mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-24 05:50:14 +00:00
8a07b0c43c
Bug 17343 reports that stdlib/random_r.c has code with undefined behavior because of signed integer overflow on int32_t. This patch changes the code so that the possibly overflowing computations use unsigned arithmetic instead. Note that the bug report refers to "Most code" in that file. The places changed in this patch are the only ones I found where I think such overflow can occur. Tested for x86_64 and x86. [BZ #17343] * stdlib/random_r.c (__random_r): Use unsigned arithmetic for possibly overflowing computations.
401 lines
13 KiB
C
401 lines
13 KiB
C
/*
|
||
Copyright (C) 1995-2018 Free Software Foundation, Inc.
|
||
|
||
The GNU C Library is free software; you can redistribute it and/or
|
||
modify it under the terms of the GNU Lesser General Public
|
||
License as published by the Free Software Foundation; either
|
||
version 2.1 of the License, or (at your option) any later version.
|
||
|
||
The GNU C Library is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
Lesser General Public License for more details.
|
||
|
||
You should have received a copy of the GNU Lesser General Public
|
||
License along with the GNU C Library; if not, see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/*
|
||
Copyright (C) 1983 Regents of the University of California.
|
||
All rights reserved.
|
||
|
||
Redistribution and use in source and binary forms, with or without
|
||
modification, are permitted provided that the following conditions
|
||
are met:
|
||
|
||
1. Redistributions of source code must retain the above copyright
|
||
notice, this list of conditions and the following disclaimer.
|
||
2. Redistributions in binary form must reproduce the above copyright
|
||
notice, this list of conditions and the following disclaimer in the
|
||
documentation and/or other materials provided with the distribution.
|
||
4. Neither the name of the University nor the names of its contributors
|
||
may be used to endorse or promote products derived from this software
|
||
without specific prior written permission.
|
||
|
||
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
||
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
SUCH DAMAGE.*/
|
||
|
||
/*
|
||
* This is derived from the Berkeley source:
|
||
* @(#)random.c 5.5 (Berkeley) 7/6/88
|
||
* It was reworked for the GNU C Library by Roland McGrath.
|
||
* Rewritten to be reentrant by Ulrich Drepper, 1995
|
||
*/
|
||
|
||
#include <errno.h>
|
||
#include <limits.h>
|
||
#include <stddef.h>
|
||
#include <stdlib.h>
|
||
|
||
|
||
/* An improved random number generation package. In addition to the standard
|
||
rand()/srand() like interface, this package also has a special state info
|
||
interface. The initstate() routine is called with a seed, an array of
|
||
bytes, and a count of how many bytes are being passed in; this array is
|
||
then initialized to contain information for random number generation with
|
||
that much state information. Good sizes for the amount of state
|
||
information are 32, 64, 128, and 256 bytes. The state can be switched by
|
||
calling the setstate() function with the same array as was initialized
|
||
with initstate(). By default, the package runs with 128 bytes of state
|
||
information and generates far better random numbers than a linear
|
||
congruential generator. If the amount of state information is less than
|
||
32 bytes, a simple linear congruential R.N.G. is used. Internally, the
|
||
state information is treated as an array of longs; the zeroth element of
|
||
the array is the type of R.N.G. being used (small integer); the remainder
|
||
of the array is the state information for the R.N.G. Thus, 32 bytes of
|
||
state information will give 7 longs worth of state information, which will
|
||
allow a degree seven polynomial. (Note: The zeroth word of state
|
||
information also has some other information stored in it; see setstate
|
||
for details). The random number generation technique is a linear feedback
|
||
shift register approach, employing trinomials (since there are fewer terms
|
||
to sum up that way). In this approach, the least significant bit of all
|
||
the numbers in the state table will act as a linear feedback shift register,
|
||
and will have period 2^deg - 1 (where deg is the degree of the polynomial
|
||
being used, assuming that the polynomial is irreducible and primitive).
