mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-23 19:30:10 +00:00
a67894c505
cexp, ccos, ccosh, csin and csinh have spurious underflows in cases where they compute sin of the smallest normal, that produces an underflow exception (depending on which sin implementation is in use) but the final result does not underflow. ctan and ctanh may also have such underflows, or they may be latent (the issue there is that e.g. ctan (DBL_MIN) should, rounded upwards, be the next double value above DBL_MIN, which under glibc's accuracy goals may not have an underflow exception, but the intermediate computation of sin (DBL_MIN) would legitimately underflow on before-rounding architectures). This patch fixes all those functions so they use plain comparisons (> DBL_MIN etc.) instead of comparing the result of fpclassify with FP_SUBNORMAL (in all these cases, we already know the number being compared is finite). Note that in the case of csin / csinf / csinl, there is no need for fabs calls in the comparison because the real part has already been reduced to its absolute value. As the patch fixes the failures that previously obstructed moving tests of cexp to use ALL_RM_TEST, those tests are moved to ALL_RM_TEST by the patch (two functions remain yet to be converted). Tested for x86_64 and x86 and ulps updated accordingly. [BZ #18594] * math/s_ccosh.c (__ccosh): Compare with least normal value instead of comparing class with FP_SUBNORMAL. * math/s_ccoshf.c (__ccoshf): Likewise. * math/s_ccoshl.c (__ccoshl): Likewise. * math/s_cexp.c (__cexp): Likewise. * math/s_cexpf.c (__cexpf): Likewise. * math/s_cexpl.c (__cexpl): Likewise. * math/s_csin.c (__csin): Likewise. * math/s_csinf.c (__csinf): Likewise. * math/s_csinh.c (__csinh): Likewise. * math/s_csinhf.c (__csinhf): Likewise. * math/s_csinhl.c (__csinhl): Likewise. * math/s_csinl.c (__csinl): Likewise. * math/s_ctan.c (__ctan): Likewise. * math/s_ctanf.c (__ctanf): Likewise. * math/s_ctanh.c (__ctanh): Likewise. * math/s_ctanhf.c (__ctanhf): Likewise. * math/s_ctanhl.c (__ctanhl): Likewise. * math/s_ctanl.c (__ctanl): Likewise. * math/auto-libm-test-in: Add more tests of ccos, ccosh, cexp, csin, csinh, ctan and ctanh. * math/auto-libm-test-out: Regenerated. * math/libm-test.inc (cexp_test): Use ALL_RM_TEST. * sysdeps/i386/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
