glibc/nptl/pthread_mutex_timedlock.c
H.J. Lu 6bcfbee727 Move assignment out of the CAS condition
Update

commit 49302b8fdf
Author: H.J. Lu <hjl.tools@gmail.com>
Date:   Thu Nov 11 06:54:01 2021 -0800

    Avoid extra load with CAS in __pthread_mutex_clocklock_common [BZ #28537]

    Replace boolean CAS with value CAS to avoid the extra load.

and

commit 0b82747dc4
Author: H.J. Lu <hjl.tools@gmail.com>
Date:   Thu Nov 11 06:31:51 2021 -0800

    Avoid extra load with CAS in __pthread_mutex_lock_full [BZ #28537]

    Replace boolean CAS with value CAS to avoid the extra load.

by moving assignment out of the CAS condition.

(cherry picked from commit 120ac6d238)
2022-09-28 07:33:49 -07:00

645 lines
20 KiB
C

/* Copyright (C) 2002-2021 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@redhat.com>, 2002.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <assert.h>
#include <errno.h>
#include <time.h>
#include <sys/param.h>
#include <sys/time.h>
#include "pthreadP.h"
#include <atomic.h>
#include <lowlevellock.h>
#include <not-cancel.h>
#include <futex-internal.h>
#include <stap-probe.h>
int
__pthread_mutex_clocklock_common (pthread_mutex_t *mutex,
clockid_t clockid,
const struct __timespec64 *abstime)
{
int oldval;
pid_t id = THREAD_GETMEM (THREAD_SELF, tid);
int result = 0;
/* We must not check ABSTIME here. If the thread does not block
abstime must not be checked for a valid value. */
/* See concurrency notes regarding mutex type which is loaded from __kind
in struct __pthread_mutex_s in sysdeps/nptl/bits/thread-shared-types.h. */
switch (__builtin_expect (PTHREAD_MUTEX_TYPE_ELISION (mutex),
PTHREAD_MUTEX_TIMED_NP))
{
/* Recursive mutex. */
case PTHREAD_MUTEX_RECURSIVE_NP|PTHREAD_MUTEX_ELISION_NP:
case PTHREAD_MUTEX_RECURSIVE_NP:
/* Check whether we already hold the mutex. */
if (mutex->__data.__owner == id)
{
/* Just bump the counter. */
if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
/* Overflow of the counter. */
return EAGAIN;
++mutex->__data.__count;
goto out;
}
/* We have to get the mutex. */
result = __futex_clocklock64 (&mutex->__data.__lock, clockid, abstime,
PTHREAD_MUTEX_PSHARED (mutex));
if (result != 0)
goto out;
/* Only locked once so far. */
mutex->__data.__count = 1;
break;
/* Error checking mutex. */
case PTHREAD_MUTEX_ERRORCHECK_NP:
/* Check whether we already hold the mutex. */
if (__glibc_unlikely (mutex->__data.__owner == id))
return EDEADLK;
/* Don't do lock elision on an error checking mutex. */
goto simple;
case PTHREAD_MUTEX_TIMED_NP:
FORCE_ELISION (mutex, goto elision);
simple:
/* Normal mutex. */
result = __futex_clocklock64 (&mutex->__data.__lock, clockid, abstime,
PTHREAD_MUTEX_PSHARED (mutex));
break;
case PTHREAD_MUTEX_TIMED_ELISION_NP:
elision: __attribute__((unused))
/* Don't record ownership */
return lll_clocklock_elision (mutex->__data.__lock,
mutex->__data.__spins,
clockid, abstime,
PTHREAD_MUTEX_PSHARED (mutex));
case PTHREAD_MUTEX_ADAPTIVE_NP:
if (lll_trylock (mutex->__data.__lock) != 0)
{
int cnt = 0;
int max_cnt = MIN (max_adaptive_count (),
mutex->__data.__spins * 2 + 10);
do
{
if (cnt++ >= max_cnt)
{
result = __futex_clocklock64 (&mutex->__data.__lock,
clockid, abstime,
PTHREAD_MUTEX_PSHARED (mutex));
break;
}
atomic_spin_nop ();
}
while (lll_trylock (mutex->__data.__lock) != 0);
mutex->__data.__spins += (cnt - mutex->__data.__spins) / 8;
}
break;
case PTHREAD_MUTEX_ROBUST_RECURSIVE_NP:
case PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP:
case PTHREAD_MUTEX_ROBUST_NORMAL_NP:
case PTHREAD_MUTEX_ROBUST_ADAPTIVE_NP:
