mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-22 19:00:07 +00:00
692 lines
18 KiB
ArmAsm
692 lines
18 KiB
ArmAsm
.file "tancotf.s"
|
||
|
||
|
||
// Copyright (c) 2000 - 2005, Intel Corporation
|
||
// All rights reserved.
|
||
//
|
||
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
|
||
//
|
||
// Redistribution and use in source and binary forms, with or without
|
||
// modification, are permitted provided that the following conditions are
|
||
// met:
|
||
//
|
||
// * Redistributions of source code must retain the above copyright
|
||
// notice, this list of conditions and the following disclaimer.
|
||
//
|
||
// * Redistributions in binary form must reproduce the above copyright
|
||
// notice, this list of conditions and the following disclaimer in the
|
||
// documentation and/or other materials provided with the distribution.
|
||
//
|
||
// * The name of Intel Corporation may not be used to endorse or promote
|
||
// products derived from this software without specific prior written
|
||
// permission.
|
||
|
||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
||
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
|
||
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
//
|
||
// Intel Corporation is the author of this code, and requests that all
|
||
// problem reports or change requests be submitted to it directly at
|
||
// http://www.intel.com/software/products/opensource/libraries/num.htm.
|
||
//
|
||
// History
|
||
//==============================================================
|
||
// 02/02/00 Initial version
|
||
// 04/04/00 Unwind support added
|
||
// 12/27/00 Improved speed
|
||
// 02/21/01 Updated to call tanl
|
||
// 05/30/02 Improved speed, added cotf.
|
||
// 11/25/02 Added explicit completer on fnorm
|
||
// 02/10/03 Reordered header: .section, .global, .proc, .align
|
||
// 04/17/03 Eliminated redundant stop bits
|
||
// 03/31/05 Reformatted delimiters between data tables
|
||
//
|
||
// APIs
|
||
//==============================================================
|
||
// float tanf(float)
|
||
// float cotf(float)
|
||
//
|
||
// Algorithm Description for tanf
|
||
//==============================================================
|
||
// The tanf function computes the principle value of the tangent of x,
|
||
// where x is radian argument.
|
||
//
|
||
// There are 5 paths:
|
||
// 1. x = +/-0.0
|
||
// Return tanf(x) = +/-0.0
|
||
//
|
||
// 2. x = [S,Q]NaN
|
||
// Return tanf(x) = QNaN
|
||
//
|
||
// 3. x = +/-Inf
|
||
// Return tanf(x) = QNaN
|
||
//
|
||
// 4. x = r + (Pi/2)*N, N = RoundInt(x*(2/Pi)), N is even, |r|<Pi/4
|
||
// Return tanf(x) = P19(r) = A1*r + A3*r^3 + A5*r^5 + ... + A19*r^19 =
|
||
// = r*(A1 + A3*t + A5*t^2 + ... + A19*t^9) = r*P9(t), where t = r^2
|
||
//
|
||
// 5. x = r + (Pi/2)*N, N = RoundInt(x*(2/Pi)), N is odd, |r|<Pi/4
|
||
// Return tanf(x) = -1/r + P11(r) = -1/r + B1*r + B3*r^3 + ... + B11*r^11 =
|
||
// = -1/r + r*(B1 + B3*t + B5*t^2 + ... + B11*t^5) = -1/r + r*P11(t),
|
||
// where t = r^2
|
||
//
|
||
// Algorithm Description for cotf
|
||
//==============================================================
|
||
// The cotf function computes the principle value of the cotangent of x,
|
||
// where x is radian argument.