3179 lines
75 KiB
Plaintext
3179 lines
75 KiB
Plaintext
# libm test inputs for gen-auto-libm-tests.c.
|
|
# Copyright (C) 1997-2015 Free Software Foundation, Inc.
|
|
# This file is part of the GNU C Library.
|
|
#
|
|
# The GNU C Library is free software; you can redistribute it and/or
|
|
# modify it under the terms of the GNU Lesser General Public
|
|
# License as published by the Free Software Foundation; either
|
|
# version 2.1 of the License, or (at your option) any later version.
|
|
#
|
|
# The GNU C Library is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
# Lesser General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU Lesser General Public
|
|
# License along with the GNU C Library; if not, see
|
|
# <http://www.gnu.org/licenses/>. */
|
|
|
|
acos 0
|
|
acos -0
|
|
acos 1
|
|
acos -1
|
|
acos 0.5
|
|
acos -0.5
|
|
acos 0.75
|
|
acos 2e-17
|
|
acos 0.0625
|
|
acos 0x0.ffffffp0
|
|
acos -0x0.ffffffp0
|
|
acos 0x0.ffffffff8p0
|
|
acos -0x0.ffffffff8p0
|
|
acos 0x0.ffffffffffffp0
|
|
acos -0x0.ffffffffffffp0
|
|
acos 0x0.ffffffffffffffffp0
|
|
acos -0x0.ffffffffffffffffp0
|
|
acos 0x1p-5
|
|
acos 0x1p-10
|
|
acos 0x1p-15
|
|
acos 0x1p-20
|
|
acos 0x1p-25
|
|
acos 0x1p-30
|
|
acos 0x1p-35
|
|
acos 0x1p-40
|
|
acos 0x1p-45
|
|
acos 0x1p-50
|
|
acos 0x1p-55
|
|
acos 0x1p-60
|
|
acos 0x1p-65
|
|
acos 0x1p-70
|
|
acos 0x1p-75
|
|
acos 0x1p-80
|
|
acos 0x1p-85
|
|
acos 0x1p-90
|
|
acos 0x1p-95
|
|
acos 0x1p-100
|
|
acos 0x1p-105
|
|
acos 0x1p-110
|
|
acos 0x1p-115
|
|
acos 0x1p-120
|
|
acos -0x1p-5
|
|
acos -0x1p-25
|
|
acos -0x1p-45
|
|
acos -0x1p-65
|
|
acos -0x1p-85
|
|
acos -0x1p-105
|
|
acos -0x1p-125
|
|
acos -0x2.0089a4p-4
|
|
acos 0xf.04aeep-4
|
|
acos 0x5.dd258006121b8p-4
|
|
acos -0x2.35f051e70dbc4p-4
|
|
acos 0xe.9a5c0d7fabb9aa1p-4
|
|
acos 0xe.17513589de79b75p-4
|
|
acos min
|
|
acos -min
|
|
acos min_subnorm
|
|
acos -min_subnorm
|
|
|
|
acosh 1
|
|
acosh 1.625
|
|
acosh 7
|
|
acosh 100
|
|
acosh 1e5
|
|
acosh 0x1p8
|
|
acosh 0x1p9
|
|
acosh 0x1p10
|
|
acosh 0x1p11
|
|
acosh 0x1p12
|
|
acosh 0x1p13
|
|
acosh 0x1p24
|
|
acosh 0x1p25
|
|
acosh 0x1p26
|
|
acosh 0x1p27
|
|
acosh 0x1p28
|
|
acosh 0x1p29
|
|
acosh 0x1p30
|
|
acosh 0x1p31
|
|
acosh 0x1p32
|
|
acosh 0x1p33
|
|
acosh 0x1p48
|
|
acosh 0x1p49
|
|
acosh 0x1p50
|
|
acosh 0x1p51
|
|
acosh 0x1p52
|
|
acosh 0x1p53
|
|
acosh 0x1p54
|
|
acosh 0x1p55
|
|
acosh 0x1p56
|
|
acosh 0x1p57
|
|
acosh 0x1p58
|
|
acosh 0x1p59
|
|
acosh 0x1p100
|
|
acosh 0x1p500
|
|
acosh 0x1p5000
|
|
acosh 0x1.80a368p+0
|
|
acosh 0x1.0b9d3e9fc19fbp+0
|
|
acosh 0x1.11eab6p+0
|
|
acosh 0x1.0fffaap+0
|
|
acosh 0x1.068e0eca105a6p+0
|
|
acosh max no-test-inline
|
|
|
|
asin 0
|
|
asin -0
|
|
asin 0.5
|
|
asin -0.5
|
|
asin 1.0
|
|
asin -1.0
|
|
asin 0.75
|
|
asin 0x0.ffffffp0
|
|
asin -0x0.ffffffp0
|
|
asin 0x0.ffffffff8p0
|
|
asin -0x0.ffffffff8p0
|
|
asin 0x0.ffffffffffffp0
|
|
asin -0x0.ffffffffffffp0
|
|
asin 0x0.ffffffffffffffffp0
|
|
asin -0x0.ffffffffffffffffp0
|
|
asin -0x2.18915cp-4
|
|
asin -0x3.746774p-4
|
|
asin -0x3.1c54d10e5c844p-4
|
|
asin 0xf.c9675fa6fe69f12p-4
|
|
asin -0xa.fc5afp-4
|
|
asin min
|
|
asin -min
|
|
asin min_subnorm
|
|
asin -min_subnorm
|
|
|
|
asinh 0
|
|
asinh -0
|
|
asinh 0.75
|
|
asinh 1
|
|
asinh 10
|
|
asinh 100
|
|
asinh 1e6
|
|
asinh 0x1p8
|
|
asinh 0x1p9
|
|
asinh 0x1p10
|
|
asinh 0x1p11
|
|
asinh 0x1p12
|
|
asinh 0x1p13
|
|
asinh 0x1p24
|
|
asinh 0x1p25
|
|
asinh 0x1p26
|
|
asinh 0x1p27
|
|
asinh 0x1p28
|
|
asinh 0x1p29
|
|
asinh 0x1p30
|
|
asinh 0x1p31
|
|
asinh 0x1p32
|
|
asinh 0x1p33
|
|
asinh 0x1p48
|
|
asinh 0x1p49
|
|
asinh 0x1p50
|
|
asinh 0x1p51
|
|
asinh 0x1p52
|
|
asinh 0x1p53
|
|
asinh 0x1p54
|
|
asinh 0x1p55
|
|
asinh 0x1p56
|
|
asinh 0x1p57
|
|
asinh 0x1p58
|
|
asinh 0x1p59
|
|
asinh 0x1p100
|
|
asinh 0x1p500
|
|
asinh 0x1p5000
|
|
asinh 0x1p-8
|
|
asinh 0x1p-9
|
|
asinh 0x1p-10
|
|
asinh 0x1p-11
|
|
asinh 0x1p-12
|
|
asinh 0x1p-13
|
|
asinh 0x1p-24
|
|
asinh 0x1p-25
|
|
asinh 0x1p-26
|
|
asinh 0x1p-27
|
|
asinh 0x1p-28
|
|
asinh 0x1p-29
|
|
asinh 0x1p-30
|
|
asinh 0x1p-31
|
|
asinh 0x1p-32
|
|
asinh 0x1p-33
|
|
asinh 0x1p-48
|
|
asinh 0x1p-49
|
|
asinh 0x1p-50
|
|
asinh 0x1p-51
|
|
asinh 0x1p-52
|
|
asinh 0x1p-53
|
|
asinh 0x1p-54
|
|
asinh 0x1p-55
|
|
asinh 0x1p-56
|
|
asinh 0x1p-57
|
|
asinh 0x1p-58
|
|
asinh 0x1p-59
|
|
asinh 0x1p-100
|
|
asinh -0x3.d26bb4p-4
|
|
asinh -0x3.bdeef4p-4
|
|
asinh -0x7.fc7fc8p-8
