mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-03 08:11:08 +00:00
aeb25823d8
2002-06-05 Brian Youmans <3diff@gnu.org> * sysdeps/ia64/fpu/e_acos.S: Added text of Intel license. * sysdeps/ia64/fpu/e_acosf.S: Likewise. * sysdeps/ia64/fpu/e_acosl.S: Likewise. * sysdeps/ia64/fpu/e_asin.S: Likewise. * sysdeps/ia64/fpu/e_asinf.S: Likewise. * sysdeps/ia64/fpu/e_asinl.S: Likewise. * sysdeps/ia64/fpu/e_atan2.S: Likewise. * sysdeps/ia64/fpu/e_atan2f.S: Likewise. * sysdeps/ia64/fpu/e_cosh.S: Likewise. * sysdeps/ia64/fpu/e_coshf.S: Likewise. * sysdeps/ia64/fpu/e_coshl.S: Likewise. * sysdeps/ia64/fpu/e_exp.S: Likewise. * sysdeps/ia64/fpu/e_expf.S: Likewise. * sysdeps/ia64/fpu/e_fmod.S: Likewise. * sysdeps/ia64/fpu/e_fmodf.S: Likewise. * sysdeps/ia64/fpu/e_fmodl.S: Likewise. * sysdeps/ia64/fpu/e_hypot.S: Likewise. * sysdeps/ia64/fpu/e_hypotf.S: Likewise. * sysdeps/ia64/fpu/e_hypotl.S: Likewise. * sysdeps/ia64/fpu/e_log.S: Likewise. * sysdeps/ia64/fpu/e_logf.S: Likewise. * sysdeps/ia64/fpu/e_pow.S: Likewise. * sysdeps/ia64/fpu/e_powf.S: Likewise. * sysdeps/ia64/fpu/e_powl.S: Likewise. * sysdeps/ia64/fpu/e_remainder.S: Likewise. * sysdeps/ia64/fpu/e_remainderf.S: Likewise. * sysdeps/ia64/fpu/e_remainderl.S: Likewise. * sysdeps/ia64/fpu/e_scalb.S: Likewise. * sysdeps/ia64/fpu/e_scalbf.S: Likewise. * sysdeps/ia64/fpu/e_scalbl.S: Likewise. * sysdeps/ia64/fpu/e_sinh.S: Likewise. * sysdeps/ia64/fpu/e_sinhf.S: Likewise. * sysdeps/ia64/fpu/e_sinhl.S: Likewise. * sysdeps/ia64/fpu/e_sqrt.S: Likewise. * sysdeps/ia64/fpu/e_sqrtf.S: Likewise. * sysdeps/ia64/fpu/e_sqrtl.S: Likewise. * sysdeps/ia64/fpu/libm_atan2_req.S: Likewise. * sysdeps/ia64/fpu/libm_error.c: Likewise. * sysdeps/ia64/fpu/libm_frexp4.S: Likewise. * sysdeps/ia64/fpu/libm_frexp4f.S: Likewise. * sysdeps/ia64/fpu/s_frexpl.c: Likewise. * sysdeps/ia64/fpu/s_ilogb.S: Likewise. * sysdeps/ia64/fpu/s_ilogbf.S: Likewise. * sysdeps/ia64/fpu/s_ilogbl.S: Likewise. * sysdeps/ia64/fpu/s_ldexp.S: Likewise. * sysdeps/ia64/fpu/s_ldexpf.S: Likewise. * sysdeps/ia64/fpu/s_ldexpl.S: Likewise. * sysdeps/ia64/fpu/s_log1p.S: Likewise. * sysdeps/ia64/fpu/s_log1pf.S: Likewise. * sysdeps/ia64/fpu/s_log1pl.S: Likewise. * sysdeps/ia64/fpu/s_logb.S: Likewise. * sysdeps/ia64/fpu/s_logbf.S: Likewise. * sysdeps/ia64/fpu/s_logbl.S: Likewise. * sysdeps/ia64/fpu/s_modf.S: Likewise. * sysdeps/ia64/fpu/s_modff.S: Likewise. * sysdeps/ia64/fpu/s_modfl.S: Likewise. * sysdeps/ia64/fpu/s_nearbyint.S: Likewise. * sysdeps/ia64/fpu/s_nearbyintf.S: Likewise. * sysdeps/ia64/fpu/s_nearbyintl.S: Likewise. * sysdeps/ia64/fpu/s_rint.S: Likewise. * sysdeps/ia64/fpu/s_rintf.S: Likewise. * sysdeps/ia64/fpu/s_rintl.S: Likewise. * sysdeps/ia64/fpu/s_round.S: Likewise. * sysdeps/ia64/fpu/s_roundf.S: Likewise. * sysdeps/ia64/fpu/s_roundl.S: Likewise. * sysdeps/ia64/fpu/s_scalbn.S: Likewise. * sysdeps/ia64/fpu/s_scalbnf.S: Likewise. * sysdeps/ia64/fpu/s_scalbnl.S: Likewise. * sysdeps/ia64/fpu/s_significand.S: Likewise. * sysdeps/ia64/fpu/s_significandf.S: Likewise. * sysdeps/ia64/fpu/s_significandl.S: Likewise. * sysdeps/ia64/fpu/s_tan.S: Likewise. * sysdeps/ia64/fpu/s_tanf.S: Likewise. * sysdeps/ia64/fpu/s_tanl.S: Likewise. * sysdeps/ia64/fpu/s_trunc.S: Likewise. * sysdeps/ia64/fpu/s_truncf.S: Likewise. * sysdeps/ia64/fpu/s_truncl.S: Likewise. * sysdeps/ieee754/dbl-64/doasin.c: Changed copyright notice to reflect IBM donation of math library to FSF * sysdeps/ieee754/dbl-64/dosincos.c: Likewise. * sysdeps/ieee754/dbl-64/e_asin.c: Likewise. * sysdeps/ieee754/dbl-64/e_atan2.c: Likewise. * sysdeps/ieee754/dbl-64/e_exp.c: Likewise. * sysdeps/ieee754/dbl-64/e_log.c: Likewise. * sysdeps/ieee754/dbl-64/e_pow.c: Likewise. * sysdeps/ieee754/dbl-64/e_remainder.c: Likewise. * sysdeps/ieee754/dbl-64/e_sqrt.c: Likewise. * sysdeps/ieee754/dbl-64/halfulp.c: Likewise. * sysdeps/ieee754/dbl-64/mpa.c: Likewise. * sysdeps/ieee754/dbl-64/mpatan.c: Likewise. * sysdeps/ieee754/dbl-64/mpatan2.c: Likewise. * sysdeps/ieee754/dbl-64/mpexp.c: Likewise. * sysdeps/ieee754/dbl-64/mplog.c: Likewise. * sysdeps/ieee754/dbl-64/mpsqrt.c: Likewise. * sysdeps/ieee754/dbl-64/mptan.c: Likewise. * sysdeps/ieee754/dbl-64/s_atan.c: Likewise. * sysdeps/ieee754/dbl-64/s_sin.c: Likewise. * sysdeps/ieee754/dbl-64/s_tan.c: Likewise. * sysdeps/ieee754/dbl-64/sincos32.c: Likewise. * sysdeps/ieee754/dbl-64/slowexp.c: Likewise. * sysdeps/ieee754/dbl-64/slowpow.c: Likewise. * sysdeps/gnu/netinet/udp.h: Added BSD copying permission notice * sysdeps/vax/__longjmp.c: Likewise. * sysdeps/vax/setjmp.c: Likewise. * libio/filedoalloc.c: Fixed BSD copying permission notice to remove advertising clause * sysdeps/vax/htonl.s: Likewise. * sysdeps/vax/htons.s: Likewise. * libio/wfiledoalloc.c: Likewise. * stdlib/random.c: Likewise. * stdlib/random_r.c: Likewise. * sysdeps/mach/sys/reboot.h: Likewise. * inet/getnameinfo.c: Deleted advertising clause from Inner Net License * sysdeps/posix/getaddrinfo.c: Likewise. * sunrpc/des_impl.c: Updated license permission notice to Lesser GPL and corrected pointer to point to the correct license.