|
||
//
|
||
// There are 5 paths:
|
||
// 1. x = +/-0.0
|
||
// Return cotf(x) = +/-Inf and error handling is called
|
||
//
|
||
// 2. x = [S,Q]NaN
|
||
// Return cotf(x) = QNaN
|
||
//
|
||
// 3. x = +/-Inf
|
||
// Return cotf(x) = QNaN
|
||
//
|
||
// 4. x = r + (Pi/2)*N, N = RoundInt(x*(2/Pi)), N is odd, |r|<Pi/4
|
||
// Return cotf(x) = P19(-r) = A1*(-r) + A3*(-r^3) + ... + A19*(-r^19) =
|
||
// = -r*(A1 + A3*t + A5*t^2 + ... + A19*t^9) = -r*P9(t), where t = r^2
|
||
//
|
||
// 5. x = r + (Pi/2)*N, N = RoundInt(x*(2/Pi)), N is even, |r|<Pi/4
|
||
// Return cotf(x) = 1/r + P11(-r) = 1/r + B1*(-r) + ... + B11*(-r^11) =
|
||
// = 1/r - r*(B1 + B3*t + B5*t^2 + ... + B11*t^5) = 1/r - r*P11(t),
|
||
// where t = r^2
|
||
//
|
||
// We set p10 and clear p11 if computing tanf, vice versa for cotf.
|
||
//
|
||
//
|
||
// Registers used
|
||
//==============================================================
|
||
// Floating Point registers used:
|
||
// f8, input
|
||
// f32 -> f80
|
||
//
|
||
// General registers used:
|
||
// r14 -> r23, r32 -> r39
|
||
//
|
||
// Predicate registers used:
|
||
// p6 -> p13
|
||
//
|
||
// Assembly macros
|
||
//==============================================================
|
||
// integer registers
|
||
rExp = r14
|
||
rSignMask = r15
|
||
rRshf = r16
|
||
rScFctrExp = r17
|
||
rIntN = r18
|
||
rSigRcpPiby2 = r19
|
||
rScRshf = r20
|
||
rCoeffA = r21
|
||
rCoeffB = r22
|
||
rExpCut = r23
|
||
|
||
GR_SAVE_B0 = r33
|
||
GR_SAVE_PFS = r34
|
||
GR_SAVE_GP = r35
|
||
GR_Parameter_X = r36
|
||
GR_Parameter_Y = r37
|
||
GR_Parameter_RESULT = r38
|
||
GR_Parameter_Tag = r39
|
||
|
||
//==============================================================
|
||
// floating point registers
|
||
fScRcpPiby2 = f32
|
||
fScRshf = f33
|
||
fNormArg = f34
|
||
fScFctr = f35
|
||
fRshf = f36
|
||
fShiftedN = f37
|
||
fN = f38
|
||
fR = f39
|
||
fA01 = f40
|
||
fA03 = f41
|
||
fA05 = f42
|
||
fA07 = f43
|
||
fA09 = f44
|
||
fA11 = f45
|
||
fA13 = f46
|
||
fA15 = f47
|
||
fA17 = f48
|
||
fA19 = f49
|
||
fB01 = f50
|
||
fB03 = f51
|
||
fB05 = f52
|
||
fB07 = f53
|
||
fB09 = f54
|
||
fB11 = f55
|
||
fA03_01 = f56
|
||
fA07_05 = f57
|
||
fA11_09 = f58
|
||
fA15_13 = f59
|
||
fA19_17 = f60
|
||
fA11_05 = f61
|
||
fA19_13 = f62
|
||
fA19_05 = f63
|
||
fRbyA03_01 = f64
|
||
fB03_01 = f65
|
||
fB07_05 = f66
|
||
fB11_09 = f67
|
||
fB11_05 = f68
|
||
fRbyB03_01 = f69
|
||