|
|
asinh -0x3.b94a52e6913c2p-4
|
|
asinh 0x7.d8e5a8p-4
|
|
asinh -0x7.63a06320c42e4p-4
|
|
asinh 0x6.f4a93p-4
|
|
asinh -0x7.88bcc8p-4
|
|
asinh 0x1p-500
|
|
asinh 0x1p-5000
|
|
asinh min
|
|
asinh -min
|
|
asinh min_subnorm
|
|
asinh -min_subnorm
|
|
asinh max no-test-inline
|
|
asinh -max no-test-inline
|
|
|
|
atan 0
|
|
atan -0
|
|
atan max
|
|
atan -max
|
|
atan 1
|
|
atan -1
|
|
atan 0.75
|
|
atan 0x1p-5
|
|
atan 2.5
|
|
atan 10
|
|
atan 1e6
|
|
atan 0x1p31
|
|
atan 0x1p-100
|
|
atan 0x1p-600
|
|
atan 0x1p-10000
|
|
atan -0x3.b02d84p-4
|
|
atan -0x3.3fb708p-4
|
|
atan -0x2.3249ap+0
|
|
atan -0x1.363f46p+0
|
|
atan -0x1.ad4c0ap+0
|
|
atan -0x3.eb8e18p+0
|
|
atan min
|
|
atan -min
|
|
atan min_subnorm
|
|
atan -min_subnorm
|
|
|
|
# atan2 (0,x) == 0 for x > 0.
|
|
atan2 0 1
|
|
# atan2 (-0,x) == -0 for x > 0.
|
|
atan2 -0 1
|
|
atan2 0 0
|
|
atan2 -0 0
|
|
# atan2 (+0,x) == +pi for x < 0.
|
|
atan2 0 -1
|
|
# atan2 (-0,x) == -pi for x < 0.
|
|
atan2 -0 -1
|
|
atan2 0 -0
|
|
atan2 -0 -0
|
|
# atan2 (y,+0) == pi/2 for y > 0.
|
|
atan2 1 0
|
|
# atan2 (y,-0) == pi/2 for y > 0.
|
|
atan2 1 -0
|
|
# atan2 (y,+0) == -pi/2 for y < 0.
|
|
atan2 -1 0
|
|
# atan2 (y,-0) == -pi/2 for y < 0.
|
|
atan2 -1 -0
|
|
atan2 max max
|
|
atan2 max -max
|
|
atan2 -max max
|
|
atan2 -max -max
|
|
atan2 max min
|
|
atan2 -max -min
|
|
atan2 -max min
|
|
atan2 max -min
|
|
atan2 max min_subnorm
|
|
atan2 -max -min_subnorm
|
|
atan2 -max min_subnorm
|
|
atan2 max -min_subnorm
|
|
atan2 0.75 1
|
|
atan2 -0.75 1.0
|
|
atan2 0.75 -1.0
|
|
atan2 -0.75 -1.0
|
|
atan2 0.390625 .00029
|
|
atan2 1.390625 0.9296875
|
|
atan2 -0.00756827042671106339 -.001792735857538728036
|
|
atan2 0x1.00000000000001p0 0x1.00000000000001p0
|
|
atan2 0x4.c3841p-4 0x2.f2f308p+0
|
|
atan2 -0xe.cf143p-40 0xd.3de7ap-36
|
|
atan2 0x5.576cf8p-4 0x2.21e65p+0
|
|
atan2 -0x4.29411p-4 0x1.f4755cp+0
|
|
atan2 -0xa.b4101p+20 -0xf.9c4c8p-4
|
|
atan2 0x4.251bb8p-4 0x7.40ac68p+0
|
|
atan2 0x1.47239ep+68 0xa.3ac3cp+68
|
|
atan2 -0x6.b0794p-4 0x3.8ff10cp+0
|
|
atan2 min min
|
|
atan2 min -min
|
|
atan2 -min min
|
|
atan2 -min -min
|
|
atan2 min_subnorm min_subnorm
|
|
atan2 min_subnorm -min_subnorm
|
|
atan2 -min_subnorm min_subnorm
|
|
atan2 -min_subnorm -min_subnorm
|
|
atan2 1 -max
|
|
atan2 -1 -max
|
|
atan2 min -max
|
|
atan2 -min -max
|
|
atan2 min_subnorm -max
|
|
atan2 -min_subnorm -max
|
|
atan2 1 max
|
|
atan2 -1 max
|
|
atan2 min max
|
|
atan2 -min max
|
|
atan2 min_subnorm max
|
|
atan2 -min_subnorm max
|
|
atan2 min 1
|
|
atan2 -min 1
|
|
atan2 min_subnorm 1
|
|
atan2 -min_subnorm 1
|
|
atan2 min -1
|
|
atan2 -min -1
|
|
atan2 min_subnorm -1
|
|
atan2 -min_subnorm -1
|
|
|
|
atanh 0
|
|
atanh -0
|
|
atanh 0.75
|
|
atanh -0.75
|
|
atanh 0.25
|
|
atanh 0x1p-5
|
|
atanh 0x1p-10
|
|
atanh 0x1.2345p-20
|
|
atanh 0x1p-8
|
|
atanh 0x1p-9
|
|
atanh 0x1p-10
|
|
atanh 0x1p-11
|
|
atanh 0x1p-12
|
|
atanh 0x1p-13
|
|
atanh 0x1p-24
|
|
atanh 0x1p-25
|
|
atanh 0x1p-26
|
|
atanh 0x1p-27
|
|
atanh 0x1p-28
|
|
atanh 0x1p-29
|
|
atanh 0x1p-30
|
|
atanh 0x1p-31
|
|
atanh 0x1p-32
|
|
atanh 0x1p-33
|
|
atanh 0x1p-48
|
|
atanh 0x1p-49
|
|
atanh 0x1p-50
|
|
atanh 0x1p-51
|
|
atanh 0x1p-52
|
|
atanh 0x1p-53
|
|
atanh 0x1p-54
|
|
atanh 0x1p-55
|
|
atanh 0x1p-56
|
|
atanh 0x1p-57
|
|
atanh 0x1p-58
|
|
atanh 0x1p-59
|
|
atanh 0x1p-100
|
|
atanh -0x1p-100
|
|
atanh 0x1p-600
|
|
atanh -0x1p-600
|
|
atanh 0x1p-10000
|
|
atanh -0x1p-10000
|
|
atanh -0x6.e6c77p-20
|
|
atanh 0x3.2ca824p-4
|
|
atanh -0x1.cc1d66p-4
|
|
atanh -0xf.cd3809ca8fd28p-4 no-test-inline
|
|
atanh -0x1.04f386p-4
|
|
atanh -0x2.084568p-4
|
|
atanh -0x3.e0a5d8p-4
|
|
atanh 0x3.dfb1f5db0ceccp-4
|
|
atanh 0x2.251b2a64c85dep-4
|
|
atanh -0x2.e3458cp-4
|
|
atanh 0x3.91d9f3c80c72d7acp-4
|
|
atanh -0x2.6c52c26567198p-4
|
|
atanh 0x3.a274ecp-4
|
|
atanh -0x3.f0f519a687b64p-8
|
|
atanh 0x1p-500
|
|
atanh 0x1p-5000
|
|
atanh min
|
|
atanh -min
|
|
atanh min_subnorm
|
|
atanh -min_subnorm
|
|
|
|
# cabs (x,y) == cabs (y,x).
|
|
cabs 0.75 12.390625
|
|
# cabs (x,y) == cabs (-x,y).
|
|
cabs -12.390625 0.75
|
|
# cabs (x,y) == cabs (-y,x).
|
|
cabs -0.75 12.390625
|
|
# cabs (x,y) == cabs (-x,-y).
|
|
cabs -12.390625 -0.75
|
|
# cabs (x,y) == cabs (-y,-x).
|
|
cabs -0.75 -12.390625
|
|
# cabs (x,0) == fabs (x).
|
|
cabs -0.75 0
|
|
cabs 0.75 0
|
|
cabs -1.0 0
|
|
cabs 1.0 0
|
|
cabs -5.7e7 0
|
|
cabs 5.7e7 0
|
|