2008 lines
44 KiB
ArmAsm
2008 lines
44 KiB
ArmAsm
.file "atanl.s"
|
|
|
|
// Copyright (C) 2000, 2001, Intel Corporation
|
|
// All rights reserved.
|
|
//
|
|
// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
|
|
// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote
|
|
// products derived from this software without specific prior written
|
|
// permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Intel Corporation is the author of this code, and requests that all
|
|
// problem reports or change requests be submitted to it directly at
|
|
// http://developer.intel.com/opensource.
|
|
//
|
|
//
|
|
// *********************************************************************
|
|
//
|
|
// History
|
|
// 2/02/00 (hand-optimized)
|
|
// 4/04/00 Unwind support added
|
|
// 8/15/00 Bundle added after call to __libm_error_support to properly
|
|
// set [the previously overwritten] GR_Parameter_RESULT.
|
|
//
|
|
// *********************************************************************
|
|
//
|
|
// Function: atanl(x) = inverse tangent(x), for double extended x values
|
|
// Function: atan2l(y,x) = atan(y/x), for double extended x values
|
|
//
|
|
// *********************************************************************
|
|
//
|
|
// Resources Used:
|
|
//
|
|
// Floating-Point Registers: f8 (Input and Return Value)
|
|
// f9-f15
|
|
// f32-f79
|
|
//
|
|
// General Purpose Registers:
|
|
// r32-r48
|
|
// r49,r50,r51,r52 (Arguments to error support for 0,0 case)
|
|
//
|
|
// Predicate Registers: p6-p15
|
|
//
|
|
// *********************************************************************
|
|
//
|
|
// IEEE Special Conditions:
|
|
//
|
|
// Denormal fault raised on denormal inputs
|
|
// Underflow exceptions may occur
|
|
// Special error handling for the y=0 and x=0 case
|
|
// Inexact raised when appropriate by algorithm
|
|
//
|
|
// atanl(SNaN) = QNaN
|
|
// atanl(QNaN) = QNaN
|
|
// atanl(+/-0) = +/- 0
|
|
// atanl(+/-Inf) = +/-pi/2
|
|
//
|
|
// atan2l(Any NaN for x or y) = QNaN
|
|
// atan2l(+/-0,x) = +/-0 for x > 0
|
|
// atan2l(+/-0,x) = +/-pi for x < 0
|
|
// atan2l(+/-0,+0) = +/-0
|
|
// atan2l(+/-0,-0) = +/-pi
|
|
// atan2l(y,+/-0) = pi/2 y > 0
|
|
// atan2l(y,+/-0) = -pi/2 y < 0
|
|
// atan2l(+/-y, Inf) = +/-0 for finite y > 0
|
|
// atan2l(+/-Inf, x) = +/-pi/2 for finite x
|
|
// atan2l(+/-y, -Inf) = +/-pi for finite y > 0
|
|
// atan2l(+/-Inf, Inf) = +/-pi/4
|
|
// atan2l(+/-Inf, -Inf) = +/-3pi/4
|
|
//
|
|
// *********************************************************************
|
|
//
|
|
// Mathematical Description
|
|
// ---------------------------
|
|
//
|
|
// The function ATANL( Arg_Y, Arg_X ) returns the "argument"
|
|
// or the "phase" of the complex number
|
|
//
|
|
// Arg_X + i Arg_Y
|
|
//
|
|
// or equivalently, the angle in radians from the positive
|
|
// x-axis to the line joining the origin and the point
|
|
// (Arg_X,Arg_Y)
|
|
//
|
|
//
|
|
// (Arg_X, Arg_Y) x
|
|
// \
|
|
// \
|
|
// \
|
|
// \
|
|
// \ angle between is ATANL(Arg_Y,Arg_X)
|
|
|
|
|
|
|
|
|
|
// \
|
|
// ------------------> X-axis
|
|
|
|
// Origin
|
|
//
|
|
// Moreover, this angle is reported in the range [-pi,pi] thus
|
|
//
|
|
// -pi <= ATANL( Arg_Y, Arg_X ) <= pi.
|
|
//
|
|
// From the geometry, it is easy to define ATANL when one of
|
|
// Arg_X or Arg_Y is +-0 or +-inf:
|
|
//
|
|
//
|
|
// \ Y |
|
|
// X \ | +0 | -0 | +inf | -inf | finite non-zero
|
|
// \ | | | | |
|
|
// ______________________________________________________
|
|
// | | | |
|
|
// +-0 | Invalid/ | pi/2 | -pi/2 | sign(Y)*pi/2
|
|
// | qNaN | | |
|
|
// --------------------------------------------------------
|
|
// | | | | |
|
|
// +inf | +0 | -0 | pi/4 | -pi/4 | sign(Y)*0
|
|
// --------------------------------------------------------
|
|
// | | | | |
|
|
// -inf | +pi | -pi | 3pi/4 | -3pi/4 | sign(Y)*pi
|
|
// --------------------------------------------------------
|
|
// finite | X>0? | pi/2 | -pi/2 | normal case
|
|
// non-zero| sign(Y)*0: | | |
|
|
// | sign(Y)*pi | | |
|
|
//
|
|
//
|
|
// One must take note that ATANL is NOT the arctangent of the
|
|
// value Arg_Y/Arg_X; but rather ATANL and arctan are related
|
|
// in a slightly more complicated way as follows:
|
|
//
|
|
// Let U := max(|Arg_X|, |Arg_Y|); V := min(|Arg_X|, |Arg_Y|);
|
|
// sign_X be the sign bit of Arg_X, i.e., sign_X is 0 or 1;
|
|
// s_X be the sign of Arg_X, i.e., s_X = (-1)^sign_X;
|
|
//
|
|
// sign_Y be the sign bit of Arg_Y, i.e., sign_Y is 0 or 1;
|
|
// s_Y be the sign of Arg_Y, i.e., s_Y = (-1)^sign_Y;
|
|
//
|
|
// swap be 0 if |Arg_X| >= |Arg_Y| and 1 otherwise.
|
|
//
|
|
// Then, ATANL(Arg_Y, Arg_X) =
|
|
//
|
|
// / arctan(V/U) \ sign_X = 0 & swap = 0
|
|
// | pi/2 - arctan(V/U) | sign_X = 0 & swap = 1
|
|
// s_Y * | |
|
|
// | pi - arctan(V/U) | sign_X = 1 & swap = 0
|
|
// \ pi/2 + arctan(V/U) / sign_X = 1 & swap = 1
|
|
//
|
|
//
|
|
// This relationship also suggest that the algorithm's major
|
|
// task is to calculate arctan(V/U) for 0 < V <= U; and the
|
|
// final Result is given by
|
|
//
|
|
// s_Y * { (P_hi + P_lo) + sigma * arctan(V/U) }
|
|
//
|
|
// where
|
|
//
|
|
// (P_hi,P_lo) represents M(sign_X,swap)*(pi/2) accurately
|
|
//
|
|
// M(sign_X,swap) = 0 for sign_X = 0 and swap = 0
|
|
// 1 for swap = 1
|
|
// 2 for sign_X = 1 and swap = 0
|
|
//
|
|
// and
|
|
//
|
|
// sigma = { (sign_X XOR swap) : -1.0 : 1.0 }
|
|
//
|
|
// = (-1) ^ ( sign_X XOR swap )
|
|
//
|
|
// Both (P_hi,P_lo) and sigma can be stored in a table and fetched
|
|
// using (sign_X,swap) as an index. (P_hi, P_lo) can be stored as a
|
|
// double-precision, and single-precision pair; and sigma can
|
|
// obviously be just a single-precision number.
|
|
//
|
|
// In the algorithm we propose, arctan(V/U) is calculated to high accuracy
|
|
// as A_hi + A_lo. Consequently, the Result ATANL( Arg_Y, Arg_X ) is
|
|
// given by
|
|
//
|
|
// s_Y*P_hi + s_Y*sigma*A_hi + s_Y*(sigma*A_lo + P_lo)
|
|
//
|
|
// We now discuss the calculation of arctan(V/U) for 0 < V <= U.
|
|
//
|
|
// For (V/U) < 2^(-3), we use a simple polynomial of the form
|
|
//
|
|
// z + z^3*(P_1 + z^2*(P_2 + z^2*(P_3 + ... + P_8)))
|
|
//
|
|
// where z = V/U.
|
|
//
|
|
// For the sake of accuracy, the first term "z" must approximate V/U to
|
|
// extra precision. For z^3 and higher power, a working precision
|
|
// approximation to V/U suffices. Thus, we obtain:
|
|
//
|
|
// z_hi + z_lo = V/U to extra precision and
|
|
// z = V/U to working precision
|
|
//
|
|
// The value arctan(V/U) is delivered as two pieces (A_hi, A_lo)
|
|
//
|
|
// (A_hi,A_lo) = (z_hi, z^3*(P_1 + ... + P_8) + z_lo).
|
|
//
|
|
//
|
|
// For 2^(-3) <= (V/U) <= 1, we use a table-driven approach.
|
|
// Consider
|
|
//
|
|
// (V/U) = 2^k * 1.b_1 b_2 .... b_63 b_64 b_65 ....
|
|
//
|
|
// Define
|
|
//
|
|
// z_hi = 2^k * 1.b_1 b_2 b_3 b_4 1
|
|
//
|
|
// then
|
|
// / \
|
|
// | (V/U) - z_hi |
|
|
|
|
// arctan(V/U) = arctan(z_hi) + acrtan| -------------- |
|
|
// | 1 + (V/U)*z_hi |
|
|
// \ /
|
|
//
|
|
// / \
|
|
// | V - z_hi*U |
|
|
|
|
// = arctan(z_hi) + acrtan| -------------- |
|
|
// | U + V*z_hi |
|
|
// \ /
|
|
//
|
|
// = arctan(z_hi) + acrtan( V' / U' )
|
|
//
|
|
//
|
|
// where
|
|
//
|
|
// V' = V - U*z_hi; U' = U + V*z_hi.
