glibc/sysdeps/ieee754/dbl-64/s_log1p.c
Joseph Myers 0b7a5f9201 Fix log1p missing underflows (bug 16339).
Similar to various other bugs in this area, some log1p implementations
do not raise the underflow exception for subnormal arguments, when the
result is tiny and inexact.  This patch forces the exception in a
similar way to previous fixes.  (The ldbl-128ibm implementation
doesn't currently need any change as it already generates this
exception, albeit through code that would generate spurious exceptions
in other cases; special code for this issue will only be needed there
when fixing the spurious exceptions.)

Tested for x86_64, x86, powerpc and mips64.

	[BZ #16339]
	* sysdeps/i386/fpu/s_log1p.S (dbl_min): New object.
	(__log1p): Force underflow exception for results with small
	absolute value.
	* sysdeps/i386/fpu/s_log1pf.S (flt_min): New object.
	(__log1pf): Force underflow exception for results with small
	absolute value.
	* sysdeps/ieee754/dbl-64/s_log1p.c: Include <float.h>.
	(__log1p): Force underflow exception for results with small
	absolute value.
	* sysdeps/ieee754/flt-32/s_log1pf.c: Include <float.h>.
	(__log1pf): Force underflow exception for results with small
	absolute value.
	* sysdeps/ieee754/ldbl-128/s_log1pl.c: Include <float.h>.
	(__log1pl): Force underflow exception for results with small
	absolute value.
	* math/auto-libm-test-in: Do not allow missing underflow
	exceptions from log1p.
	* math/auto-libm-test-out: Regenerated.
2015-05-14 23:38:07 +00:00

200 lines
5.8 KiB
C

/* @(#)s_log1p.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
for performance improvement on pipelined processors.
*/
/* double log1p(double x)
*
* Method :
* 1. Argument Reduction: find k and f such that
* 1+x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* Note. If k=0, then f=x is exact. However, if k!=0, then f
* may not be representable exactly. In that case, a correction
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
* and add back the correction term c/u.
* (Note: when x > 2**53, one can simply return log(x))
*
* 2. Approximation of log1p(f).
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* = 2s + s*R
* We use a special Reme algorithm on [0,0.1716] to generate
* a polynomial of degree 14 to approximate R The maximum error
* of this polynomial approximation is bounded by 2**-58.45. In
* other words,
* 2 4 6 8 10 12 14
* R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
* (the values of Lp1 to Lp7 are listed in the program)
* and
* | 2 14 | -58.45
* | Lp1*s +...+Lp7*s - R(z) | <= 2
* | |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
* In order to guarantee error in log below 1ulp, we compute log
* by
* log1p(f) = f - (hfsq - s*(hfsq+R)).
*
* 3. Finally, log1p(x) = k*ln2 + log1p(f).
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
* Here ln2 is split into two floating point number:
* ln2_hi + ln2_lo,
* where n*ln2_hi is always exact for |n| < 2000.
*
* Special cases:
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
* log1p(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*
* Note: Assuming log() return accurate answer, the following
* algorithm can be used to compute log1p(x) to within a few ULP:
*
* u = 1+x;
* if(u==1.0) return x ; else
* return log(u)*(x/(u-1.0));
*
* See HP-15C Advanced Functions Handbook, p.193.
*/
#include <float.h>
#include <math.h>
#include <math_private.h>
static const double
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
Lp[] = { 0.0, 6.666666666666735130e-01, /* 3FE55555 55555593 */
3.999999999940941908e-01, /* 3FD99999 9997FA04 */
2.857142874366239149e-01, /* 3FD24924 94229359 */
2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
1.818357216161805012e-01, /* 3FC74664 96CB03DE */
1.531383769920937332e-01, /* 3FC39A09 D078C69F */
1.479819860511658591e-01 }; /* 3FC2F112 DF3E5244 */
static const double zero = 0.0;
double
__log1p (double x)
{
double hfsq, f, c, s, z, R, u, z2, z4, z6, R1, R2, R3, R4;
int32_t k, hx, hu, ax;
GET_HIGH_WORD (hx, x);
ax = hx & 0x7fffffff;
k = 1;
if (hx < 0x3FDA827A) /* x < 0.41422 */
{
if (__glibc_unlikely (ax >= 0x3ff00000)) /* x <= -1.0 */
{
if (x == -1.0)
return -two54 / zero; /* log1p(-1)=-inf */
else
return (x - x) / (x - x); /* log1p(x<-1)=NaN */
}
if (__glibc_unlikely (ax < 0x3e200000)) /* |x| < 2**-29 */
{
math_force_eval (two54 + x); /* raise inexact */
if (ax < 0x3c900000) /* |x| < 2**-54 */
{
if (fabs (x) < DBL_MIN)
{
double force_underflow = x * x;
math_force_eval (force_underflow);
}
return x;
}
else
return x - x * x * 0.5;
}
if (hx > 0 || hx <= ((int32_t) 0xbfd2bec3))
{
k = 0; f = x; hu = 1;
} /* -0.2929<x<0.41422 */
}
else if (__glibc_unlikely (hx >= 0x7ff00000))
return x + x;
if (k != 0)
{
if (hx < 0x43400000)
{
u = 1.0 + x;
GET_HIGH_WORD (hu, u);
k = (hu >> 20) - 1023;
c = (k > 0) ? 1.0 - (u - x) : x - (u - 1.0); /* correction term */
c /= u;
}
else
{
u = x;
GET_HIGH_WORD (hu, u);
k = (hu >> 20) - 1023;
c = 0;
}
hu &= 0x000fffff;
if (hu < 0x6a09e)
{
SET_HIGH_WORD (u, hu | 0x3ff00000); /* normalize u */
}
else
{
k += 1;
SET_HIGH_WORD (u, hu | 0x3fe00000); /* normalize u/2 */
hu = (0x00100000 - hu) >> 2;
}
f = u - 1.0;
}
hfsq = 0.5 * f * f;
if (hu == 0) /* |f| < 2**-20 */
{
if (f == zero)
{
if (k == 0)
return zero;
else
{
c += k * ln2_lo; return k * ln2_hi + c;
}
}
R = hfsq * (1.0 - 0.66666666666666666 * f);
if (k == 0)
return f - R;
else
return k * ln2_hi - ((R - (k * ln2_lo + c)) - f);
}
s = f / (2.0 + f);
z = s * s;
R1 = z * Lp[1]; z2 = z * z;
R2 = Lp[2] + z * Lp[3]; z4 = z2 * z2;
R3 = Lp[4] + z * Lp[5]; z6 = z4 * z2;
R4 = Lp[6] + z * Lp[7];
R = R1 + z2 * R2 + z4 * R3 + z6 * R4;
if (k == 0)
return f - (hfsq - s * (hfsq + R));
else
return k * ln2_hi - ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f);
}