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
&mutex->__data.__list.__next);
/* We need to set op_pending before starting the operation. Also
see comments at ENQUEUE_MUTEX. */
__asm ("" ::: "memory");
oldval = mutex->__data.__lock;
/* This is set to FUTEX_WAITERS iff we might have shared the
FUTEX_WAITERS flag with other threads, and therefore need to keep it
set to avoid lost wake-ups. We have the same requirement in the
simple mutex algorithm. */
unsigned int assume_other_futex_waiters = 0;
while (1)
{
/* Try to acquire the lock through a CAS from 0 (not acquired) to
our TID | assume_other_futex_waiters. */
if (__glibc_likely (oldval == 0))
{
oldval
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
id | assume_other_futex_waiters, 0);
if (__glibc_likely (oldval == 0))
break;
}
if ((oldval & FUTEX_OWNER_DIED) != 0)
{
/* The previous owner died. Try locking the mutex. */
int newval = id | (oldval & FUTEX_WAITERS)
| assume_other_futex_waiters;
newval
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
newval, oldval);
if (newval != oldval)
{
oldval = newval;
continue;
}
/* We got the mutex. */
mutex->__data.__count = 1;
/* But it is inconsistent unless marked otherwise. */
mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT;
/* We must not enqueue the mutex before we have acquired it.
Also see comments at ENQUEUE_MUTEX. */
__asm ("" ::: "memory");
ENQUEUE_MUTEX (mutex);
/* We need to clear op_pending after we enqueue the mutex. */
__asm ("" ::: "memory");
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
/* Note that we deliberately exit here. If we fall
through to the end of the function __nusers would be
incremented which is not correct because the old
owner has to be discounted. */
return EOWNERDEAD;
}
/* Check whether we already hold the mutex. */
if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id))
{
int kind = PTHREAD_MUTEX_TYPE (mutex);
if (kind == PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP)
{
/* We do not need to ensure ordering wrt another memory
access. Also see comments at ENQUEUE_MUTEX. */
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
NULL);
return EDEADLK;
}
if (kind == PTHREAD_MUTEX_ROBUST_RECURSIVE_NP)
{
/* We do not need to ensure ordering wrt another memory
access. */
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
NULL);
/* Just bump the counter. */
if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
/* Overflow of the counter. */
return EAGAIN;
++mutex->__data.__count;
LIBC_PROBE (mutex_timedlock_acquired, 1, mutex);
return 0;
}
}
/* We are about to block; check whether the timeout is invalid. */
if (! valid_nanoseconds (abstime->tv_nsec))
return EINVAL;
/* Work around the fact that the kernel rejects negative timeout
values despite them being valid. */
if (__glibc_unlikely (abstime->tv_sec < 0))
return ETIMEDOUT;
/* We cannot acquire the mutex nor has its owner died. Thus, try
to block using futexes. Set FUTEX_WAITERS if necessary so that
other threads are aware that there are potentially threads
blocked on the futex. Restart if oldval changed in the
meantime. */
if ((oldval & FUTEX_WAITERS) == 0)
{
int val = atomic_compare_and_exchange_val_acq
(&mutex->__data.__lock, oldval | FUTEX_WAITERS, oldval);
if (val != oldval)
{
oldval = val;
continue;
}
oldval |= FUTEX_WAITERS;
}
/* It is now possible that we share the FUTEX_WAITERS flag with
another thread; therefore, update assume_other_futex_waiters so
that we do not forget about this when handling other cases
above and thus do not cause lost wake-ups. */