fRbyB11_01 = f70
|
||
fRp2 = f71
|
||
fRp4 = f72
|
||
fRp8 = f73
|
||
fRp5 = f74
|
||
fY0 = f75
|
||
fY1 = f76
|
||
fD = f77
|
||
fDp2 = f78
|
||
fInvR = f79
|
||
fPiby2 = f80
|
||
//==============================================================
|
||
|
||
|
||
RODATA
|
||
.align 16
|
||
|
||
LOCAL_OBJECT_START(coeff_A)
|
||
data8 0x3FF0000000000000 // A1 = 1.00000000000000000000e+00
|
||
data8 0x3FD5555556BCE758 // A3 = 3.33333334641442641606e-01
|
||
data8 0x3FC111105C2DAE48 // A5 = 1.33333249100689099175e-01
|
||
data8 0x3FABA1F876341060 // A7 = 5.39701122561673229739e-02
|
||
data8 0x3F965FB86D12A38D // A9 = 2.18495194027670719750e-02
|
||
data8 0x3F8265F62415F9D6 // A11 = 8.98353860497717439465e-03
|
||
data8 0x3F69E3AE64CCF58D // A13 = 3.16032468108912746342e-03
|
||
data8 0x3F63920D09D0E6F6 // A15 = 2.38897844840557235331e-03
|
||
LOCAL_OBJECT_END(coeff_A)
|
||
|
||
LOCAL_OBJECT_START(coeff_B)
|
||
data8 0xC90FDAA22168C235, 0x3FFF // pi/2
|
||
data8 0x3FD55555555358DB // B1 = 3.33333333326107426583e-01
|
||
data8 0x3F96C16C252F643F // B3 = 2.22222230621336129239e-02
|
||
data8 0x3F61566243AB3C60 // B5 = 2.11638633968606896785e-03
|
||
data8 0x3F2BC1169BD4438B // B7 = 2.11748132564551094391e-04
|
||
data8 0x3EF611B4CEA056A1 // B9 = 2.10467959860990200942e-05
|
||
data8 0x3EC600F9E32194BF // B11 = 2.62305891234274186608e-06
|
||
data8 0xBF42BA7BCC177616 // A17 =-5.71546981685324877205e-04
|
||
data8 0x3F4F2614BC6D3BB8 // A19 = 9.50584530849832782542e-04
|
||
LOCAL_OBJECT_END(coeff_B)
|
||
|
||
|
||
.section .text
|
||
|
||
LOCAL_LIBM_ENTRY(cotf)
|
||
|
||
{ .mlx
|
||
getf.exp rExp = f8 // ***** Get 2<EFBFBD>17 * s + E
|
||
movl rSigRcpPiby2= 0xA2F9836E4E44152A // significand of 2/Pi
|
||
}
|
||
{ .mlx
|
||
addl rCoeffA = @ltoff(coeff_A), gp
|
||
movl rScRshf = 0x47e8000000000000 // 1.5*2^(63+63+1)
|
||
}
|
||
;;
|
||
|
||
{ .mfi
|
||
alloc r32 = ar.pfs, 0, 4, 4, 0
|
||
fclass.m p9, p0 = f8, 0xc3 // Test for x=nan
|
||
cmp.eq p11, p10 = r0, r0 // if p11=1 we compute cotf
|
||
}
|
||
{ .mib
|
||
ld8 rCoeffA = [rCoeffA]
|
||
mov rExpCut = 0x10009 // cutoff for exponent
|
||
br.cond.sptk Common_Path
|
||
}
|
||
;;
|
||
|
||
LOCAL_LIBM_END(cotf)
|
||
|
||
|
||
GLOBAL_IEEE754_ENTRY(tanf)
|
||
|
||
{ .mlx
|
||
getf.exp rExp = f8 // ***** Get 2<EFBFBD>17 * s + E
|
||
movl rSigRcpPiby2= 0xA2F9836E4E44152A // significand of 2/Pi
|
||
}
|
||
{ .mlx
|
||
addl rCoeffA = @ltoff(coeff_A), gp
|