cabs 0.75 1.25
|
|
cabs -0x1.34be3p-4 -0xc.56623p+0
|
|
cabs -0x1.2b0ff8p+28 -0x2.549fc4p+16
|
|
cabs -0x1.0932cp-80 -0x2.51109p-24
|
|
cabs -0x1.055fb2p+48 0x9.1ce86p+24
|
|
cabs -0x1.26a566p+120 0x4.017b28p+92
|
|
cabs -0x1.0eda54p+28 0xb.09476p+0
|
|
|
|
# carg (x + i 0) == 0 for x > 0.
|
|
carg 2.0 0
|
|
# carg (x - i 0) == -0 for x > 0.
|
|
carg 2.0 -0
|
|
carg 0 0
|
|
carg 0 -0
|
|
# carg (x + i 0) == +pi for x < 0.
|
|
carg -2.0 0
|
|
# carg (x - i 0) == -pi for x < 0.
|
|
carg -2.0 -0
|
|
carg -0 0
|
|
carg -0 -0
|
|
# carg (+0 + i y) == pi/2 for y > 0.
|
|
carg 0 2.0
|
|
# carg (-0 + i y) == pi/2 for y > 0.
|
|
carg -0 2.0
|
|
# carg (+0 + i y) == -pi/2 for y < 0.
|
|
carg 0 -2.0
|
|
# carg (-0 + i y) == -pi/2 for y < 0.
|
|
carg -0 -2.0
|
|
carg 0x2.f2f308p+0 0x4.c3841p-4
|
|
carg 0xd.3de7ap-36 -0xe.cf143p-40
|
|
carg 0x2.21e65p+0 0x5.576cf8p-4
|
|
carg 0x1.f4755cp+0 -0x4.29411p-4
|
|
carg -0xf.9c4c8p-4 -0xa.b4101p+20
|
|
carg 0x7.40ac68p+0 0x4.251bb8p-4
|
|
carg 0xa.3ac3cp+68 0x1.47239ep+68
|
|
carg 0x3.8ff10cp+0 -0x6.b0794p-4
|
|
|
|
cbrt 0.0
|
|
cbrt -0
|
|
cbrt -0.001
|
|
cbrt 8
|
|
cbrt -27.0
|
|
cbrt 0.9921875
|
|
cbrt 0.75
|
|
cbrt 0x1p16383
|
|
cbrt 0x1p-16383
|
|
cbrt 1e5
|
|
cbrt 0x3.132634p+0
|
|
cbrt -0xc.8d0442f2f0d1p-492
|
|
cbrt -0xa.6b142p+40
|
|
cbrt -0x1.f28ab85f3580ap-128
|
|
cbrt max
|
|
cbrt -max
|
|
cbrt min
|
|
cbrt -min
|
|
cbrt min_subnorm
|
|
cbrt -min_subnorm
|
|
|
|
ccos 0.0 0.0
|
|
ccos -0 0.0
|
|
ccos 0.0 -0
|
|
ccos -0 -0
|
|
|
|
ccos 0.75 1.25
|
|
ccos -2 -3
|
|
|
|
ccos 0.75 89.5
|
|
ccos 0.75 -89.5
|
|
ccos -0.75 89.5
|
|
ccos -0.75 -89.5
|
|
ccos 0.75 710.5
|
|
ccos 0.75 -710.5
|
|
ccos -0.75 710.5
|
|
ccos -0.75 -710.5
|
|
ccos 0.75 11357.25
|
|
ccos 0.75 -11357.25
|
|
ccos -0.75 11357.25
|
|
ccos -0.75 -11357.25
|
|
|
|
ccos 0x1p-149 180
|
|
ccos 0x1p-1074 1440
|
|
ccos 0x1p-16434 22730
|
|
|
|
ccos min_subnorm_p120 0x1p-120
|
|
ccos 0x1p-120 min_subnorm_p120
|
|
|
|
ccos min 1
|
|
ccos -min 1
|
|
ccos min_subnorm 80
|
|
ccos -min_subnorm 80
|
|
|
|
ccosh 0.0 0.0
|
|
ccosh -0 0.0
|
|
ccosh 0.0 -0
|
|
ccosh -0 -0
|
|
|
|
ccosh 0.75 1.25
|
|
ccosh -2 -3
|
|
|
|
ccosh 89.5 0.75
|
|
ccosh -89.5 0.75
|
|
ccosh 89.5 -0.75
|
|
ccosh -89.5 -0.75
|
|
ccosh 710.5 0.75
|
|
ccosh -710.5 0.75
|
|
ccosh 710.5 -0.75
|
|
ccosh -710.5 -0.75
|
|
ccosh 11357.25 0.75
|
|
ccosh -11357.25 0.75
|
|
ccosh 11357.25 -0.75
|
|
ccosh -11357.25 -0.75
|
|
|
|
ccosh 180 0x1p-149
|
|
ccosh 1440 0x1p-1074
|
|
ccosh 22730 0x1p-16434
|
|
|
|
ccosh min_subnorm_p120 0x1p-120
|
|
ccosh 0x1p-120 min_subnorm_p120
|
|
|
|
ccosh 1 min
|
|
ccosh 1 -min
|
|
ccosh 80 min_subnorm
|
|
ccosh 80 -min_subnorm
|
|
|
|
cexp 0 0
|
|
cexp -0 0
|
|
cexp 0 -0
|
|
cexp -0 -0
|
|
|
|
cexp 0.75 1.25
|
|
cexp -2.0 -3.0
|
|
|
|
cexp 0 0x1p65
|
|
cexp 0 -0x1p65
|
|
cexp 50 0x1p127
|
|
|
|
cexp 0 1e22
|
|
cexp 0 0x1p1023
|
|
cexp 500 0x1p1023
|
|
|
|
cexp 0 0x1p16383
|
|
cexp -10000 0x1p16383
|
|
|
|
cexp 88.75 0.75
|
|
cexp -95 0.75
|
|
cexp 709.8125 0.75
|
|
cexp -720 0.75
|
|
cexp 11356.5625 0.75
|
|
cexp -11370 0.75
|
|
|
|
cexp 180 0x1p-149
|
|
cexp 1440 0x1p-1074
|
|
cexp 22730 0x1p-16434
|
|
|
|
cexp 1e6 0
|
|
cexp 1e6 min
|
|
cexp 1e6 -min
|
|
|
|
cexp 1 min
|
|
cexp 1 -min
|
|
cexp 80 min_subnorm
|
|
cexp 80 -min_subnorm
|
|
|
|
cexp min min_subnorm
|
|
cexp min -min_subnorm
|
|
|
|
clog 0.75 1.25
|
|
clog -2 -3
|
|
|
|
clog 0x2.f2f308p+0 0x4.c3841p-4
|
|
clog 0xd.3de7ap-36 -0xe.cf143p-40
|
|
clog 0x2.21e65p+0 0x5.576cf8p-4
|
|
clog 0x1.f4755cp+0 -0x4.29411p-4
|
|
clog -0xf.9c4c8p-4 -0xa.b4101p+20
|
|
clog 0x7.40ac68p+0 0x4.251bb8p-4
|
|
clog 0xa.3ac3cp+68 0x1.47239ep+68
|
|
clog 0x3.8ff10cp+0 -0x6.b0794p-4
|
|
|
|
clog 0xa.a39ffp-4 -0x2.360c38p-4
|
|
clog 0x6.9a4569067b6ecp-4 0xb.0a30d15e7d798p-4
|
|
clog -0x1.105436p+0 -0x6.66396df3cc7ap-4
|
|
clog -0x2.c90b952282392dep-4 0x1.43cda16634cc7046p+0
|
|
|
|
clog -0x9.93d164127d9fp-4 0x7.c5c8d8p-4
|
|
clog -0xa.5920ap-4 -0x6.2cda5p-4
|
|
clog 0xd.d05c38ebb1b4p+60 -0x3.c22fdp+44
|
|
|
|
clog -0xa.19f8ec252c58d5p-4 0x7.d10cdec29a141538p-4
|
|
clog -0xa.7ac41a0b417cb8fp-4 -0x6.c5a32eaeedd4p-4
|
|
clog 0x3.c16p-136 0x8p-152
|
|
clog -0x1.0a69de710590dp+0 -0x7.bc7e121e2b0d1088p-4
|
|
|
|
clog 0x1.fffffep+127 0x1.fffffep+127
|
|
clog 0x1.fffffep+127 1.0
|
|
clog 0x1p-149 0x1p-149
|
|
clog 0x1p-147 0x1p-147
|
|
clog 0x1.fffffffffffffp+1023 0x1.fffffffffffffp+1023
|
|