|
|
//
|
|
// Let
|
|
//
|
|
// w_hi + w_lo = V'/U' to extra precision and
|
|
// w = V'/U' to working precision
|
|
//
|
|
// then we can approximate arctan(V'/U') by
|
|
//
|
|
// arctan(V'/U') = w_hi + w_lo
|
|
// + w^3*(Q_1 + w^2*(Q_2 + w^2*(Q_3 + w^2*Q_4)))
|
|
//
|
|
// = w_hi + w_lo + poly
|
|
//
|
|
// Finally, arctan(z_hi) is calculated beforehand and stored in a table
|
|
// as Tbl_hi, Tbl_lo. Thus,
|
|
//
|
|
// (A_hi, A_lo) = (Tbl_hi, w_hi+(poly+(w_lo+Tbl_lo)))
|
|
//
|
|
// This completes the mathematical description.
|
|
//
|
|
//
|
|
// Algorithm
|
|
// -------------
|
|
//
|
|
// Step 0. Check for unsupported format.
|
|
//
|
|
// If
|
|
// ( expo(Arg_X) not zero AND msb(Arg_X) = 0 ) OR
|
|
// ( expo(Arg_Y) not zero AND msb(Arg_Y) = 0 )
|
|
//
|
|
// then one of the arguments is unsupported. Generate an
|
|
// invalid and return qNaN.
|
|
//
|
|
// Step 1. Initialize
|
|
//
|
|
// Normalize Arg_X and Arg_Y and set the following
|
|
//
|
|
// sign_X := sign_bit(Arg_X)
|
|
// s_Y := (sign_bit(Arg_Y)==0? 1.0 : -1.0)
|
|
// swap := (|Arg_X| >= |Arg_Y|? 0 : 1 )
|
|
// U := max( |Arg_X|, |Arg_Y| )
|
|
// V := min( |Arg_X|, |Arg_Y| )
|
|
//
|
|
// execute: frcap E, pred, V, U
|
|
// If pred is 0, go to Step 5 for special cases handling.
|
|
//
|
|
// Step 2. Decide on branch.
|
|
//
|
|
// Q := E * V
|
|
// If Q < 2^(-3) go to Step 4 for simple polynomial case.
|
|
//
|
|
// Step 3. Table-driven algorithm.
|
|
//
|
|
// Q is represented as
|
|
//
|
|
// 2^(-k) * 1.b_1 b_2 b_3 ... b_63; k = 0,-1,-2,-3
|
|
//
|
|
// and that if k = 0, b_1 = b_2 = b_3 = b_4 = 0.
|
|
//
|
|
// Define
|
|
//
|
|
// z_hi := 2^(-k) * 1.b_1 b_2 b_3 b_4 1
|
|
//
|
|
// (note that there are 49 possible values of z_hi).
|
|
//
|
|
// ...We now calculate V' and U'. While V' is representable
|
|
// ...as a 64-bit number because of cancellation, U' is
|
|
// ...not in general a 64-bit number. Obtaining U' accurately
|
|
// ...requires two working precision numbers
|
|
//
|
|
// U_prime_hi := U + V * z_hi ...WP approx. to U'
|
|
// U_prime_lo := ( U - U_prime_hi ) + V*z_hi ...observe order
|
|
// V_prime := V - U * z_hi ...this is exact
|
|
//
|
|
// C_hi := frcpa (1.0, U_prime_hi) ...C_hi approx 1/U'_hi
|
|
//
|
|
// loop 3 times
|
|
// C_hi := C_hi + C_hi*(1.0 - C_hi*U_prime_hi)
|
|
//
|
|
// ...at this point C_hi is (1/U_prime_hi) to roughly 64 bits
|
|
//
|
|
// w_hi := V_prime * C_hi ...w_hi is V_prime/U_prime to
|
|
// ...roughly working precision
|
|
//
|
|
// ...note that we want w_hi + w_lo to approximate
|
|
// ...V_prime/(U_prime_hi + U_prime_lo) to extra precision
|
|
// ...but for now, w_hi is good enough for the polynomial
|
|
// ...calculation.
|
|
//
|
|
// wsq := w_hi*w_hi
|
|
// poly := w_hi*wsq*(Q_1 + wsq*(Q_2 + wsq*(Q_3 + wsq*Q_4)))
|
|
//
|
|
// Fetch
|
|
// (Tbl_hi, Tbl_lo) = atan(z_hi) indexed by (k,b_1,b_2,b_3,b_4)
|
|
// ...Tbl_hi is a double-precision number
|
|
// ...Tbl_lo is a single-precision number
|
|
//
|
|
// (P_hi, P_lo) := M(sign_X,swap)*(Pi_by_2_hi, Pi_by_2_lo)
|
|
// ...as discussed previous. Again; the implementation can
|
|
// ...chose to fetch P_hi and P_lo from a table indexed by
|
|
// ...(sign_X, swap).
|
|
// ...P_hi is a double-precision number;
|
|
// ...P_lo is a single-precision number.
|
|
//
|
|
// ...calculate w_lo so that w_hi + w_lo is V'/U' accurately
|
|
// w_lo := ((V_prime - w_hi*U_prime_hi) -
|
|
// w_hi*U_prime_lo) * C_hi ...observe order
|
|
//
|
|
//
|
|
// ...Ready to deliver arctan(V'/U') as A_hi, A_lo
|
|
// A_hi := Tbl_hi
|
|
// A_lo := w_hi + (poly + (Tbl_lo + w_lo)) ...observe order
|
|
//
|
|
// ...Deliver final Result
|
|
// ...s_Y*P_hi + s_Y*sigma*A_hi + s_Y*(sigma*A_lo + P_lo)
|
|
//
|
|
// sigma := ( (sign_X XOR swap) ? -1.0 : 1.0 )
|
|
// ...sigma can be obtained by a table lookup using
|
|
// ...(sign_X,swap) as index and stored as single precision
|
|
// ...sigma should be calculated earlier
|
|
//
|
|
// P_hi := s_Y*P_hi
|
|
// A_hi := s_Y*A_hi
|
|
//
|
|
// Res_hi := P_hi + sigma*A_hi ...this is exact because
|
|
// ...both P_hi and Tbl_hi
|
|
// ...are double-precision
|
|
// ...and |Tbl_hi| > 2^(-4)
|
|
// ...P_hi is either 0 or
|
|
// ...between (1,4)
|
|
//
|
|
// Res_lo := sigma*A_lo + P_lo
|
|
//
|
|
// Return Res_hi + s_Y*Res_lo in user-defined rounding control
|
|
//
|
|
// Step 4. Simple polynomial case.
|
|
//
|
|
// ...E and Q are inherited from Step 2.