||
movl rScRshf = 0x47e8000000000000 // 1.5*2^(63+63+1)
|
||
}
|
||
;;
|
||
|
||
{ .mfi
|
||
alloc r32 = ar.pfs, 0, 4, 4, 0
|
||
fclass.m p9, p0 = f8, 0xc3 // Test for x=nan
|
||
cmp.eq p10, p11 = r0, r0 // if p10=1 we compute tandf
|
||
}
|
||
{ .mib
|
||
ld8 rCoeffA = [rCoeffA]
|
||
mov rExpCut = 0x10009 // cutoff for exponent
|
||
nop.b 0
|
||
}
|
||
;;
|
||
|
||
// Below is common path for both tandf and cotdf
|
||
Common_Path:
|
||
{ .mfi
|
||
setf.sig fScRcpPiby2 = rSigRcpPiby2 // 2^(63+1)*(2/Pi)
|
||
fclass.m p8, p0 = f8, 0x23 // Test for x=inf
|
||
mov rSignMask = 0x1ffff // mask for sign bit
|
||
}
|
||
{ .mlx
|
||
setf.d fScRshf = rScRshf // 1.5*2^(63+63+1)
|
||
movl rRshf = 0x43e8000000000000 // 1.5 2^63 for right shift
|
||
}
|
||
;;
|
||
|
||
{ .mfi
|
||
and rSignMask = rSignMask, rExp // clear sign bit
|
||
(p10) fclass.m.unc p7, p0 = f8, 0x07 // Test for x=0 (for tanf)
|
||
mov rScFctrExp = 0xffff-64 // exp of scaling factor
|
||
}
|
||
{ .mfb
|
||
adds rCoeffB = coeff_B - coeff_A, rCoeffA
|
||
(p9) fma.s.s0 f8 = f8, f1, f8 // Set qnan if x=nan
|
||
(p9) br.ret.spnt b0 // Exit for x=nan
|
||
}
|
||
;;
|
||
|
||
{ .mfi
|
||
cmp.ge p6, p0 = rSignMask, rExpCut // p6 = (E => 0x10009)
|
||
(p8) frcpa.s0 f8, p0 = f0, f0 // Set qnan indef if x=inf
|
||
mov GR_Parameter_Tag = 227 // (cotf)
|
||
}
|
||
{ .mbb
|
||
ldfe fPiby2 = [rCoeffB], 16
|
||
(p8) br.ret.spnt b0 // Exit for x=inf
|
||
(p6) br.cond.spnt Huge_Argument // Branch if |x|>=2^10
|
||
}
|
||
;;
|
||
|
||
{ .mfi
|
||
nop.m 0
|
||
(p11) fclass.m.unc p6, p0 = f8, 0x07 // Test for x=0 (for cotf)
|
||
nop.i 0
|
||
}
|
||
{ .mfb
|
||
nop.m 0
|
||
fnorm.s0 fNormArg = f8
|
||
(p7) br.ret.spnt b0 // Exit for x=0 (for tanf)
|
||
}
|
||
;;
|
||
|
||
{ .mmf
|
||
ldfpd fA01, fA03 = [rCoeffA], 16
|
||
ldfpd fB01, fB03 = [rCoeffB], 16
|
||
fmerge.s f10 = f8, f8 // Save input for error call
|
||
}
|
||
;;
|
||
|
||
{ .mmf
|
||
setf.exp fScFctr = rScFctrExp // get as real
|
||
setf.d fRshf = rRshf // get right shifter as real
|
||
(p6) frcpa.s0 f8, p0 = f1, f8 // cotf(+-0) = +-Inf
|
||
}
|
||
;;
|
||
|
||
{ .mmb
|
||
ldfpd fA05, fA07 = [rCoeffA], 16
|
||
ldfpd fB05, fB07 = [rCoeffB], 16
|
||
(p6) br.cond.spnt __libm_error_region // call error support if cotf(+-0)
|
||
}
|
||
;;
|
||
|
||
{ .mmi
|
||
ldfpd fA09, fA11 = [rCoeffA], 16
|
||
ldfpd fB09, fB11 = [rCoeffB], 16
|
||
nop.i 0
|
||
}
|
||
;;
|
||
|
||
{ .mfi
|
||
nop.m 0