clog 0x1.fffffffffffffp+1023 0x1p+1023
|
|
clog 0x1p-1074 0x1p-1074
|
|
clog 0x1p-1073 0x1p-1073
|
|
clog 0x1.fp+16383 0x1.fp+16383
|
|
clog 0x1.fp+16383 0x1p+16383
|
|
clog 0x1p-16440 0x1p-16441
|
|
|
|
clog 0x1p-149 0x1.fp+127
|
|
clog -0x1p-149 0x1.fp+127
|
|
clog 0x1p-149 -0x1.fp+127
|
|
clog -0x1p-149 -0x1.fp+127
|
|
clog -0x1.fp+127 0x1p-149
|
|
clog -0x1.fp+127 -0x1p-149
|
|
clog 0x1.fp+127 0x1p-149
|
|
clog 0x1.fp+127 -0x1p-149
|
|
clog 0x1p-1074 0x1.fp+1023
|
|
clog -0x1p-1074 0x1.fp+1023
|
|
clog 0x1p-1074 -0x1.fp+1023
|
|
clog -0x1p-1074 -0x1.fp+1023
|
|
clog -0x1.fp+1023 0x1p-1074
|
|
clog -0x1.fp+1023 -0x1p-1074
|
|
clog 0x1.fp+1023 0x1p-1074
|
|
clog 0x1.fp+1023 -0x1p-1074
|
|
clog 0x1p-16445 0x1.fp+16383
|
|
clog -0x1p-16445 0x1.fp+16383
|
|
clog 0x1p-16445 -0x1.fp+16383
|
|
clog -0x1p-16445 -0x1.fp+16383
|
|
clog -0x1.fp+16383 0x1p-16445
|
|
clog -0x1.fp+16383 -0x1p-16445
|
|
clog 0x1.fp+16383 0x1p-16445
|
|
clog 0x1.fp+16383 -0x1p-16445
|
|
clog 0x1p-16494 0x1.fp+16383
|
|
clog -0x1p-16494 0x1.fp+16383
|
|
clog 0x1p-16494 -0x1.fp+16383
|
|
clog -0x1p-16494 -0x1.fp+16383
|
|
clog -0x1.fp+16383 0x1p-16494
|
|
clog -0x1.fp+16383 -0x1p-16494
|
|
clog 0x1.fp+16383 0x1p-16494
|
|
clog 0x1.fp+16383 -0x1p-16494
|
|
|
|
clog 1.0 0x1.234566p-10
|
|
clog -1.0 0x1.234566p-20
|
|
clog 0x1.234566p-30 1.0
|
|
clog -0x1.234566p-40 -1.0
|
|
clog 0x1.234566p-50 1.0
|
|
clog 0x1.234566p-60 1.0
|
|
clog 0x1p-62 1.0
|
|
clog 0x1p-63 1.0
|
|
clog 0x1p-64 1.0
|
|
clog 0x1p-510 1.0
|
|
clog 0x1p-511 1.0
|
|
clog 0x1p-512 1.0
|
|
clog 0x1p-8190 1.0
|
|
clog 0x1p-8191 1.0
|
|
clog 0x1p-8192 1.0
|
|
|
|
clog 0x1.000566p0 0x1.234p-10
|
|
clog 0x1.000566p0 0x1.234p-100
|
|
clog -0x1.0000000123456p0 0x1.2345678p-30
|
|
clog -0x1.0000000123456p0 0x1.2345678p-1000
|
|
clog 0x1.00000000000000123456789abcp0 0x1.23456789p-60
|
|
clog 0x1.00000000000000123456789abcp0 0x1.23456789p-1000
|
|
|
|
clog 0x0.ffffffp0 0x0.ffffffp-100
|
|
clog 0x0.fffffffffffff8p0 0x0.fffffffffffff8p-1000
|
|
clog 0x0.ffffffffffffffffp0 0x0.ffffffffffffffffp-15000
|
|
|
|
clog 0x1a6p-10 0x3a5p-10
|
|
clog 0xf2p-10 0x3e3p-10
|
|
clog 0x4d4ep-15 0x6605p-15
|
|
clog 0x2818p-15 0x798fp-15
|
|
clog 0x9b57bp-20 0xcb7b4p-20
|
|
clog 0x2731p-20 0xfffd0p-20
|
|
clog 0x2ede88p-23 0x771c3fp-23
|
|
clog 0x11682p-23 0x7ffed1p-23
|
|
clog 0xa1f2c1p-24 0xc643aep-24
|
|
clog 0x659feap-24 0xeaf6f9p-24
|
|
clog 0x4447d7175p-35 0x6c445e00ap-35
|
|
clog 0x2dd46725bp-35 0x7783a1284p-35
|
|
clog 0x164c74eea876p-45 0x16f393482f77p-45
|
|
clog 0xfe961079616p-45 0x1bc37e09e6d1p-45
|
|
clog 0xa4722f19346cp-51 0x7f9631c5e7f07p-51
|
|
clog 0x10673dd0f2481p-51 0x7ef1d17cefbd2p-51
|
|
clog 0x8ecbf810c4ae6p-52 0xd479468b09a37p-52
|
|
clog 0x5b06b680ea2ccp-52 0xef452b965da9fp-52
|
|
clog 0x659b70ab7971bp-53 0x1f5d111e08abecp-53
|
|
clog 0x15cfbd1990d1ffp-53 0x176a3973e09a9ap-53
|
|
clog 0x1367a310575591p-54 0x3cfcc0a0541f60p-54
|
|
clog 0x55cb6d0c83af5p-55 0x7fe33c0c7c4e90p-55
|
|
clog 0x298c62cb546588a7p-63 0x7911b1dfcc4ecdaep-63
|
|
clog 0x4d9c37e2b5cb4533p-63 0x65c98be2385a042ep-63
|
|
clog 0x602fd5037c4792efp-64 0xed3e2086dcca80b8p-64
|
|
clog 0x6b10b4f3520217b6p-64 0xe8893cbb449253a1p-64
|
|
clog 0x81b7efa81fc35ad1p-65 0x1ef4b835f1c79d812p-65
|
|
clog 0x3f96469050f650869c2p-75 0x6f16b2c9c8b05988335p-75
|
|
clog 0x3157fc1d73233e580c8p-75 0x761b52ccd435d7c7f5fp-75
|
|
clog 0x155f8afc4c48685bf63610p-85 0x17d0cf2652cdbeb1294e19p-85
|
|
clog 0x13836d58a13448d750b4b9p-85 0x195ca7bc3ab4f9161edbe6p-85
|
|
clog 0x1df515eb171a808b9e400266p-95 0x7c71eb0cd4688dfe98581c77p-95
|
|
clog 0xe33f66c9542ca25cc43c867p-95 0x7f35a68ebd3704a43c465864p-95
|
|
clog 0x6771f22c64ed551b857c128b4cp-105 0x1f570e7a13cc3cf2f44fd793ea1p-105
|
|
clog 0x15d8ab6ed05ca514086ac3a1e84p-105 0x1761e480aa094c0b10b34b09ce9p-105
|
|
clog 0x187190c1a334497bdbde5a95f48p-106 0x3b25f08062d0a095c4cfbbc338dp-106
|
|
clog 0x6241ef0da53f539f02fad67dabp-106 0x3fb46641182f7efd9caa769dac0p-106
|
|
clog 0x3e1d0a105ac4ebeacd9c6952d34cp-112 0xf859b3d1b06d005dcbb5516d5479p-112
|
|
clog 0x47017a2e36807acb1e5214b209dep-112 0xf5f4a550c9d75e3bb1839d865f0dp-112
|
|
clog 0x148f818cb7a9258fca942ade2a0cap-113 0x18854a34780b8333ec53310ad7001p-113
|
|
clog 0xfd95243681c055c2632286921092p-113 0x1bccabcd29ca2152860ec29e34ef7p-113
|
|
clog 0xdb85c467ee2aadd5f425fe0f4b8dp-114 0x3e83162a0f95f1dcbf97dddf410eap-114
|
|