assume_other_futex_waiters |= FUTEX_WAITERS;
/* Block using the futex. */
int err = __futex_abstimed_wait64 (
(unsigned int *) &mutex->__data.__lock,
oldval, clockid, abstime,
PTHREAD_ROBUST_MUTEX_PSHARED (mutex));
/* The futex call timed out. */
if (err == ETIMEDOUT || err == EOVERFLOW)
return err;
/* Reload current lock value. */
oldval = mutex->__data.__lock;
}
/* We have acquired the mutex; check if it is still consistent. */
if (__builtin_expect (mutex->__data.__owner
== PTHREAD_MUTEX_NOTRECOVERABLE, 0))
{
/* This mutex is now not recoverable. */
mutex->__data.__count = 0;
int private = PTHREAD_ROBUST_MUTEX_PSHARED (mutex);
lll_unlock (mutex->__data.__lock, private);
/* FIXME This violates the mutex destruction requirements. See
__pthread_mutex_unlock_full. */
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
return ENOTRECOVERABLE;
}
mutex->__data.__count = 1;
/* We must not enqueue the mutex before we have acquired it.
Also see comments at ENQUEUE_MUTEX. */
__asm ("" ::: "memory");
ENQUEUE_MUTEX (mutex);
/* We need to clear op_pending after we enqueue the mutex. */
__asm ("" ::: "memory");
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
break;
/* The PI support requires the Linux futex system call. If that's not
available, pthread_mutex_init should never have allowed the type to
be set. So it will get the default case for an invalid type. */
#ifdef __NR_futex
case PTHREAD_MUTEX_PI_RECURSIVE_NP:
case PTHREAD_MUTEX_PI_ERRORCHECK_NP:
case PTHREAD_MUTEX_PI_NORMAL_NP:
case PTHREAD_MUTEX_PI_ADAPTIVE_NP:
case PTHREAD_MUTEX_PI_ROBUST_RECURSIVE_NP:
case PTHREAD_MUTEX_PI_ROBUST_ERRORCHECK_NP:
case PTHREAD_MUTEX_PI_ROBUST_NORMAL_NP:
case PTHREAD_MUTEX_PI_ROBUST_ADAPTIVE_NP:
{
/* Currently futex FUTEX_LOCK_PI operation only provides support for
CLOCK_REALTIME and trying to emulate by converting a
CLOCK_MONOTONIC to CLOCK_REALTIME will take in account possible
changes to the wall clock. */
if (__glibc_unlikely (clockid != CLOCK_REALTIME))
return EINVAL;
int kind, robust;
{
/* See concurrency notes regarding __kind in struct __pthread_mutex_s
in sysdeps/nptl/bits/thread-shared-types.h. */
int mutex_kind = atomic_load_relaxed (&(mutex->__data.__kind));
kind = mutex_kind & PTHREAD_MUTEX_KIND_MASK_NP;
robust = mutex_kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP;
}
if (robust)
{
/* Note: robust PI futexes are signaled by setting bit 0. */
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
(void *) (((uintptr_t) &mutex->__data.__list.__next)
| 1));
/* We need to set op_pending before starting the operation. Also
see comments at ENQUEUE_MUTEX. */
__asm ("" ::: "memory");
}
oldval = mutex->__data.__lock;
/* Check whether we already hold the mutex. */
if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id))
{
if (kind == PTHREAD_MUTEX_ERRORCHECK_NP)
{
/* We do not need to ensure ordering wrt another memory
access. */
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
return EDEADLK;
}
if (kind == PTHREAD_MUTEX_RECURSIVE_NP)
{
/* We do not need to ensure ordering wrt another memory
access. */
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
/* Just bump the counter. */
if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
/* Overflow of the counter. */
return EAGAIN;
++mutex->__data.__count;
LIBC_PROBE (mutex_timedlock_acquired, 1, mutex);
return 0;
}
}
oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
id, 0);
if (oldval != 0)
{
/* The mutex is locked. The kernel will now take care of
everything. The timeout value must be a relative value.