|
||
fma.s1 fShiftedN = fNormArg,fScRcpPiby2,fScRshf // x*2^70*(2/Pi)+ScRshf
|
||
nop.i 0
|
||
}
|
||
;;
|
||
|
||
{ .mfi
|
||
nop.m 0
|
||
fms.s1 fN = fShiftedN, fScFctr, fRshf // N = Y*2^(-70) - Rshf
|
||
nop.i 0
|
||
}
|
||
;;
|
||
|
||
.pred.rel "mutex", p10, p11
|
||
{ .mfi
|
||
getf.sig rIntN = fShiftedN // get N as integer
|
||
(p10) fnma.s1 fR = fN, fPiby2, fNormArg // R = x - (Pi/2)*N (tanf)
|
||
nop.i 0
|
||
}
|
||
{ .mfi
|
||
nop.m 0
|
||
(p11) fms.s1 fR = fN, fPiby2, fNormArg // R = (Pi/2)*N - x (cotf)
|
||
nop.i 0
|
||
}
|
||
;;
|
||
|
||
{ .mmi
|
||
ldfpd fA13, fA15 = [rCoeffA], 16
|
||
ldfpd fA17, fA19 = [rCoeffB], 16
|
||
nop.i 0
|
||
}
|
||
;;
|
||
|
||
Return_From_Huges:
|
||
{ .mfi
|
||
nop.m 0
|
||
fma.s1 fRp2 = fR, fR, f0 // R^2
|
||
(p11) add rIntN = 0x1, rIntN // N = N + 1 (cotf)
|
||
}
|
||
;;
|
||
|
||
{ .mfi
|
||
nop.m 0
|
||
frcpa.s1 fY0, p0 = f1, fR // Y0 ~ 1/R
|
||
tbit.z p8, p9 = rIntN, 0 // p8=1 if N is even
|
||
}
|
||
;;
|
||
|
||
// Below are mixed polynomial calculations (mixed for even and odd N)
|
||
{ .mfi
|
||
nop.m 0
|
||
(p9) fma.s1 fB03_01 = fRp2, fB03, fB01 // R^2*B3 + B1
|
||
nop.i 0
|
||
}
|
||
{ .mfi
|
||
nop.m 0
|
||
fma.s1 fRp4 = fRp2, fRp2, f0 // R^4
|
||
nop.i 0
|
||
}
|
||
;;
|
||
|
||
{ .mfi
|
||
nop.m 0
|
||
(p8) fma.s1 fA15_13 = fRp2, fA15, fA13 // R^2*A15 + A13
|
||
nop.i 0
|
||
}
|
||
{ .mfi
|
||
nop.m 0
|
||
(p8) fma.s1 fA19_17 = fRp2, fA19, fA17 // R^2*A19 + A17
|
||
nop.i 0
|
||
}
|
||
;;
|
||
|
||
{ .mfi
|
||
nop.m 0
|
||
(p8) fma.s1 fA07_05 = fRp2, fA07, fA05 // R^2*A7 + A5
|
||
nop.i 0
|
||
}
|
||
{ .mfi
|
||
nop.m 0
|
||
(p8) fma.s1 fA11_09 = fRp2, fA11, fA09 // R^2*A11 + A9
|
||
nop.i 0
|
||
}
|
||
;;
|
||
|
||
{ .mfi
|
||
nop.m 0
|
||
(p9) fma.s1 fB07_05 = fRp2, fB07, fB05 // R^2*B7 + B5
|
||
nop.i 0
|
||
}
|
||
{ .mfi
|
||
nop.m 0
|
||
(p9) fma.s1 fB11_09 = fRp2, fB11, fB09 // R^2*B11 + B9
|
||
nop.i 0
|
||
}
|
||
;;
|
||
|
||
{ .mfi
|
||
nop.m 0
|
||
(p9) fnma.s1 fD = fR, fY0, f1 // D = 1 - R*Y0
|
||
nop.i 0
|
||
}
|
||
{ .mfi
|
||
nop.m 0
|
||
(p8) fma.s1 fA03_01 = fRp2, fA03, fA01 // R^2*A3 + A1
|
||
nop.i 0
|
||
}
|
||
;;
|
||
|
||
{ .mfi
|
||
nop.m 0
|
||
fma.s1 fRp8 = fRp4, fRp4, f0 // R^8
|
||
nop.i 0
|
||
}
|
||
{ .mfi
|
||
nop.m 0
|
||
fma.s1 fRp5 = fR, fRp4, f0 // R^5
|
||
nop.i 0
|
||
}
|
||
;;
|
||
|
||
{ .mfi
|
||
nop.m 0
|
||
(p8) fma.s1 fA11_05 = fRp4, fA11_09, fA07_05 // R^4*(R^2*A11 + A9) + ...