clog 0x1415bcaf2105940d49a636e98ae59p-115 0x7e6a150adfcd1b0921d44b31f40f4p-115
|
|
|
|
clog10 0.75 1.25
|
|
clog10 -2 -3
|
|
|
|
clog10 0x2.f2f308p+0 0x4.c3841p-4
|
|
clog10 0xd.3de7ap-36 -0xe.cf143p-40
|
|
clog10 0x2.21e65p+0 0x5.576cf8p-4
|
|
clog10 0x1.f4755cp+0 -0x4.29411p-4
|
|
clog10 -0xf.9c4c8p-4 -0xa.b4101p+20
|
|
clog10 0x7.40ac68p+0 0x4.251bb8p-4
|
|
clog10 0xa.3ac3cp+68 0x1.47239ep+68
|
|
clog10 0x3.8ff10cp+0 -0x6.b0794p-4
|
|
|
|
clog10 0x2.83f8ap+0 -0xb.0b529p-4
|
|
clog10 -0x2.eb21fcp-4 -0x6.59bbc8p-4
|
|
clog10 -0x3.3f7fc4p-4 0xb.ba599p-4
|
|
clog10 0x1.cd1ab2p-124 -0x8p-152
|
|
clog10 0xa.32054p-4 0x2.c7e71cp-4
|
|
clog10 -0x5.9ecf8c7b5a0f4p-4 0xa.a945e5f8761c8p-4
|
|
clog10 0x1.7a858p+0 -0x6.d940dp-4
|
|
clog10 -0x2.51320d99da5a2p-4 0x3.b8176p-4
|
|
clog10 -0x1.25c2d3e172df8p+0 0
|
|
clog10 0x1.0c684e35d0b2ap+0 -0x7.37df8a65c28fp-4
|
|
|
|
clog10 -0x9.93d164127d9fp-4 0x7.c5c8d8p-4
|
|
clog10 -0xa.5920ap-4 -0x6.2cda5p-4
|
|
clog10 0xd.d05c38ebb1b4p+60 -0x3.c22fdp+44
|
|
|
|
clog10 -0xa.19f8ec252c58d5p-4 0x7.d10cdec29a141538p-4
|
|
clog10 -0xa.7ac41a0b417cb8fp-4 -0x6.c5a32eaeedd4p-4
|
|
clog10 0x3.c16p-136 0x8p-152
|
|
clog10 -0x1.0a69de710590dp+0 -0x7.bc7e121e2b0d1088p-4
|
|
|
|
clog10 0x1.fffffep+127 0x1.fffffep+127
|
|
clog10 0x1.fffffep+127 1.0
|
|
clog10 0x1p-149 0x1p-149
|
|
clog10 0x1p-147 0x1p-147
|
|
clog10 0x1.fffffffffffffp+1023 0x1.fffffffffffffp+1023
|
|
clog10 0x1.fffffffffffffp+1023 0x1p+1023
|
|
clog10 0x1p-1074 0x1p-1074
|
|
clog10 0x1p-1073 0x1p-1073
|
|
clog10 0x1.fp+16383 0x1.fp+16383
|
|
clog10 0x1.fp+16383 0x1p+16383
|
|
clog10 0x1p-16440 0x1p-16441
|
|
|
|
clog10 0x1p-149 0x1.fp+127
|
|
clog10 -0x1p-149 0x1.fp+127
|
|
clog10 0x1p-149 -0x1.fp+127
|
|
clog10 -0x1p-149 -0x1.fp+127
|
|
clog10 -0x1.fp+127 0x1p-149
|
|
clog10 -0x1.fp+127 -0x1p-149
|
|
clog10 0x1.fp+127 0x1p-149
|
|
clog10 0x1.fp+127 -0x1p-149
|
|
clog10 0x1p-1074 0x1.fp+1023
|
|
clog10 -0x1p-1074 0x1.fp+1023
|
|
clog10 0x1p-1074 -0x1.fp+1023
|
|
clog10 -0x1p-1074 -0x1.fp+1023
|
|
clog10 -0x1.fp+1023 0x1p-1074
|
|
clog10 -0x1.fp+1023 -0x1p-1074
|
|
clog10 0x1.fp+1023 0x1p-1074
|
|
clog10 0x1.fp+1023 -0x1p-1074
|
|
clog10 0x1p-16445 0x1.fp+16383
|
|
clog10 -0x1p-16445 0x1.fp+16383
|
|
clog10 0x1p-16445 -0x1.fp+16383
|
|
clog10 -0x1p-16445 -0x1.fp+16383
|
|
clog10 -0x1.fp+16383 0x1p-16445
|
|
clog10 -0x1.fp+16383 -0x1p-16445
|
|
clog10 0x1.fp+16383 0x1p-16445
|
|
clog10 0x1.fp+16383 -0x1p-16445
|
|
clog10 0x1p-16494 0x1.fp+16383
|
|
clog10 -0x1p-16494 0x1.fp+16383
|
|
clog10 0x1p-16494 -0x1.fp+16383
|
|
clog10 -0x1p-16494 -0x1.fp+16383
|
|
clog10 -0x1.fp+16383 0x1p-16494
|
|
clog10 -0x1.fp+16383 -0x1p-16494
|
|
clog10 0x1.fp+16383 0x1p-16494
|
|
clog10 0x1.fp+16383 -0x1p-16494
|
|
|
|
clog10 1.0 0x1.234566p-10
|
|
clog10 -1.0 0x1.234566p-20
|
|
clog10 0x1.234566p-30 1.0
|
|
clog10 -0x1.234566p-40 -1.0
|
|
clog10 0x1.234566p-50 1.0
|
|
clog10 0x1.234566p-60 1.0
|
|
clog10 0x1p-61 1.0
|
|
clog10 0x1p-62 1.0
|
|
clog10 0x1p-63 1.0
|
|
clog10 0x1p-509 1.0
|
|
clog10 0x1p-510 1.0
|
|
clog10 0x1p-511 1.0
|
|
clog10 0x1p-8189 1.0
|
|
clog10 0x1p-8190 1.0
|
|
clog10 0x1p-8191 1.0
|
|
|
|
clog10 0x1.000566p0 0x1.234p-10
|
|
clog10 0x1.000566p0 0x1.234p-100
|
|
clog10 -0x1.0000000123456p0 0x1.2345678p-30
|
|
clog10 -0x1.0000000123456p0 0x1.2345678p-1000
|
|
clog10 0x1.00000000000000123456789abcp0 0x1.23456789p-60
|
|
clog10 0x1.00000000000000123456789abcp0 0x1.23456789p-1000
|
|
|
|
clog10 0x0.ffffffp0 0x0.ffffffp-100
|
|
clog10 0x0.fffffffffffff8p0 0x0.fffffffffffff8p-1000
|
|
clog10 0x0.ffffffffffffffffp0 0x0.ffffffffffffffffp-15000
|
|
|
|
clog10 0x1a6p-10 0x3a5p-10
|
|
clog10 0xf2p-10 0x3e3p-10
|
|
clog10 0x4d4ep-15 0x6605p-15
|
|
clog10 0x2818p-15 0x798fp-15
|
|
clog10 0x9b57bp-20 0xcb7b4p-20
|
|
clog10 0x2731p-20 0xfffd0p-20
|
|
clog10 0x2ede88p-23 0x771c3fp-23
|
|
clog10 0x11682p-23 0x7ffed1p-23
|
|
clog10 0xa1f2c1p-24 0xc643aep-24
|
|
clog10 0x659feap-24 0xeaf6f9p-24
|
|
clog10 0x4447d7175p-35 0x6c445e00ap-35
|
|
clog10 0x2dd46725bp-35 0x7783a1284p-35
|
|
clog10 0x164c74eea876p-45 0x16f393482f77p-45
|
|
clog10 0xfe961079616p-45 0x1bc37e09e6d1p-45
|
|
clog10 0xa4722f19346cp-51 0x7f9631c5e7f07p-51
|
|
clog10 0x10673dd0f2481p-51 0x7ef1d17cefbd2p-51
|
|
clog10 0x8ecbf810c4ae6p-52 0xd479468b09a37p-52
|
|
clog10 0x5b06b680ea2ccp-52 0xef452b965da9fp-52
|
|
clog10 0x659b70ab7971bp-53 0x1f5d111e08abecp-53
|
|
clog10 0x15cfbd1990d1ffp-53 0x176a3973e09a9ap-53
