addr reloc_addr_val;
|
|
|
|
/* Load value without causing unaligned trap. */
|
|
memcpy (&reloc_addr_val, reloc_addr_1, 8);
|
|
sym_value += reloc_addr_val;
|
|
if (map == &_dl_rtld_map)
|
|
{
|
|
/* Undo the relocation done here during bootstrapping.
|
|
Now we will relocate anew, possibly using a binding
|
|
found in the user program or a loaded library rather
|
|
than the dynamic linker's built-in definitions used
|
|
while loading those libraries. */
|
|
const Elf64_Sym *const dlsymtab
|
|
= (void *) D_PTR (map, l_info[DT_SYMTAB]);
|
|
sym_value -= map->l_addr;
|
|
sym_value -= dlsymtab[ELF64_R_SYM(reloc->r_info)].st_value;
|
|
sym_value -= reloc->r_addend;
|
|
}
|
|
/* Store value without causing unaligned trap. */
|
|
memcpy (reloc_addr_1, &sym_value, 8);
|
|
}
|
|
#endif
|
|
else
|
|
_dl_reloc_bad_type (map, r_type, 0);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
elf_machine_lazy_rel (struct link_map *map,
|
|
Elf64_Addr l_addr, const Elf64_Rela *reloc)
|
|
{
|
|
Elf64_Addr * const reloc_addr = (void *)(l_addr + reloc->r_offset);
|
|
unsigned long int const r_type = ELF64_R_TYPE (reloc->r_info);
|
|
|
|
if (r_type == R_ALPHA_JMP_SLOT)
|
|
{
|
|
/* Perform a RELATIVE reloc on the .got entry that transfers
|
|
to the .plt. */
|
|
*reloc_addr += l_addr;
|
|
}
|
|
else if (r_type == R_ALPHA_NONE)
|
|
return;
|
|
else
|
|
_dl_reloc_bad_type (map, r_type, 1);
|
|
}
|
|
|
|
#endif /* RESOLVE */
|