|
||
nop.i 0
|
||
}
|
||
{ .mfi
|
||
nop.m 0
|
||
(p8) fma.s1 fA19_13 = fRp4, fA19_17, fA15_13 // R^4*(R^2*A19 + A17) + ..
|
||
nop.i 0
|
||
}
|
||
;;
|
||
|
||
{ .mfi
|
||
nop.m 0
|
||
(p9) fma.s1 fB11_05 = fRp4, fB11_09, fB07_05 // R^4*(R^2*B11 + B9) + ...
|
||
nop.i 0
|
||
}
|
||
{ .mfi
|
||
nop.m 0
|
||
(p9) fma.s1 fRbyB03_01 = fR, fB03_01, f0 // R*(R^2*B3 + B1)
|
||
nop.i 0
|
||
}
|
||
;;
|
||
|
||
{ .mfi
|
||
nop.m 0
|
||
(p9) fma.s1 fY1 = fY0, fD, fY0 // Y1 = Y0*D + Y0
|
||
nop.i 0
|
||
}
|
||
{ .mfi
|
||
nop.m 0
|
||
(p9) fma.s1 fDp2 = fD, fD, f0 // D^2
|
||
nop.i 0
|
||
}
|
||
;;
|
||
|
||
{ .mfi
|
||
nop.m 0
|
||
// R^8*(R^6*A19 + R^4*A17 + R^2*A15 + A13) + R^6*A11 + R^4*A9 + R^2*A7 + A5
|
||
(p8) fma.d.s1 fA19_05 = fRp8, fA19_13, fA11_05
|
||
nop.i 0
|
||
}
|
||
{ .mfi
|
||
nop.m 0
|
||
(p8) fma.d.s1 fRbyA03_01 = fR, fA03_01, f0 // R*(R^2*A3 + A1)
|
||
nop.i 0
|
||
}
|
||
;;
|
||
|
||
{ .mfi
|
||
nop.m 0
|
||
(p9) fma.d.s1 fInvR = fY1, fDp2, fY1 // 1/R = Y1*D^2 + Y1
|
||
nop.i 0
|
||
}
|
||
{ .mfi
|
||
nop.m 0
|
||
// R^5*(R^6*B11 + R^4*B9 + R^2*B7 + B5) + R^3*B3 + R*B1
|
||
(p9) fma.d.s1 fRbyB11_01 = fRp5, fB11_05, fRbyB03_01
|
||
nop.i 0
|
||
}
|
||
;;
|
||
|
||
.pred.rel "mutex", p8, p9
|
||
{ .mfi
|
||
nop.m 0
|
||
// Result = R^5*(R^14*A19 + R^12*A17 + R^10*A15 + ...) + R^3*A3 + R*A1
|
||
(p8) fma.s.s0 f8 = fRp5, fA19_05, fRbyA03_01
|
||
nop.i 0
|
||
}
|
||
{ .mfb
|
||
nop.m 0
|
||
// Result = -1/R + R^11*B11 + R^9*B9 + R^7*B7 + R^5*B5 + R^3*B3 + R*B1
|
||
(p9) fnma.s.s0 f8 = f1, fInvR, fRbyB11_01
|
||
br.ret.sptk b0 // exit for main path
|
||
}
|
||
;;
|
||
|
||
GLOBAL_IEEE754_END(tanf)
|
||
|
||
|
||
LOCAL_LIBM_ENTRY(__libm_callout)
|
||
Huge_Argument:
|
||
.prologue
|
||
|
||
{ .mfi
|
||
nop.m 0
|
||
fmerge.s f9 = f0,f0
|
||
.save ar.pfs,GR_SAVE_PFS
|
||
mov GR_SAVE_PFS=ar.pfs
|
||
}
|
||
;;
|
||
|
||
{ .mfi
|
||
mov GR_SAVE_GP=gp
|
||
nop.f 0
|
||
.save b0, GR_SAVE_B0
|
||
mov GR_SAVE_B0=b0
|
||
}
|
||
|
||
.body
|
||
{ .mmb
|
||
nop.m 999
|
||
nop.m 999
|
||
(p10) br.cond.sptk.many call_tanl ;;
|
||
}
|
||
|
||
// Here if we should call cotl (p10=0, p11=1)
|
||
{ .mmb
|
||
nop.m 999
|
||
nop.m 999
|
||
br.call.sptk.many b0=__libm_cotl# ;;
|
||
}
|
||
|
||
{ .mfi
|
||
mov gp = GR_SAVE_GP
|