Convert it. */
int private = (robust
? PTHREAD_ROBUST_MUTEX_PSHARED (mutex)
: PTHREAD_MUTEX_PSHARED (mutex));
int e = futex_lock_pi64 (&mutex->__data.__lock, abstime, private);
if (e == ETIMEDOUT)
return ETIMEDOUT;
else if (e == ESRCH || e == EDEADLK)
{
assert (e != EDEADLK
|| (kind != PTHREAD_MUTEX_ERRORCHECK_NP
&& kind != PTHREAD_MUTEX_RECURSIVE_NP));
/* ESRCH can happen only for non-robust PI mutexes where
the owner of the lock died. */
assert (e != ESRCH || !robust);
/* Delay the thread until the timeout is reached. Then return
ETIMEDOUT. */
do
e = __futex_abstimed_wait64 (&(unsigned int){0}, 0, clockid,
abstime, private);
while (e != ETIMEDOUT);
return ETIMEDOUT;
}
else if (e != 0)
return e;
oldval = mutex->__data.__lock;
assert (robust || (oldval & FUTEX_OWNER_DIED) == 0);
}
if (__glibc_unlikely (oldval & FUTEX_OWNER_DIED))
{
atomic_and (&mutex->__data.__lock, ~FUTEX_OWNER_DIED);
/* We got the mutex. */
mutex->__data.__count = 1;
/* But it is inconsistent unless marked otherwise. */
mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT;
/* We must not enqueue the mutex before we have acquired it.
Also see comments at ENQUEUE_MUTEX. */
__asm ("" ::: "memory");
ENQUEUE_MUTEX_PI (mutex);
/* We need to clear op_pending after we enqueue the mutex. */
__asm ("" ::: "memory");
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
/* Note that we deliberately exit here. If we fall
through to the end of the function __nusers would be
incremented which is not correct because the old owner
has to be discounted. */
return EOWNERDEAD;
}
if (robust
&& __builtin_expect (mutex->__data.__owner
== PTHREAD_MUTEX_NOTRECOVERABLE, 0))
{
/* This mutex is now not recoverable. */
mutex->__data.__count = 0;
futex_unlock_pi ((unsigned int *) &mutex->__data.__lock,
PTHREAD_ROBUST_MUTEX_PSHARED (mutex));
/* To the kernel, this will be visible after the kernel has
acquired the mutex in the syscall. */
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
return ENOTRECOVERABLE;
}
mutex->__data.__count = 1;
if (robust)
{
/* We must not enqueue the mutex before we have acquired it.
Also see comments at ENQUEUE_MUTEX. */
__asm ("" ::: "memory");
ENQUEUE_MUTEX_PI (mutex);
/* We need to clear op_pending after we enqueue the mutex. */
__asm ("" ::: "memory");
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
}
}
break;
#endif /* __NR_futex. */
case PTHREAD_MUTEX_PP_RECURSIVE_NP:
case PTHREAD_MUTEX_PP_ERRORCHECK_NP:
case PTHREAD_MUTEX_PP_NORMAL_NP:
case PTHREAD_MUTEX_PP_ADAPTIVE_NP:
{
/* See concurrency notes regarding __kind in struct __pthread_mutex_s
in sysdeps/nptl/bits/thread-shared-types.h. */
int kind = atomic_load_relaxed (&(mutex->__data.__kind))
& PTHREAD_MUTEX_KIND_MASK_NP;
oldval = mutex->__data.__lock;
/* Check whether we already hold the mutex. */
if (mutex->__data.__owner == id)
{
if (kind == PTHREAD_MUTEX_ERRORCHECK_NP)
return EDEADLK;
if (kind == PTHREAD_MUTEX_RECURSIVE_NP)
{
/* Just bump the counter. */
if (__glibc_unlikely (mutex->__data.__count + 1 == 0))
/* Overflow of the counter. */
return EAGAIN;
++mutex->__data.__count;
LIBC_PROBE (mutex_timedlock_acquired, 1, mutex);
return 0;
}
}
int oldprio = -1, ceilval;
do
{
int ceiling = (oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK)
>> PTHREAD_MUTEX_PRIO_CEILING_SHIFT;
if (__pthread_current_priority () > ceiling)
{
result = EINVAL;
failpp:
if (oldprio != -1)
__pthread_tpp_change_priority (oldprio, -1);
return result;
}
result = __pthread_tpp_change_priority (oldprio, ceiling);
if (result)
return result;