|
|
//
|
|
// A_hi := Q ...Q is inherited from Step 2 Q approx V/U
|
|
//
|
|
// loop 3 times
|
|
// E := E + E2(1.0 - E*U1
|
|
// ...at this point E approximates 1/U to roughly working precision
|
|
//
|
|
// z := V * E ...z approximates V/U to roughly working precision
|
|
// zsq := z * z
|
|
// z8 := zsq * zsq; z8 := z8 * z8
|
|
//
|
|
// poly1 := P_4 + zsq*(P_5 + zsq*(P_6 + zsq*(P_7 + zsq*P_8)))
|
|
// poly2 := zsq*(P_1 + zsq*(P_2 + zsq*P_3))
|
|
//
|
|
// poly := poly1 + z8*poly2
|
|
//
|
|
// z_lo := (V - A_hi*U)*E
|
|
//
|
|
// A_lo := z*poly + z_lo
|
|
// ...A_hi, A_lo approximate arctan(V/U) accurately
|
|
//
|
|
// (P_hi, P_lo) := M(sign_X,swap)*(Pi_by_2_hi, Pi_by_2_lo)
|
|
// ...one can store the M(sign_X,swap) as single precision
|
|
// ...values
|
|
//
|
|
// ...Deliver final Result
|
|
// ...s_Y*P_hi + s_Y*sigma*A_hi + s_Y*(sigma*A_lo + P_lo)
|
|
//
|
|
// sigma := ( (sign_X XOR swap) ? -1.0 : 1.0 )
|
|
// ...sigma can be obtained by a table lookup using
|
|
// ...(sign_X,swap) as index and stored as single precision
|
|
// ...sigma should be calculated earlier
|
|
//
|
|
// P_hi := s_Y*P_hi
|
|
// A_hi := s_Y*A_hi
|
|
//
|
|
// Res_hi := P_hi + sigma*A_hi ...need to compute
|
|
// ...P_hi + sigma*A_hi
|
|
// ...exactly
|
|
//
|
|
// tmp := (P_hi - Res_hi) + sigma*A_hi
|
|
//
|
|
// Res_lo := s_Y*(sigma*A_lo + P_lo) + tmp
|
|
//
|
|
// Return Res_hi + Res_lo in user-defined rounding control
|
|
//
|
|
// Step 5. Special Cases
|
|
//
|
|
// If pred is 0 where pred is obtained in
|
|
// frcap E, pred, V, U
|
|
//
|
|
// we are in one of those special cases of 0,+-inf or NaN
|
|
//
|
|
// If one of U and V is NaN, return U+V (which will generate
|
|
// invalid in case one is a signaling NaN). Otherwise,
|
|
// return the Result as described in the table
|
|
//
|
|
//
|
|
//
|
|
// \ Y |
|
|
// X \ | +0 | -0 | +inf | -inf | finite non-zero
|
|
// \ | | | | |
|
|
// ______________________________________________________
|
|
// | | | |
|
|
// +-0 | Invalid/ | pi/2 | -pi/2 | sign(Y)*pi/2
|
|
// | qNaN | | |
|
|
// --------------------------------------------------------
|
|
// | | | | |
|
|
// +inf | +0 | -0 | pi/4 | -pi/4 | sign(Y)*0
|
|
// --------------------------------------------------------
|
|
// | | | | |
|
|
// -inf | +pi | -pi | 3pi/4 | -3pi/4 | sign(Y)*pi
|
|
// --------------------------------------------------------
|
|
// finite | X>0? | pi/2 | -pi/2 |
|
|
// non-zero| sign(Y)*0: | | | N/A
|
|
// | sign(Y)*pi | | |
|
|
//
|
|
//
|
|
|
|
#include "libm_support.h"
|
|
|
|
ArgY_orig = f8
|
|
Result = f8
|
|
FR_RESULT = f8
|
|
ArgX_orig = f9
|
|
ArgX = f10
|
|
FR_X = f10
|
|
ArgY = f11
|
|
FR_Y = f11
|
|
s_Y = f12
|
|
U = f13
|
|
V = f14
|
|
E = f15
|
|
Q = f32
|
|
z_hi = f33
|
|
U_prime_hi = f34
|
|
U_prime_lo = f35
|
|
V_prime = f36
|
|
C_hi = f37
|
|
w_hi = f38
|
|
w_lo = f39
|
|
wsq = f40
|
|
poly = f41
|
|
Tbl_hi = f42
|
|
Tbl_lo = f43
|
|
P_hi = f44
|
|
P_lo = f45
|
|
A_hi = f46
|
|
A_lo = f47
|
|
sigma = f48
|
|
Res_hi = f49
|
|
Res_lo = f50
|
|
Z = f52
|
|
zsq = f53
|
|
z8 = f54
|
|
poly1 = f55
|
|
poly2 = f56
|
|
z_lo = f57
|
|
tmp = f58
|
|
P_1 = f59
|
|
Q_1 = f60
|
|
P_2 = f61
|
|
Q_2 = f62
|
|
P_3 = f63
|
|
Q_3 = f64
|
|
P_4 = f65
|
|
Q_4 = f66
|
|
P_5 = f67
|
|
P_6 = f68
|
|
P_7 = f69
|
|
P_8 = f70
|
|
TWO_TO_NEG3 = f71
|
|
U_hold = f72
|
|
C_hi_hold = f73
|
|
E_hold = f74
|
|
M = f75
|
|
ArgX_abs = f76
|
|
ArgY_abs = f77
|
|
Result_lo = f78
|
|
A_temp = f79
|
|
GR_SAVE_PFS = r33
|
|
GR_SAVE_B0 = r34
|
|
GR_SAVE_GP = r35
|
|
sign_X = r36
|
|
sign_Y = r37
|
|
swap = r38
|
|
table_ptr1 = r39
|
|
table_ptr2 = r40
|
|
k = r41
|
|
lookup = r42
|
|
exp_ArgX = r43
|
|
exp_ArgY = r44
|
|
exponent_Q = r45
|
|
significand_Q = r46
|
|
special = r47
|
|
special1 = r48
|
|
GR_Parameter_X = r49
|
|
GR_Parameter_Y = r50
|
|
GR_Parameter_RESULT = r51
|
|
GR_Parameter_TAG = r52
|
|
int_temp = r52
|
|
|
|
#ifdef _LIBC
|
|
.rodata
|
|
#else
|
|
.data
|
|
#endif
|
|
.align 64
|
|
|
|
Constants_atan:
|
|
ASM_TYPE_DIRECTIVE(Constants_atan,@object)
|
|
data4 0x54442D18, 0x3FF921FB, 0x248D3132, 0x3E000000
|
|
// double pi/2, single lo_pi/2, two**(-3)
|
|
data4 0xAAAAAAA3, 0xAAAAAAAA, 0x0000BFFD, 0x00000000 // P_1
|
|
data4 0xCCCC54B2, 0xCCCCCCCC, 0x00003FFC, 0x00000000 // P_2
|
|
data4 0x47E4D0C2, 0x92492492, 0x0000BFFC, 0x00000000 // P_3
|
|
data4 0x58870889, 0xE38E38E0, 0x00003FFB, 0x00000000 // P_4
|
|
data4 0x290149F8, 0xBA2E895B, 0x0000BFFB, 0x00000000 // P_5
|
|
data4 0x250F733D, 0x9D88E6D4, 0x00003FFB, 0x00000000 // P_6
|
|
data4 0xFB8745A0, 0x884E51FF, 0x0000BFFB, 0x00000000 // P_7
|
|
data4 0x394396BD, 0xE1C7412B, 0x00003FFA, 0x00000000 // P_8
|
|
data4 0xAAAAA52F, 0xAAAAAAAA, 0x0000BFFD, 0x00000000 // Q_1
|
|
data4 0xC75B60D3, 0xCCCCCCCC, 0x00003FFC, 0x00000000 // Q_2
|
|
data4 0x011F1940, 0x924923AD, 0x0000BFFC, 0x00000000 // Q_3
|
|
data4 0x2A5F89BD, 0xE36F716D, 0x00003FFB, 0x00000000 // Q_4
|
|
//
|
|
// Entries Tbl_hi (double precision)
|
|
// B = 1+Index/16+1/32 Index = 0
|
|
// Entries Tbl_lo (single precision)
|
|
// B = 1+Index/16+1/32 Index = 0
|
|
//
|
|
data4 0xA935BD8E, 0x3FE9A000, 0x23ACA08F, 0x00000000
|
|
//
|
|
// Entries Tbl_hi (double precision) Index = 0,1,...,15
|
|
// B = 2^(-1)*(1+Index/16+1/32)
|
|
// Entries Tbl_lo (single precision)
|
|
// Index = 0,1,...,15 B = 2^(-1)*(1+Index/16+1/32)
|
|
//
|
|
data4 0x7F175A34, 0x3FDE77EB, 0x238729EE, 0x00000000
|
|
data4 0x73C1A40B, 0x3FE0039C, 0x249334DB, 0x00000000
|
|
data4 0x5B5B43DA, 0x3FE0C614, 0x22CBA7D1, 0x00000000
|
|
data4 0x88BE7C13, 0x3FE1835A, 0x246310E7, 0x00000000
|
|
data4 0xE2CC9E6A, 0x3FE23B71, 0x236210E5, 0x00000000
|
|
data4 0x8406CBCA, 0x3FE2EE62, 0x2462EAF5, 0x00000000
|
|
data4 0x1CD41719, 0x3FE39C39, 0x24B73EF3, 0x00000000
|
|
data4 0x5B795B55, 0x3FE44506, 0x24C11260, 0x00000000
|
|
data4 0x5BB6EC04, 0x3FE4E8DE, 0x242519EE, 0x00000000
|
|
data4 0x1F732FBA, 0x3FE587D8, 0x24D4346C, 0x00000000
|
|
data4 0x115D7B8D, 0x3FE6220D, 0x24ED487B, 0x00000000
|
|
data4 0x920B3D98, 0x3FE6B798, 0x2495FF1E, 0x00000000
|
|
data4 0x8FBA8E0F, 0x3FE74897, 0x223D9531, 0x00000000