||
fnorm.s.s0 f8 = f8
|
||
mov b0 = GR_SAVE_B0
|
||
}
|
||
;;
|
||
|
||
{ .mib
|
||
nop.m 999
|
||
mov ar.pfs = GR_SAVE_PFS
|
||
br.ret.sptk b0
|
||
;;
|
||
}
|
||
|
||
// Here if we should call tanl (p10=1, p11=0)
|
||
call_tanl:
|
||
{ .mmb
|
||
nop.m 999
|
||
nop.m 999
|
||
br.call.sptk.many b0=__libm_tanl# ;;
|
||
}
|
||
|
||
{ .mfi
|
||
mov gp = GR_SAVE_GP
|
||
fnorm.s.s0 f8 = f8
|
||
mov b0 = GR_SAVE_B0
|
||
}
|
||
;;
|
||
|
||
{ .mib
|
||
nop.m 999
|
||
mov ar.pfs = GR_SAVE_PFS
|
||
br.ret.sptk b0
|
||
;;
|
||
}
|
||
|
||
LOCAL_LIBM_END(__libm_callout)
|
||
|
||
.type __libm_tanl#,@function
|
||
.global __libm_tanl#
|
||
.type __libm_cotl#,@function
|
||
.global __libm_cotl#
|
||
|
||
|
||
LOCAL_LIBM_ENTRY(__libm_error_region)
|
||
.prologue
|
||
|
||
// (1)
|
||
{ .mfi
|
||
add GR_Parameter_Y=-32,sp // Parameter 2 value
|
||
nop.f 0
|
||
.save ar.pfs,GR_SAVE_PFS
|
||
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
|
||
}
|
||
{ .mfi
|
||
.fframe 64
|
||
add sp=-64,sp // Create new stack
|
||
nop.f 0
|
||
mov GR_SAVE_GP=gp // Save gp
|
||
};;
|
||
|
||
// (2)
|
||
{ .mmi
|
||
stfs [GR_Parameter_Y] = f1,16 // STORE Parameter 2 on stack
|
||
add GR_Parameter_X = 16,sp // Parameter 1 address
|
||
.save b0, GR_SAVE_B0
|
||
mov GR_SAVE_B0=b0 // Save b0
|
||
};;
|
||
|
||
.body
|
||
// (3)
|
||
{ .mib
|
||
stfs [GR_Parameter_X] = f10 // STORE Parameter 1 on stack
|
||
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
|
||
nop.b 0
|
||
}
|
||
{ .mib
|
||
stfs [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
|
||
add GR_Parameter_Y = -16,GR_Parameter_Y
|
||
br.call.sptk b0=__libm_error_support# // Call error handling function
|
||
};;
|
||
{ .mmi
|
||
nop.m 0
|
||
nop.m 0
|
||
add GR_Parameter_RESULT = 48,sp
|
||
};;
|
||
|
||
// (4)
|
||
{ .mmi
|
||
ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
|
||
.restore sp
|
||
add sp = 64,sp // Restore stack pointer
|
||
mov b0 = GR_SAVE_B0 // Restore return address
|
||
};;
|
||
{ .mib
|
||
mov gp = GR_SAVE_GP // Restore gp
|
||
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
|
||
br.ret.sptk b0 // Return
|
||
};;
|
||
|
||
LOCAL_LIBM_END(__libm_error_region)
|
||
|
||
.type __libm_error_support#,@function
|
||
.global __libm_error_support#
|