|
|
clog10 0x1367a310575591p-54 0x3cfcc0a0541f60p-54
|
|
clog10 0x55cb6d0c83af5p-55 0x7fe33c0c7c4e90p-55
|
|
clog10 0x298c62cb546588a7p-63 0x7911b1dfcc4ecdaep-63
|
|
clog10 0x4d9c37e2b5cb4533p-63 0x65c98be2385a042ep-63
|
|
clog10 0x602fd5037c4792efp-64 0xed3e2086dcca80b8p-64
|
|
clog10 0x6b10b4f3520217b6p-64 0xe8893cbb449253a1p-64
|
|
clog10 0x81b7efa81fc35ad1p-65 0x1ef4b835f1c79d812p-65
|
|
clog10 0x3f96469050f650869c2p-75 0x6f16b2c9c8b05988335p-75
|
|
clog10 0x3157fc1d73233e580c8p-75 0x761b52ccd435d7c7f5fp-75
|
|
clog10 0x155f8afc4c48685bf63610p-85 0x17d0cf2652cdbeb1294e19p-85
|
|
clog10 0x13836d58a13448d750b4b9p-85 0x195ca7bc3ab4f9161edbe6p-85
|
|
clog10 0x1df515eb171a808b9e400266p-95 0x7c71eb0cd4688dfe98581c77p-95
|
|
clog10 0xe33f66c9542ca25cc43c867p-95 0x7f35a68ebd3704a43c465864p-95
|
|
clog10 0x6771f22c64ed551b857c128b4cp-105 0x1f570e7a13cc3cf2f44fd793ea1p-105
|
|
clog10 0x15d8ab6ed05ca514086ac3a1e84p-105 0x1761e480aa094c0b10b34b09ce9p-105
|
|
clog10 0x187190c1a334497bdbde5a95f48p-106 0x3b25f08062d0a095c4cfbbc338dp-106
|
|
clog10 0x6241ef0da53f539f02fad67dabp-106 0x3fb46641182f7efd9caa769dac0p-106
|
|
clog10 0x3e1d0a105ac4ebeacd9c6952d34cp-112 0xf859b3d1b06d005dcbb5516d5479p-112
|
|
clog10 0x47017a2e36807acb1e5214b209dep-112 0xf5f4a550c9d75e3bb1839d865f0dp-112
|
|
clog10 0x148f818cb7a9258fca942ade2a0cap-113 0x18854a34780b8333ec53310ad7001p-113
|
|
clog10 0xfd95243681c055c2632286921092p-113 0x1bccabcd29ca2152860ec29e34ef7p-113
|
|
clog10 0xdb85c467ee2aadd5f425fe0f4b8dp-114 0x3e83162a0f95f1dcbf97dddf410eap-114
|
|
clog10 0x1415bcaf2105940d49a636e98ae59p-115 0x7e6a150adfcd1b0921d44b31f40f4p-115
|
|
|
|
cos 0
|
|
cos -0
|
|
cos pi/3
|
|
cos 2pi/3
|
|
cos pi/2
|
|
cos 0.75
|
|
cos 0x1p65
|
|
cos -0x1p65
|
|
cos 0.80190127184058835
|
|
cos 0x1.442f74p+15
|
|
cos 1e22
|
|
cos 0x1p1023
|
|
cos 0x1p16383
|
|
cos 0x1p+120
|
|
cos 0x1p+127
|
|
cos 0x1.fffff8p+127
|
|
cos 0x1.fffffep+127
|
|
cos 0x1p+50
|
|
cos 0x1p+28
|
|
cos 0x1.000000cf4a2a2p0
|
|
cos 0x1.0000010b239a9p0
|
|
cos 0x1.00000162a932bp0
|
|
cos 0x1.000002d452a10p0
|
|
cos 0x1.000005bc7d86dp0
|
|
cos 0x1.200145a975ce6p32
|
|
cos 1
|
|
cos 2
|
|
cos 3
|
|
cos 4
|
|
cos 5
|
|
cos 6
|
|
cos 7
|
|
cos 8
|
|
cos 9
|
|
cos 10
|
|
cos max
|
|
cos -max
|
|
cos min
|
|
cos -min
|
|
cos min_subnorm
|
|
cos -min_subnorm
|
|
cos -0x3.3de320f6be87ep+1020
|
|
cos 0xe.9f1e5bc3bb88p+112
|
|
cos 0x4.7857dp+68
|
|
|
|
cosh 0
|
|
cosh -0
|
|
cosh 0.75
|
|
cosh 709.8893558127259666434838436543941497802734375
|
|
cosh -709.8893558127259666434838436543941497802734375
|
|
cosh 22
|
|
cosh 23
|
|
cosh 24
|
|
cosh 0x1p-5
|
|
cosh 0x1p-20
|
|
cosh -1
|
|
cosh 50
|
|
cosh -0xb.60713p+0
|
|
cosh -0x3.cee48p+0
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
cosh max no-test-inline xfail-rounding:ldbl-128ibm
|
|
cosh -max no-test-inline xfail-rounding:ldbl-128ibm
|
|
cosh min
|
|
cosh -min
|
|
cosh min_subnorm
|
|
cosh -min_subnorm
|
|
cosh 0x1p-56
|
|
cosh -0x1p-56
|
|
cosh 0x1p-72
|
|
cosh -0x1p-72
|
|
# Test values either side of overflow for each floating-point format.
|
|
cosh 0x5.96a7ep+4
|
|
cosh 0x5.96a7e8p+4
|
|
cosh -0x5.96a7ep+4
|
|
cosh -0x5.96a7e8p+4
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
cosh 0x2.c679d1f73f0fap+8 xfail-rounding:ldbl-128ibm
|
|
cosh 0x2.c679d1f73f0fcp+8 xfail-rounding:ldbl-128ibm
|
|
cosh -0x2.c679d1f73f0fap+8 xfail-rounding:ldbl-128ibm
|
|
cosh -0x2.c679d1f73f0fcp+8 xfail-rounding:ldbl-128ibm
|
|
cosh 0x2.c679d1f73f0fb624d358b213a7p+8 xfail-rounding:ldbl-128ibm
|
|
cosh 0x2.c679d1f73f0fb624d358b213a8p+8 xfail-rounding:ldbl-128ibm
|
|
cosh -0x2.c679d1f73f0fb624d358b213a7p+8 xfail-rounding:ldbl-128ibm
|
|
cosh -0x2.c679d1f73f0fb624d358b213a8p+8 xfail-rounding:ldbl-128ibm
|
|
cosh 0x2.c5d37700c6bb03a4p+12 no-test-inline xfail-rounding:ldbl-128ibm
|
|
cosh 0x2.c5d37700c6bb03a8p+12 no-test-inline xfail-rounding:ldbl-128ibm
|
|
cosh -0x2.c5d37700c6bb03a4p+12 no-test-inline xfail-rounding:ldbl-128ibm
|
|
cosh -0x2.c5d37700c6bb03a8p+12 no-test-inline xfail-rounding:ldbl-128ibm
|
|
cosh 0x2.c5d37700c6bb03a6c24b6c9b494cp+12 no-test-inline xfail-rounding:ldbl-128ibm
|
|
cosh 0x2.c5d37700c6bb03a6c24b6c9b494ep+12 no-test-inline xfail-rounding:ldbl-128ibm
|
|
cosh -0x2.c5d37700c6bb03a6c24b6c9b494cp+12 no-test-inline xfail-rounding:ldbl-128ibm
|
|
cosh -0x2.c5d37700c6bb03a6c24b6c9b494ep+12 no-test-inline xfail-rounding:ldbl-128ibm