|
||
The higher order bits will have longer periods, since their values are
|
||
also influenced by pseudo-random carries out of the lower bits. The
|
||
total period of the generator is approximately deg*(2**deg - 1); thus
|
||
doubling the amount of state information has a vast influence on the
|
||
period of the generator. Note: The deg*(2**deg - 1) is an approximation
|
||
only good for large deg, when the period of the shift register is the
|
||
dominant factor. With deg equal to seven, the period is actually much
|
||
longer than the 7*(2**7 - 1) predicted by this formula. */
|
||
|
||
|
||
|
||
/* For each of the currently supported random number generators, we have a
|
||
break value on the amount of state information (you need at least this many
|
||
bytes of state info to support this random number generator), a degree for
|
||
the polynomial (actually a trinomial) that the R.N.G. is based on, and
|
||
separation between the two lower order coefficients of the trinomial. */
|
||
|
||
/* Linear congruential. */
|
||
#define TYPE_0 0
|
||
#define BREAK_0 8
|
||
#define DEG_0 0
|
||
#define SEP_0 0
|
||
|
||
/* x**7 + x**3 + 1. */
|
||
#define TYPE_1 1
|
||
#define BREAK_1 32
|
||
#define DEG_1 7
|
||
#define SEP_1 3
|
||
|
||
/* x**15 + x + 1. */
|
||
#define TYPE_2 2
|
||
#define BREAK_2 64
|
||
#define DEG_2 15
|
||
#define SEP_2 1
|
||
|
||
/* x**31 + x**3 + 1. */
|
||
#define TYPE_3 3
|
||
#define BREAK_3 128
|
||
#define DEG_3 31
|
||
#define SEP_3 3
|
||
|
||
/* x**63 + x + 1. */
|
||
#define TYPE_4 4
|
||
#define BREAK_4 256
|
||
#define DEG_4 63
|
||
#define SEP_4 1
|
||
|
||
|
||
/* Array versions of the above information to make code run faster.
|
||
Relies on fact that TYPE_i == i. */
|
||
|
||
#define MAX_TYPES 5 /* Max number of types above. */
|
||
|
||
struct random_poly_info
|
||
{
|
||
int seps[MAX_TYPES];
|
||
int degrees[MAX_TYPES];
|
||
};
|
||
|
||
static const struct random_poly_info random_poly_info =
|
||
{
|
||
{ SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 },
|
||
{ DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 }
|
||
};
|
||
|
||
|
||
|
||
|
||
/* Initialize the random number generator based on the given seed. If the
|
||
type is the trivial no-state-information type, just remember the seed.
|
||
Otherwise, initializes state[] based on the given "seed" via a linear
|
||
congruential generator. Then, the pointers are set to known locations
|
||
that are exactly rand_sep places apart. Lastly, it cycles the state
|
||
information a given number of times to get rid of any initial dependencies
|
||
introduced by the L.C.R.N.G. Note that the initialization of randtbl[]
|
||
for default usage relies on values produced by this routine. */
|
||
int
|
||
__srandom_r (unsigned int seed, struct random_data *buf)
|
||
{
|
||
int type;
|
||
int32_t *state;
|
||
long int i;
|
||
int32_t word;
|
||
int32_t *dst;
|
||
int kc;
|
||
|
||
if (buf == NULL)
|
||
goto fail;
|
||
type = buf->rand_type;
|
||
if ((unsigned int) type >= MAX_TYPES)
|
||
goto fail;
|
||
|
||