|
|
data4 0x289FA093, 0x3FE7D528, 0x242B0411, 0x00000000
|
|
data4 0x576CC2C5, 0x3FE85D69, 0x2335B374, 0x00000000
|
|
data4 0xA99CC05D, 0x3FE8E17A, 0x24C27CFB, 0x00000000
|
|
//
|
|
// Entries Tbl_hi (double precision) Index = 0,1,...,15
|
|
// B = 2^(-2)*(1+Index/16+1/32)
|
|
// Entries Tbl_lo (single precision)
|
|
// Index = 0,1,...,15 B = 2^(-2)*(1+Index/16+1/32)
|
|
//
|
|
data4 0x510665B5, 0x3FD025FA, 0x24263482, 0x00000000
|
|
data4 0x362431C9, 0x3FD1151A, 0x242C8DC9, 0x00000000
|
|
data4 0x67E47C95, 0x3FD20255, 0x245CF9BA, 0x00000000
|
|
data4 0x7A823CFE, 0x3FD2ED98, 0x235C892C, 0x00000000
|
|
data4 0x29271134, 0x3FD3D6D1, 0x2389BE52, 0x00000000
|
|
data4 0x586890E6, 0x3FD4BDEE, 0x24436471, 0x00000000
|
|
data4 0x175E0F4E, 0x3FD5A2E0, 0x2389DBD4, 0x00000000
|
|
data4 0x9F5FA6FD, 0x3FD68597, 0x2476D43F, 0x00000000
|
|
data4 0x52817501, 0x3FD76607, 0x24711774, 0x00000000
|
|
data4 0xB8DF95D7, 0x3FD84422, 0x23EBB501, 0x00000000
|
|
data4 0x7CD0C662, 0x3FD91FDE, 0x23883A0C, 0x00000000
|
|
data4 0x66168001, 0x3FD9F930, 0x240DF63F, 0x00000000
|
|
data4 0x5422058B, 0x3FDAD00F, 0x23FE261A, 0x00000000
|
|
data4 0x378624A5, 0x3FDBA473, 0x23A8CD0E, 0x00000000
|
|
data4 0x0AAD71F8, 0x3FDC7655, 0x2422D1D0, 0x00000000
|
|
data4 0xC9EC862B, 0x3FDD45AE, 0x2344A109, 0x00000000
|
|
//
|
|
// Entries Tbl_hi (double precision) Index = 0,1,...,15
|
|
// B = 2^(-3)*(1+Index/16+1/32)
|
|
// Entries Tbl_lo (single precision)
|
|
// Index = 0,1,...,15 B = 2^(-3)*(1+Index/16+1/32)
|
|
//
|
|
data4 0x84212B3D, 0x3FC068D5, 0x239874B6, 0x00000000
|
|
data4 0x41060850, 0x3FC16465, 0x2335E774, 0x00000000
|
|
data4 0x171A535C, 0x3FC25F6E, 0x233E36BE, 0x00000000
|
|
data4 0xEDEB99A3, 0x3FC359E8, 0x239680A3, 0x00000000
|
|
data4 0xC6092A9E, 0x3FC453CE, 0x230FB29E, 0x00000000
|
|
data4 0xBA11570A, 0x3FC54D18, 0x230C1418, 0x00000000
|
|
data4 0xFFB3AA73, 0x3FC645BF, 0x23F0564A, 0x00000000
|
|
data4 0xE8A7D201, 0x3FC73DBD, 0x23D4A5E1, 0x00000000
|
|
data4 0xE398EBC7, 0x3FC8350B, 0x23D4ADDA, 0x00000000
|
|
data4 0x7D050271, 0x3FC92BA3, 0x23BCB085, 0x00000000
|
|
data4 0x601081A5, 0x3FCA217E, 0x23BC841D, 0x00000000
|
|
data4 0x574D780B, 0x3FCB1696, 0x23CF4A8E, 0x00000000
|
|
data4 0x4D768466, 0x3FCC0AE5, 0x23BECC90, 0x00000000
|
|
data4 0x4E1D5395, 0x3FCCFE65, 0x2323DCD2, 0x00000000
|
|
data4 0x864C9D9D, 0x3FCDF110, 0x23F53F3A, 0x00000000
|
|
data4 0x451D980C, 0x3FCEE2E1, 0x23CCB11F, 0x00000000
|
|
|
|
data4 0x54442D18, 0x400921FB, 0x33145C07, 0x3CA1A626 // PI two doubles
|
|
data4 0x54442D18, 0x3FF921FB, 0x33145C07, 0x3C91A626 // PI_by_2 two dbles
|
|
data4 0x54442D18, 0x3FE921FB, 0x33145C07, 0x3C81A626 // PI_by_4 two dbles
|
|
data4 0x7F3321D2, 0x4002D97C, 0x4C9E8A0A, 0x3C9A7939 // 3PI_by_4 two dbles
|
|
ASM_SIZE_DIRECTIVE(Constants_atan)
|
|
|
|
|
|
.text
|
|
.proc atanl#
|
|
.global atanl#
|
|
.align 64
|
|
|
|
atanl:
|
|
{ .mfb
|
|
nop.m 999
|
|
(p0) mov ArgX_orig = f1
|
|
(p0) br.cond.sptk atan2l ;;
|
|
}
|
|
.endp atanl
|
|
ASM_SIZE_DIRECTIVE(atanl)
|
|
|
|
.text
|
|
.proc atan2l#
|
|
.global atan2l#
|
|
#ifdef _LIBC
|
|
.proc __atan2l#
|
|
.global __atan2l#
|
|
.proc __ieee754_atan2l#
|
|
.global __ieee754_atan2l#
|
|
#endif
|
|
.align 64
|
|
|
|
|
|
atan2l:
|
|
#ifdef _LIBC
|
|
__atan2l:
|
|
__ieee754_atan2l:
|
|
#endif
|
|
{ .mfi
|
|
alloc r32 = ar.pfs, 0, 17 , 4, 0
|
|
(p0) mov ArgY = ArgY_orig
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) mov ArgX = ArgX_orig
|
|
nop.i 999
|
|
};;
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fclass.m.unc p7,p0 = ArgY_orig, 0x103
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
//
|
|
// Save original input args and load table ptr.
|
|
//
|
|
(p0) fclass.m.unc p6,p0 = ArgX_orig, 0x103
|
|
nop.i 999
|
|
};;
|
|
{ .mfi
|
|
(p0) addl table_ptr1 = @ltoff(Constants_atan#), gp
|
|
(p0) fclass.m.unc p0,p9 = ArgY_orig, 0x1FF
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
ld8 table_ptr1 = [table_ptr1]
|
|
(p0) fclass.m.unc p0,p8 = ArgX_orig, 0x1FF
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fclass.m.unc p13,p0 = ArgY_orig, 0x0C3
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
(p0) fclass.m.unc p12,p0 = ArgX_orig, 0x0C3
|
|
nop.i 999
|
|
}
|
|
|
|
|
|
//
|
|
// Check for NatVals.
|
|
// Check for everything - if false, then must be pseudo-zero
|
|
// or pseudo-nan (IA unsupporteds).
|
|
//
|
|
{ .mib
|
|
nop.m 999
|
|
nop.i 999
|
|
(p6) br.cond.spnt L(ATANL_NATVAL) ;;
|
|
}
|
|
|
|
{ .mib
|
|
nop.m 999
|
|
nop.i 999
|
|
(p7) br.cond.spnt L(ATANL_NATVAL) ;;
|
|
}
|
|
{ .mib
|
|
(p0) ldfd P_hi = [table_ptr1],8
|
|
nop.i 999
|
|
(p8) br.cond.spnt L(ATANL_UNSUPPORTED) ;;
|
|
}
|
|
{ .mbb
|
|
(p0) add table_ptr2 = 96, table_ptr1
|
|
(p9) br.cond.spnt L(ATANL_UNSUPPORTED)
|
|
//
|
|
// Load double precision high-order part of pi
|
|
//
|
|
(p12) br.cond.spnt L(ATANL_NAN) ;;
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p0) fnorm.s1 ArgX = ArgX
|
|
(p13) br.cond.spnt L(ATANL_NAN) ;;
|
|
}
|
|
//
|
|
// Normalize the input argument.
|
|
// Branch out if NaN inputs
|
|
//
|
|
{ .mmf
|
|
(p0) ldfs P_lo = [table_ptr1], 4
|
|
nop.m 999
|
|
(p0) fnorm.s1 ArgY = ArgY ;;
|
|
}
|
|
{ .mmf
|
|
nop.m 999
|
|
(p0) ldfs TWO_TO_NEG3 = [table_ptr1], 180
|
|
//
|
|
// U = max(ArgX_abs,ArgY_abs)
|
|
// V = min(ArgX_abs,ArgY_abs)
|
|
// if PR1, swap = 0
|
|
// if PR2, swap = 1
|
|
//
|
|
(p0) mov M = f1 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Get exp and sign of ArgX
|
|
// Get exp and sign of ArgY
|
|
// Load 2**(-3) and increment ptr to Q_4.
|
|
//
|
|
(p0) fmerge.s ArgX_abs = f1, ArgX
|
|
nop.i 999 ;;
|
|
}
|
|
//
|
|
// load single precision low-order part of pi = P_lo
|
|
//
|
|
{ .mfi
|
|
(p0) getf.exp sign_X = ArgX
|
|
(p0) fmerge.s ArgY_abs = f1, ArgY
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mii
|
|
(p0) getf.exp sign_Y = ArgY
|
|
nop.i 999 ;;
|
|
(p0) shr sign_X = sign_X, 17 ;;
|
|
}
|
|
{ .mii
|
|
nop.m 999
|
|
(p0) shr sign_Y = sign_Y, 17 ;;
|
|
(p0) cmp.eq.unc p8, p9 = 0x00000, sign_Y ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Is ArgX_abs >= ArgY_abs
|
|
// Is sign_Y == 0?