ceilval = ceiling << PTHREAD_MUTEX_PRIO_CEILING_SHIFT;
oldprio = ceiling;
oldval
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
ceilval | 1, ceilval);
if (oldval == ceilval)
break;
do
{
oldval
= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
ceilval | 2,
ceilval | 1);
if ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval)
break;
if (oldval != ceilval)
{
/* Reject invalid timeouts. */
if (! valid_nanoseconds (abstime->tv_nsec))
{
result = EINVAL;
goto failpp;
}
int e = __futex_abstimed_wait64 (
(unsigned int *) &mutex->__data.__lock, ceilval | 2,
clockid, abstime, PTHREAD_MUTEX_PSHARED (mutex));
if (e == ETIMEDOUT || e == EOVERFLOW)
return e;
}
}
while (atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,
ceilval | 2, ceilval)
!= ceilval);
}
while ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval);
assert (mutex->__data.__owner == 0);
mutex->__data.__count = 1;
}
break;
default:
/* Correct code cannot set any other type. */
return EINVAL;
}
if (result == 0)
{
/* Record the ownership. */
mutex->__data.__owner = id;
++mutex->__data.__nusers;
LIBC_PROBE (mutex_timedlock_acquired, 1, mutex);
}
out:
return result;
}
int
___pthread_mutex_clocklock64 (pthread_mutex_t *mutex,
clockid_t clockid,
const struct __timespec64 *abstime)
{
if (__glibc_unlikely (!futex_abstimed_supported_clockid (clockid)))
return EINVAL;
LIBC_PROBE (mutex_clocklock_entry, 3, mutex, clockid, abstime);
return __pthread_mutex_clocklock_common (mutex, clockid, abstime);
}
#if __TIMESIZE == 64
strong_alias (___pthread_mutex_clocklock64, ___pthread_mutex_clocklock)
#else /* __TIMESPEC64 != 64 */
strong_alias (___pthread_mutex_clocklock64, __pthread_mutex_clocklock64)
libc_hidden_def (__pthread_mutex_clocklock64)
int
___pthread_mutex_clocklock (pthread_mutex_t *mutex,
clockid_t clockid,
const struct timespec *abstime)
{
struct __timespec64 ts64 = valid_timespec_to_timespec64 (*abstime);
return ___pthread_mutex_clocklock64 (mutex, clockid, &ts64);
}
#endif /* __TIMESPEC64 != 64 */
libc_hidden_ver (___pthread_mutex_clocklock, __pthread_mutex_clocklock)
#ifndef SHARED
strong_alias (___pthread_mutex_clocklock, __pthread_mutex_clocklock)
#endif
versioned_symbol (libc, ___pthread_mutex_clocklock,
pthread_mutex_clocklock, GLIBC_2_34);
#if OTHER_SHLIB_COMPAT (libpthread, GLIBC_2_30, GLIBC_2_34)
compat_symbol (libpthread, ___pthread_mutex_clocklock,
pthread_mutex_clocklock, GLIBC_2_30);
#endif
int
___pthread_mutex_timedlock64 (pthread_mutex_t *mutex,
const struct __timespec64 *abstime)
{
LIBC_PROBE (mutex_timedlock_entry, 2, mutex, abstime);
return __pthread_mutex_clocklock_common (mutex, CLOCK_REALTIME, abstime);
}
#if __TIMESIZE == 64
strong_alias (___pthread_mutex_timedlock64, ___pthread_mutex_timedlock)
#else /* __TIMESPEC64 != 64 */
strong_alias (___pthread_mutex_timedlock64, __pthread_mutex_timedlock64);
libc_hidden_def (__pthread_mutex_timedlock64)
int
___pthread_mutex_timedlock (pthread_mutex_t *mutex,
const struct timespec *abstime)
{
struct __timespec64 ts64 = valid_timespec_to_timespec64 (*abstime);
return __pthread_mutex_timedlock64 (mutex, &ts64);
}
#endif /* __TIMESPEC64 != 64 */
versioned_symbol (libc, ___pthread_mutex_timedlock,
pthread_mutex_timedlock, GLIBC_2_34);
libc_hidden_ver (___pthread_mutex_timedlock, __pthread_mutex_timedlock)
#ifndef SHARED
strong_alias (___pthread_mutex_timedlock, __pthread_mutex_timedlock)
#endif
#if OTHER_SHLIB_COMPAT (libpthread, GLIBC_2_2, GLIBC_2_34)
compat_symbol (libpthread, ___pthread_mutex_timedlock,
pthread_mutex_timedlock, GLIBC_2_2);
#endif