state = buf->state;
|
||
/* We must make sure the seed is not 0. Take arbitrarily 1 in this case. */
|
||
if (seed == 0)
|
||
seed = 1;
|
||
state[0] = seed;
|
||
if (type == TYPE_0)
|
||
goto done;
|
||
|
||
dst = state;
|
||
word = seed;
|
||
kc = buf->rand_deg;
|
||
for (i = 1; i < kc; ++i)
|
||
{
|
||
/* This does:
|
||
state[i] = (16807 * state[i - 1]) % 2147483647;
|
||
but avoids overflowing 31 bits. */
|
||
long int hi = word / 127773;
|
||
long int lo = word % 127773;
|
||
word = 16807 * lo - 2836 * hi;
|
||
if (word < 0)
|
||
word += 2147483647;
|
||
*++dst = word;
|
||
}
|
||
|
||
buf->fptr = &state[buf->rand_sep];
|
||
buf->rptr = &state[0];
|
||
kc *= 10;
|
||
while (--kc >= 0)
|
||
{
|
||
int32_t discard;
|
||
(void) __random_r (buf, &discard);
|
||
}
|
||
|
||
done:
|
||
return 0;
|
||
|
||
fail:
|
||
return -1;
|
||
}
|
||
|
||
weak_alias (__srandom_r, srandom_r)
|
||
|
||
/* Initialize the state information in the given array of N bytes for
|
||
future random number generation. Based on the number of bytes we
|
||
are given, and the break values for the different R.N.G.'s, we choose
|
||
the best (largest) one we can and set things up for it. srandom is
|
||
then called to initialize the state information. Note that on return
|
||
from srandom, we set state[-1] to be the type multiplexed with the current
|
||
value of the rear pointer; this is so successive calls to initstate won't
|
||
lose this information and will be able to restart with setstate.
|
||
Note: The first thing we do is save the current state, if any, just like
|
||
setstate so that it doesn't matter when initstate is called.
|
||
Returns 0 on success, non-zero on failure. */
|
||
int
|
||
__initstate_r (unsigned int seed, char *arg_state, size_t n,
|
||
struct random_data *buf)
|
||
{
|
||
if (buf == NULL)
|
||
goto fail;
|
||
|
||
int32_t *old_state = buf->state;
|
||
if (old_state != NULL)
|
||
{
|
||
int old_type = buf->rand_type;
|
||
if (old_type == TYPE_0)
|
||
old_state[-1] = TYPE_0;
|
||
else
|
||
old_state[-1] = (MAX_TYPES * (buf->rptr - old_state)) + old_type;
|
||
}
|
||
|
||
int type;
|
||
if (n >= BREAK_3)
|
||
type = n < BREAK_4 ? TYPE_3 : TYPE_4;
|
||
else if (n < BREAK_1)
|
||
{
|
||
if (n < BREAK_0)
|
||
goto fail;
|
||
|
||
type = TYPE_0;
|
||
}
|
||
else
|
||
type = n < BREAK_2 ? TYPE_1 : TYPE_2;
|
||
|
||
int degree = random_poly_info.degrees[type];
|
||
int separation = random_poly_info.seps[type];
|
||
|
||
buf->rand_type = type;
|
||
buf->rand_sep = separation;
|
||
buf->rand_deg = degree;
|
||
int32_t *state = &((int32_t *) arg_state)[1]; /* First location. */
|
||
/* Must set END_PTR before srandom. */
|
||
buf->end_ptr = &state[degree];
|
||
|
||
buf->state = state;
|
||
|
||
__srandom_r (seed, buf);
|
||
|
||
state[-1] = TYPE_0;
|
||
if (type != TYPE_0)
|
||
state[-1] = (buf->rptr - state) * MAX_TYPES + type;
|
||
|
||
return 0;
|
||
|
||
fail:
|
||
__set_errno (EINVAL);
|
||
return -1;
|
||
}
|
||
|
||
weak_alias (__initstate_r, initstate_r)
|
||
|
||
/* Restore the state from the given state array.