|
|
//
|
|
(p0) fmax.s1 U = ArgX_abs, ArgY_abs
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// ArgX_abs = |ArgX|
|
|
// ArgY_abs = |ArgY|
|
|
// sign_X is sign bit of ArgX
|
|
// sign_Y is sign bit of ArgY
|
|
//
|
|
(p0) fcmp.ge.s1 p6, p7 = ArgX_abs, ArgY_abs
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fmin.s1 V = ArgX_abs, ArgY_abs
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fadd.s1 s_Y = f0, f1
|
|
(p6) cmp.eq.unc p10, p11 = 0x00000, sign_X
|
|
}
|
|
{ .mii
|
|
(p6) add swap = r0, r0
|
|
nop.i 999 ;;
|
|
(p7) add swap = 1, r0
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Let M = 1.0
|
|
// if p8, s_Y = 1.0
|
|
// if p9, s_Y = -1.0
|
|
//
|
|
(p10) fsub.s1 M = M, f1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fsub.s1 s_Y = f0, f1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) frcpa.s1 E, p6 = V, U
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mbb
|
|
nop.m 999
|
|
//
|
|
// E = frcpa(V,U)
|
|
//
|
|
(p6) br.cond.sptk L(ATANL_STEP2)
|
|
(p0) br.cond.spnt L(ATANL_SPECIAL_HANDLING) ;;
|
|
}
|
|
L(ATANL_STEP2):
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fmpy.s1 Q = E, V
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fcmp.eq.s0 p0, p9 = f1, ArgY_orig
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Is Q < 2**(-3)?
|
|
//
|
|
(p0) fcmp.eq.s0 p0, p8 = f1, ArgX_orig
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fadd.s1 M = M, f1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mlx
|
|
nop.m 999
|
|
// *************************************************
|
|
// ********************* STEP2 *********************
|
|
// *************************************************
|
|
(p0) movl special = 0x8400000000000000
|
|
}
|
|
{ .mlx
|
|
nop.m 999
|
|
//
|
|
// lookup = b_1 b_2 b_3 B_4
|
|
//
|
|
(p0) movl special1 = 0x0000000000000100 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Do fnorms to raise any denormal operand
|
|
// exceptions.
|
|
//
|
|
(p0) fmpy.s1 P_hi = M, P_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fmpy.s1 P_lo = M, P_lo
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Q = E * V
|
|
//
|
|
(p0) fcmp.lt.unc.s1 p6, p7 = Q, TWO_TO_NEG3
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mmb
|
|
(p0) getf.sig significand_Q = Q
|
|
(p0) getf.exp exponent_Q = Q
|
|
nop.b 999 ;;
|
|
}
|
|
{ .mmi
|
|
nop.m 999 ;;
|
|
(p0) andcm k = 0x0003, exponent_Q
|
|
(p0) extr.u lookup = significand_Q, 59, 4 ;;
|
|
}
|
|
{ .mib
|
|
nop.m 999
|
|
(p0) dep special = lookup, special, 59, 4
|
|
//
|
|
// Generate 1.b_1 b_2 b_3 b_4 1 0 0 0 ... 0
|
|
//
|
|
(p6) br.cond.spnt L(ATANL_POLY) ;;
|
|
}
|
|
{ .mfi
|
|
(p0) cmp.eq.unc p8, p9 = 0x0000, k
|
|
(p0) fmpy.s1 P_hi = s_Y, P_hi
|
|
//
|
|
// We waited a few extra cycles so P_lo and P_hi could be calculated.
|
|
// Load the constant 256 for loading up table entries.
|
|
//
|
|
// *************************************************
|
|
// ******************** STEP3 **********************
|
|
// *************************************************
|
|
(p0) add table_ptr2 = 16, table_ptr1
|
|
}
|
|
//
|
|
// Let z_hi have exponent and sign of original Q
|
|
// Load the Tbl_hi(0) else, increment pointer.
|
|
//
|
|
{ .mii
|
|
(p0) ldfe Q_4 = [table_ptr1], -16
|
|
(p0) xor swap = sign_X, swap ;;
|
|
(p9) sub k = k, r0, 1
|
|
}
|
|
{ .mmi
|
|
(p0) setf.sig z_hi = special
|
|
(p0) ldfe Q_3 = [table_ptr1], -16
|
|
(p9) add table_ptr2 = 16, table_ptr2 ;;
|
|
}
|
|
//
|
|
// U_hold = U - U_prime_hi
|
|
// k = k * 256 - Result can be 0, 256, or 512.
|
|
//
|
|
{ .mmb
|
|
(p0) ldfe Q_2 = [table_ptr1], -16
|
|
(p8) ldfd Tbl_hi = [table_ptr2], 8
|
|
nop.b 999 ;;
|
|
}
|
|
//
|
|
// U_prime_lo = U_hold + V * z_hi
|
|
// lookup -> lookup * 16 + k
|
|
//
|
|
{ .mmi
|
|
(p0) ldfe Q_1 = [table_ptr1], -16 ;;
|
|
(p8) ldfs Tbl_lo = [table_ptr2], 8
|
|
//
|
|
// U_prime_hi = U + V * z_hi
|
|
// Load the Tbl_lo(0)
|
|
//
|
|
(p9) pmpy2.r k = k, special1 ;;
|
|
}
|
|
{ .mii
|
|
nop.m 999
|
|
nop.i 999
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mii
|
|
nop.m 999
|
|
nop.i 999
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mii
|
|
nop.m 999
|
|
nop.i 999
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mii
|
|
nop.m 999
|
|
nop.i 999 ;;
|
|
(p9) shladd lookup = lookup, 0x0004, k ;;
|
|
}
|
|
{ .mmi
|
|
(p9) add table_ptr2 = table_ptr2, lookup ;;
|
|
//
|
|
// V_prime = V - U * z_hi
|
|
//
|
|
(p9) ldfd Tbl_hi = [table_ptr2], 8
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mmf
|
|
nop.m 999
|
|
//
|
|
// C_hi = frcpa(1,U_prime_hi)
|
|
//
|
|
(p9) ldfs Tbl_lo = [table_ptr2], 8
|
|
//
|
|
// z_hi = s exp 1.b_1 b_2 b_3 b_4 1 0 0 0 ... 0
|
|
// Point to beginning of Tbl_hi entries - k = 0.
|
|
//
|
|
(p0) fmerge.se z_hi = Q, z_hi ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fma.s1 U_prime_hi = V, z_hi, U
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fnma.s1 V_prime = U, z_hi, V
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) mov A_hi = Tbl_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fsub.s1 U_hold = U, U_prime_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) frcpa.s1 C_hi, p6 = f1, U_prime_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
(p0) cmp.eq.unc p7, p6 = 0x00000, swap
|
|
(p0) fmpy.s1 A_hi = s_Y, A_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// poly = wsq * poly
|
|
//
|
|
(p7) fadd.s1 sigma = f0, f1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fma.s1 U_prime_lo = z_hi, V, U_hold
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fsub.s1 sigma = f0, f1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// A_lo = A_lo + w_hi
|
|
// A_hi = s_Y * A_hi
|
|
//
|
|
(p0) fma.s1 Res_hi = sigma, A_hi, P_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// C_hi_hold = 1 - C_hi * U_prime_hi (1)
|
|
//
|
|
(p0) fma.s1 C_hi = C_hi_hold, C_hi, C_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// C_hi = C_hi + C_hi * C_hi_hold (1)
|
|
//
|
|
(p0) fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// C_hi_hold = 1 - C_hi * U_prime_hi (2)
|
|
//
|
|
(p0) fma.s1 C_hi = C_hi_hold, C_hi, C_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// C_hi = C_hi + C_hi * C_hi_hold (2)
|
|
//
|
|
(p0) fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// C_hi_hold = 1 - C_hi * U_prime_hi (3)
|
|
//
|
|
(p0) fma.s1 C_hi = C_hi_hold, C_hi, C_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// C_hi = C_hi + C_hi * C_hi_hold (3)
|
|
//
|
|
(p0) fmpy.s1 w_hi = V_prime, C_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// w_hi = V_prime * C_hi
|
|
//
|
|
(p0) fmpy.s1 wsq = w_hi, w_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fnma.s1 w_lo = w_hi, U_prime_hi, V_prime
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// wsq = w_hi * w_hi
|
|
// w_lo = = V_prime - w_hi * U_prime_hi
|
|
//
|
|
(p0) fma.s1 poly = wsq, Q_4, Q_3
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fnma.s1 w_lo = w_hi, U_prime_lo, w_lo
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// poly = Q_3 + wsq * Q_4
|
|
// w_lo = = w_lo - w_hi * U_prime_lo
|
|
//
|
|
(p0) fma.s1 poly = wsq, poly, Q_2
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fmpy.s1 w_lo = C_hi, w_lo
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// poly = Q_2 + wsq * poly
|
|
// w_lo = = w_lo * C_hi
|
|
//
|
|
(p0) fma.s1 poly = wsq, poly, Q_1
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fadd.s1 A_lo = Tbl_lo, w_lo
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Result = Res_hi + Res_lo * s_Y (User Supplied Rounding Mode)
|
|
//
|
|
(p0) fmpy.s0 Q_1 = Q_1, Q_1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// poly = Q_1 + wsq * poly
|
|
// A_lo = Tbl_lo + w_lo
|
|
// swap = xor(swap,sign_X)
|
|
//
|
|
(p0) fmpy.s1 poly = wsq, poly
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Is (swap) != 0 ?
|
|
// poly = wsq * poly
|
|
// A_hi = Tbl_hi
|
|
//
|
|
(p0) fmpy.s1 poly = w_hi, poly
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// if (PR_1) sigma = -1.0
|
|
// if (PR_2) sigma = 1.0
|
|
//
|
|
(p0) fadd.s1 A_lo = A_lo, poly
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// P_hi = s_Y * P_hi
|
|
// A_lo = A_lo + poly
|
|
//
|
|
(p0) fadd.s1 A_lo = A_lo, w_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fma.s1 Res_lo = sigma, A_lo, P_lo
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
//
|
|
// Res_hi = P_hi + sigma * A_hi
|
|
// Res_lo = P_lo + sigma * A_lo
|
|
//
|
|
(p0) fma.s0 Result = Res_lo, s_Y, Res_hi
|
|
//
|
|
// Raise inexact.
|
|
//
|
|
br.ret.sptk b0 ;;
|
|
}
|
|
//
|
|
// poly1 = P_5 + zsq * poly1
|
|
// poly2 = zsq * poly2
|
|
//
|
|
L(ATANL_POLY):
|
|
{ .mmf
|
|
(p0) xor swap = sign_X, swap
|
|
nop.m 999
|
|
(p0) fnma.s1 E_hold = E, U, f1 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) mov A_temp = Q
|
|
//
|
|
// poly1 = P_4 + zsq * poly1
|
|
// swap = xor(swap,sign_X)
|
|
//
|
|
// sign_X gr_002
|
|
// swap gr_004
|
|
// poly1 = poly1 <== Done with poly1
|
|
// poly1 = P_4 + zsq * poly1
|
|
// swap = xor(swap,sign_X)
|
|
//
|
|
(p0) cmp.eq.unc p7, p6 = 0x00000, swap
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fmpy.s1 P_hi = s_Y, P_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fsub.s1 sigma = f0, f1
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fadd.s1 sigma = f0, f1
|
|
nop.i 999 ;;
|
|
}
|
|
|
|
// ***********************************************
|
|
// ******************** STEP4 ********************
|
|
// ***********************************************
|
|
|
|
{ .mmi
|
|
nop.m 999
|
|
(p0) addl table_ptr1 = @ltoff(Constants_atan#), gp
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ld8 table_ptr1 = [table_ptr1]
|
|
nop.m 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fma.s1 E = E, E_hold, E
|
|
//
|
|
// Following:
|
|
// Iterate 3 times E = E + E*(1.0 - E*U)
|
|
// Also load P_8, P_7, P_6, P_5, P_4
|
|
// E_hold = 1.0 - E * U (1)
|
|
// A_temp = Q
|
|
//
|
|
(p0) add table_ptr1 = 128, table_ptr1 ;;
|
|
}
|
|
{ .mmf
|
|
nop.m 999
|
|
//
|
|
// E = E + E_hold*E (1)
|
|
// Point to P_8.
|
|
//
|
|
(p0) ldfe P_8 = [table_ptr1], -16
|
|
//
|
|
// poly = z8*poly1 + poly2 (Typo in writeup)
|
|
// Is (swap) != 0 ?
|
|
//
|
|
(p0) fnma.s1 z_lo = A_temp, U, V ;;
|
|
}
|
|
{ .mmb
|
|
nop.m 999
|
|
//
|
|
// E_hold = 1.0 - E * U (2)
|
|
//
|
|
(p0) ldfe P_7 = [table_ptr1], -16
|
|
nop.b 999 ;;
|
|
}
|
|
{ .mmb
|
|
nop.m 999
|
|
//
|
|
// E = E + E_hold*E (2)
|
|
//
|
|
(p0) ldfe P_6 = [table_ptr1], -16
|
|
nop.b 999 ;;
|
|
}
|
|
{ .mmb
|
|
nop.m 999
|
|
//
|
|
// E_hold = 1.0 - E * U (3)
|
|
//
|
|
(p0) ldfe P_5 = [table_ptr1], -16
|
|
nop.b 999 ;;
|
|
}
|
|
{ .mmf
|
|
nop.m 999
|
|
//
|
|
// E = E + E_hold*E (3)
|
|
//
|
|
//
|
|
// At this point E approximates 1/U to roughly working precision
|
|
// z = V*E approximates V/U
|
|
//
|
|
(p0) ldfe P_4 = [table_ptr1], -16
|
|
(p0) fnma.s1 E_hold = E, U, f1 ;;
|
|
}
|
|
{ .mmb
|
|
nop.m 999
|
|
//
|
|
// Z = V * E
|
|
//
|
|
(p0) ldfe P_3 = [table_ptr1], -16
|
|
nop.b 999 ;;
|
|
}
|
|
{ .mmb
|
|
nop.m 999
|
|
//
|
|
// zsq = Z * Z
|
|
//
|
|
(p0) ldfe P_2 = [table_ptr1], -16
|
|
nop.b 999 ;;
|
|
}
|
|
{ .mmb
|
|
nop.m 999
|
|
//
|
|
// z8 = zsq * zsq
|
|
//
|
|
(p0) ldfe P_1 = [table_ptr1], -16
|
|
nop.b 999 ;;
|
|
}
|
|
{ .mlx
|
|
nop.m 999
|
|
(p0) movl int_temp = 0x24005
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fma.s1 E = E, E_hold, E
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fnma.s1 E_hold = E, U, f1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fma.s1 E = E, E_hold, E
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fmpy.s1 Z = V, E
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// z_lo = V - A_temp * U
|
|
// if (PR_2) sigma = 1.0
|
|
//
|
|
(p0) fmpy.s1 z_lo = z_lo, E
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fmpy.s1 zsq = Z, Z
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// z_lo = z_lo * E
|
|
// if (PR_1) sigma = -1.0
|
|
//
|
|
(p0) fadd.s1 A_hi = A_temp, z_lo
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// z8 = z8 * z8
|
|
//
|
|
//
|
|
// Now what we want to do is
|
|
// poly1 = P_4 + zsq*(P_5 + zsq*(P_6 + zsq*(P_7 + zsq*P_8)))
|
|
// poly2 = zsq*(P_1 + zsq*(P_2 + zsq*P_3))
|
|
//
|
|
(p0) fma.s1 poly1 = zsq, P_8, P_7
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fma.s1 poly2 = zsq, P_3, P_2
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fmpy.s1 z8 = zsq, zsq
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fsub.s1 A_temp = A_temp, A_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// A_lo = Z * poly + z_lo
|
|
//
|
|
(p0) fmerge.s tmp = A_hi, A_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// poly1 = P_7 + zsq * P_8
|
|
// poly2 = P_2 + zsq * P_3
|
|
//
|
|
(p0) fma.s1 poly1 = zsq, poly1, P_6
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fma.s1 poly2 = zsq, poly2, P_1
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fmpy.s1 z8 = z8, z8
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fadd.s1 z_lo = A_temp, z_lo
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// poly1 = P_6 + zsq * poly1
|
|
// poly2 = P_2 + zsq * poly2
|
|
//
|
|
(p0) fma.s1 poly1 = zsq, poly1, P_5
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fmpy.s1 poly2 = poly2, zsq
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Result = Res_hi + Res_lo (User Supplied Rounding Mode)
|
|
//
|
|
(p0) fmpy.s1 P_5 = P_5, P_5
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fma.s1 poly1 = zsq, poly1, P_4
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fma.s1 poly = z8, poly1, poly2
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Fixup added to force inexact later -
|
|
// A_hi = A_temp + z_lo
|
|
// z_lo = (A_temp - A_hi) + z_lo
|
|
//
|
|
(p0) fma.s1 A_lo = Z, poly, z_lo
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fadd.s1 A_hi = tmp, A_lo
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fsub.s1 tmp = tmp, A_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fmpy.s1 A_hi = s_Y, A_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fadd.s1 A_lo = tmp, A_lo
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
(p0) setf.exp tmp = int_temp
|
|
//
|
|
// P_hi = s_Y * P_hi
|
|
// A_hi = s_Y * A_hi
|
|
//
|
|
(p0) fma.s1 Res_hi = sigma, A_hi, P_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fclass.m.unc p6,p0 = A_lo, 0x007
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) mov A_lo = tmp
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Res_hi = P_hi + sigma * A_hi
|
|
//
|
|
(p0) fsub.s1 tmp = P_hi, Res_hi
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// tmp = P_hi - Res_hi
|
|
//
|
|
(p0) fma.s1 tmp = A_hi, sigma, tmp
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fma.s1 sigma = A_lo, sigma, P_lo
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// tmp = sigma * A_hi + tmp
|
|
// sigma = A_lo * sigma + P_lo
|
|
//
|
|
(p0) fma.s1 Res_lo = s_Y, sigma, tmp
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
//
|
|
// Res_lo = s_Y * sigma + tmp
|
|
//
|
|
(p0) fadd.s0 Result = Res_lo, Res_hi
|
|
br.ret.sptk b0 ;;
|
|
}
|
|
L(ATANL_NATVAL):
|
|
L(ATANL_UNSUPPORTED):
|
|
L(ATANL_NAN):
|
|
{ .mfb
|
|
nop.m 999
|
|
(p0) fmpy.s0 Result = ArgX,ArgY
|
|
(p0) br.ret.sptk b0 ;;
|
|
}
|
|
L(ATANL_SPECIAL_HANDLING):
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fcmp.eq.s0 p0, p6 = f1, ArgY_orig