|
||
Note: It is important that we also remember the locations of the pointers
|
||
in the current state information, and restore the locations of the pointers
|
||
from the old state information. This is done by multiplexing the pointer
|
||
location into the zeroth word of the state information. Note that due
|
||
to the order in which things are done, it is OK to call setstate with the
|
||
same state as the current state
|
||
Returns 0 on success, non-zero on failure. */
|
||
int
|
||
__setstate_r (char *arg_state, struct random_data *buf)
|
||
{
|
||
int32_t *new_state = 1 + (int32_t *) arg_state;
|
||
int type;
|
||
int old_type;
|
||
int32_t *old_state;
|
||
int degree;
|
||
int separation;
|
||
|
||
if (arg_state == NULL || buf == NULL)
|
||
goto fail;
|
||
|
||
old_type = buf->rand_type;
|
||
old_state = buf->state;
|
||
if (old_type == TYPE_0)
|
||
old_state[-1] = TYPE_0;
|
||
else
|
||
old_state[-1] = (MAX_TYPES * (buf->rptr - old_state)) + old_type;
|
||
|
||
type = new_state[-1] % MAX_TYPES;
|
||
if (type < TYPE_0 || type > TYPE_4)
|
||
goto fail;
|
||
|
||
buf->rand_deg = degree = random_poly_info.degrees[type];
|
||
buf->rand_sep = separation = random_poly_info.seps[type];
|
||
buf->rand_type = type;
|
||
|
||
if (type != TYPE_0)
|
||
{
|
||
int rear = new_state[-1] / MAX_TYPES;
|
||
buf->rptr = &new_state[rear];
|
||
buf->fptr = &new_state[(rear + separation) % degree];
|
||
}
|
||
buf->state = new_state;
|
||
/* Set end_ptr too. */
|
||
buf->end_ptr = &new_state[degree];
|
||
|
||
return 0;
|
||
|
||
fail:
|
||
__set_errno (EINVAL);
|
||
return -1;
|
||
}
|
||
|
||
weak_alias (__setstate_r, setstate_r)
|
||
|
||
/* If we are using the trivial TYPE_0 R.N.G., just do the old linear
|
||
congruential bit. Otherwise, we do our fancy trinomial stuff, which is the
|
||
same in all the other cases due to all the global variables that have been
|
||
set up. The basic operation is to add the number at the rear pointer into
|
||
the one at the front pointer. Then both pointers are advanced to the next
|
||
location cyclically in the table. The value returned is the sum generated,
|
||
reduced to 31 bits by throwing away the "least random" low bit.
|
||
Note: The code takes advantage of the fact that both the front and
|
||
rear pointers can't wrap on the same call by not testing the rear
|
||
pointer if the front one has wrapped. Returns a 31-bit random number. */
|
||
|
||
int
|
||
__random_r (struct random_data *buf, int32_t *result)
|
||
{
|
||
int32_t *state;
|
||
|
||
if (buf == NULL || result == NULL)
|
||
goto fail;
|
||
|
||
state = buf->state;
|
||
|
||
if (buf->rand_type == TYPE_0)
|
||
{
|
||
int32_t val = ((state[0] * 1103515245U) + 12345U) & 0x7fffffff;
|
||
state[0] = val;
|
||
*result = val;
|
||
}
|
||
else
|
||
{
|
||
int32_t *fptr = buf->fptr;
|
||
int32_t *rptr = buf->rptr;
|
||
int32_t *end_ptr = buf->end_ptr;
|
||
uint32_t val;
|
||
|
||
val = *fptr += (uint32_t) *rptr;
|
||
/* Chucking least random bit. */
|
||
*result = val >> 1;
|
||
++fptr;
|
||
if (fptr >= end_ptr)
|
||
{
|
||
fptr = state;
|
||
++rptr;
|
||
}
|
||
else
|
||
{
|
||
++rptr;
|
||
if (rptr >= end_ptr)
|
||
rptr = state;
|
||
}
|
||
buf->fptr = fptr;
|
||
buf->rptr = rptr;
|
||
}
|
||
return 0;
|
||
|
||
fail:
|
||
__set_errno (EINVAL);
|
||
return -1;
|
||
}
|
||
|
||
weak_alias (__random_r, random_r)
|