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fcmp.eq.s0 p0, p5 = f1, ArgX_orig
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fclass.m.unc p6, p7 = ArgY, 0x007
|
|
nop.i 999
|
|
}
|
|
{ .mlx
|
|
nop.m 999
|
|
(p0) movl special = 992
|
|
}
|
|
;;
|
|
|
|
|
|
{ .mmi
|
|
nop.m 999
|
|
(p0) addl table_ptr1 = @ltoff(Constants_atan#), gp
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ld8 table_ptr1 = [table_ptr1]
|
|
nop.m 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
|
|
{ .mib
|
|
(p0) add table_ptr1 = table_ptr1, special
|
|
nop.i 999
|
|
(p7) br.cond.spnt L(ATANL_ArgY_Not_ZERO) ;;
|
|
}
|
|
{ .mmf
|
|
(p0) ldfd Result = [table_ptr1], 8
|
|
nop.m 999
|
|
(p6) fclass.m.unc p14, p0 = ArgX, 0x035 ;;
|
|
}
|
|
{ .mmf
|
|
nop.m 999
|
|
(p0) ldfd Result_lo = [table_ptr1], -8
|
|
(p6) fclass.m.unc p15, p0 = ArgX, 0x036 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p14) fmerge.s Result = ArgY, f0
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fclass.m.unc p13, p0 = ArgX, 0x007
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p14) fmerge.s Result_lo = ArgY, f0
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
(p13) mov GR_Parameter_TAG = 36
|
|
nop.f 999
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Return sign_Y * 0 when ArgX > +0
|
|
//
|
|
(p15) fmerge.s Result = ArgY, Result
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p15) fmerge.s Result_lo = ArgY, Result_lo
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
//
|
|
// Return sign_Y * 0 when ArgX < -0
|
|
//
|
|
(p0) fadd.s0 Result = Result, Result_lo
|
|
(p13) br.cond.spnt __libm_error_region ;;
|
|
}
|
|
{ .mib
|
|
nop.m 999
|
|
nop.i 999
|
|
//
|
|
// Call error support funciton for atan(0,0)
|
|
//
|
|
(p0) br.ret.sptk b0 ;;
|
|
}
|
|
L(ATANL_ArgY_Not_ZERO):
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fclass.m.unc p9, p10 = ArgY, 0x023
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mib
|
|
nop.m 999
|
|
nop.i 999
|
|
(p10) br.cond.spnt L(ATANL_ArgY_Not_INF) ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fclass.m.unc p6, p0 = ArgX, 0x017
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fclass.m.unc p7, p0 = ArgX, 0x021
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fclass.m.unc p8, p0 = ArgX, 0x022
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mmi
|
|
(p6) add table_ptr1 = 16, table_ptr1 ;;
|
|
(p0) ldfd Result = [table_ptr1], 8
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
(p0) ldfd Result_lo = [table_ptr1], -8
|
|
nop.f 999
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fmerge.s Result = ArgY, Result
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fmerge.s Result_lo = ArgY, Result_lo
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p6) fadd.s0 Result = Result, Result_lo
|
|
(p6) br.ret.sptk b0 ;;
|
|
}
|
|
//
|
|
// Load PI/2 and adjust its sign.
|
|
// Return +PI/2 when ArgY = +Inf and ArgX = +/-0 or normal
|
|
// Return -PI/2 when ArgY = -Inf and ArgX = +/-0 or normal
|
|
//
|
|
{ .mmi
|
|
(p7) add table_ptr1 = 32, table_ptr1 ;;
|
|
(p7) ldfd Result = [table_ptr1], 8
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
(p7) ldfd Result_lo = [table_ptr1], -8
|
|
nop.f 999
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fmerge.s Result = ArgY, Result
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fmerge.s Result_lo = ArgY, Result_lo
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p7) fadd.s0 Result = Result, Result_lo
|
|
(p7) br.ret.sptk b0 ;;
|
|
}
|
|
//
|
|
// Load PI/4 and adjust its sign.
|
|
// Return +PI/4 when ArgY = +Inf and ArgX = +Inf
|
|
// Return -PI/4 when ArgY = -Inf and ArgX = +Inf
|
|
//
|
|
{ .mmi
|
|
(p8) add table_ptr1 = 48, table_ptr1 ;;
|
|
(p8) ldfd Result = [table_ptr1], 8
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
(p8) ldfd Result_lo = [table_ptr1], -8
|
|
nop.f 999
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fmerge.s Result = ArgY, Result
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fmerge.s Result_lo = ArgY, Result_lo
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p8) fadd.s0 Result = Result, Result_lo
|
|
(p8) br.ret.sptk b0 ;;
|
|
}
|
|
L(ATANL_ArgY_Not_INF):
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// Load PI/4 and adjust its sign.
|
|
// Return +3PI/4 when ArgY = +Inf and ArgX = -Inf
|
|
// Return -3PI/4 when ArgY = -Inf and ArgX = -Inf
|
|
//
|
|
(p0) fclass.m.unc p6, p0 = ArgX, 0x007
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fclass.m.unc p7, p0 = ArgX, 0x021
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p0) fclass.m.unc p8, p0 = ArgX, 0x022
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mmi
|
|
(p6) add table_ptr1 = 16, table_ptr1 ;;
|
|
(p6) ldfd Result = [table_ptr1], 8
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
(p6) ldfd Result_lo = [table_ptr1], -8
|
|
nop.f 999
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fmerge.s Result = ArgY, Result
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fmerge.s Result_lo = ArgY, Result_lo
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p6) fadd.s0 Result = Result, Result_lo
|
|
(p6) br.ret.spnt b0 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
//
|
|
// return = sign_Y * PI/2 when ArgX = 0
|
|
//
|
|
(p7) fmerge.s Result = ArgY, f0
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p7) fnorm.s0 Result = Result
|
|
(p7) br.ret.spnt b0 ;;
|
|
}
|
|
//
|
|
// return = sign_Y * 0 when ArgX = Inf
|
|
//
|
|
{ .mmi
|
|
(p8) ldfd Result = [table_ptr1], 8 ;;
|
|
(p8) ldfd Result_lo = [table_ptr1], -8
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fmerge.s Result = ArgY, Result
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fmerge.s Result_lo = ArgY, Result_lo
|
|
nop.i 999 ;;
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p8) fadd.s0 Result = Result, Result_lo
|
|
(p8) br.ret.sptk b0 ;;
|
|
}
|
|
//
|
|
// return = sign_Y * PI when ArgX = -Inf
|
|
//
|
|
.endp atan2l
|
|
ASM_SIZE_DIRECTIVE(atan2l)
|
|
ASM_SIZE_DIRECTIVE(__atan2l)
|
|
ASM_SIZE_DIRECTIVE(__ieee754_atan2l)
|
|
|
|
.proc __libm_error_region
|
|
__libm_error_region:
|
|
.prologue
|
|
{ .mfi
|
|
add GR_Parameter_Y=-32,sp // Parameter 2 value
|
|
nop.f 0
|
|
.save ar.pfs,GR_SAVE_PFS
|
|
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
|
|
}
|
|
{ .mfi
|
|
.fframe 64
|
|
add sp=-64,sp // Create new stack
|
|
nop.f 0
|
|
mov GR_SAVE_GP=gp // Save gp
|
|
};;
|
|
{ .mmi
|
|
stfe [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
|
|
add GR_Parameter_X = 16,sp // Parameter 1 address
|
|
.save b0, GR_SAVE_B0
|
|
mov GR_SAVE_B0=b0 // Save b0
|
|
};;
|
|
.body
|
|
{ .mib
|
|
stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
|
|
add GR_Parameter_RESULT = 0,GR_Parameter_Y
|
|
nop.b 0 // Parameter 3 address
|
|
}
|
|
{ .mib
|
|
stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
|
|
add GR_Parameter_Y = -16,GR_Parameter_Y
|
|
br.call.sptk b0=__libm_error_support# // Call error handling function
|
|
};;
|
|
{ .mmi
|
|
nop.m 0
|
|
nop.m 0
|
|
add GR_Parameter_RESULT = 48,sp
|
|
};;
|
|
{ .mmi
|
|
ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
|
|
.restore sp
|
|
add sp = 64,sp // Restore stack pointer
|
|
mov b0 = GR_SAVE_B0 // Restore return address
|
|
};;
|
|
{ .mib
|
|
mov gp = GR_SAVE_GP // Restore gp
|
|
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
|
|
br.ret.sptk b0 // Return
|
|
};;
|
|
|
|
.endp __libm_error_region
|
|
ASM_SIZE_DIRECTIVE(__libm_error_region)
|
|
.type __libm_error_support#,@function
|
|
.global __libm_error_support#
|