|
|
|
|
cpow 1 0 0 0 ignore-zero-inf-sign
|
|
cpow 2 0 10 0 ignore-zero-inf-sign
|
|
# Bug 14473: cpow results inaccurate.
|
|
cpow e 0 0 2pi xfail
|
|
cpow 2 3 4 0 xfail-rounding
|
|
|
|
cpow 0.75 1.25 0.75 1.25 xfail-rounding
|
|
cpow 0.75 1.25 1.0 1.0 xfail-rounding
|
|
cpow 0.75 1.25 1.0 0.0
|
|
cpow 0.75 1.25 0.0 1.0
|
|
|
|
csin 0.0 0.0
|
|
csin -0 0.0
|
|
csin 0.0 -0
|
|
csin -0 -0
|
|
|
|
csin 0.75 1.25
|
|
csin -2 -3
|
|
|
|
csin 0.75 89.5
|
|
csin 0.75 -89.5
|
|
csin -0.75 89.5
|
|
csin -0.75 -89.5
|
|
csin 0.75 710.5
|
|
csin 0.75 -710.5
|
|
csin -0.75 710.5
|
|
csin -0.75 -710.5
|
|
csin 0.75 11357.25
|
|
csin 0.75 -11357.25
|
|
csin -0.75 11357.25
|
|
csin -0.75 -11357.25
|
|
|
|
csin 0.75 1e6
|
|
csin 0.75 -1e6
|
|
csin -0.75 1e6
|
|
csin -0.75 -1e6
|
|
|
|
csin 0x1p-149 180
|
|
csin 0x1p-1074 1440
|
|
csin 0x1p-16434 22730
|
|
|
|
csin min 1
|
|
csin -min 1
|
|
csin min_subnorm 80
|
|
csin -min_subnorm 80
|
|
|
|
csinh 0.0 0.0
|
|
csinh -0 0.0
|
|
csinh 0.0 -0
|
|
csinh -0 -0
|
|
|
|
csinh 0.75 1.25
|
|
csinh -2 -3
|
|
|
|
csinh 89.5 0.75
|
|
csinh -89.5 0.75
|
|
csinh 89.5 -0.75
|
|
csinh -89.5 -0.75
|
|
csinh 710.5 0.75
|
|
csinh -710.5 0.75
|
|
csinh 710.5 -0.75
|
|
csinh -710.5 -0.75
|
|
csinh 11357.25 0.75
|
|
csinh -11357.25 0.75
|
|
csinh 11357.25 -0.75
|
|
csinh -11357.25 -0.75
|
|
|
|
csinh 1e6 0.75
|
|
csinh -1e6 0.75
|
|
csinh 1e6 -0.75
|
|
csinh -1e6 -0.75
|
|
|
|
csinh 180 0x1p-149
|
|
csinh 1440 0x1p-1074
|
|
csinh 22730 0x1p-16434
|
|
|
|
csinh 1 min
|
|
csinh 1 -min
|
|
csinh 80 min_subnorm
|
|
csinh 80 -min_subnorm
|
|
|
|
csqrt 0 0
|
|
csqrt 0 -0
|
|
csqrt -0 0
|
|
csqrt -0 -0
|
|
|
|
csqrt 16.0 -30.0
|
|
csqrt -1 0
|
|
csqrt 0 2
|
|
csqrt 119 120
|
|
csqrt 0.75 1.25
|
|
csqrt -2 -3
|
|
csqrt -2 3
|
|
# Principal square root should be returned (i.e., non-negative real part).
|
|
csqrt 0 -1
|
|
|
|
csqrt -0xe.6432ap-4 0xe.8175p-4
|
|
csqrt -0x4.d01448p-4 -0x7.c1915p+0
|
|
csqrt -0xd.e1d5fp-4 -0x1.054226p+4
|
|
csqrt 0x5.39e238p+0 -0x4.576278p-4
|
|
csqrt -0xe.735dbp+0 -0x5.26cb98p+40
|
|
csqrt -0x7.915fafbe9f588p-4 -0x2.5e01bcp+0
|
|
csqrt 0xe.229827fe17d08p-4 0xd.849ecp-4
|
|
csqrt -0x4.d0144005d7af4p-4 -0x7.c19148p+0
|
|
csqrt 0x8p-152 0x7.8p-148
|
|
csqrt -0x4.82773b736291p-4 -0x1.bcb7cep+0
|
|
csqrt 0xf.fffffp+124 0xe.7e0c2p+116
|
|
csqrt -0x4.15ca1p+0 -0x8p-152
|
|
csqrt 0xf.a24adp+28 0x8.0f148p+36
|
|
csqrt 0x1.f9610ap+4 0x9.87716p+4
|
|
csqrt 0x5.9cc21p-4 -0x1.fb1ec91b40dcdp+0
|
|
csqrt -0x7.31291c9fdae04p-160 -0x8p-152
|
|
csqrt 0x1.d60caep+0 0x7.a7d468p+0
|
|
csqrt -0xb.e2bc1cd6eaa7p-180 0x8p-152
|
|
csqrt 0xd.25d559ac5baap-168 0x8p-152
|
|
csqrt -0x9.0a61a7b482d28p-168 -0x8p-152
|
|
|
|
csqrt 0x1.fffffep+127 0x1.fffffep+127
|
|
csqrt 0x1.fffffep+127 1.0
|
|
csqrt 0x1p-149 0x1p-149
|
|
csqrt 0x1p-147 0x1p-147
|
|
|
|
csqrt 0 0x1p-149
|
|
csqrt 0x1p-50 0x1p-149
|
|
csqrt 0x1p+127 0x1p-149
|
|
csqrt 0x1p-149 0x1p+127
|
|
csqrt 0x1.000002p-126 0x1.000002p-126
|
|
csqrt -0x1.000002p-126 -0x1.000002p-126
|
|
|
|
csqrt 0x1.fffffffffffffp+1023 0x1.fffffffffffffp+1023
|
|
csqrt 0x1.fffffffffffffp+1023 0x1p+1023
|
|
csqrt 0x1p-1074 0x1p-1074
|
|
csqrt 0x1p-1073 0x1p-1073
|
|
|
|
csqrt 0 0x1p-1074
|
|
csqrt 0x1p-500 0x1p-1074
|
|
csqrt 0x1p+1023 0x1p-1074
|
|
csqrt 0x1p-1074 0x1p+1023
|
|
csqrt 0x1.0000000000001p-1022 0x1.0000000000001p-1022
|
|
csqrt -0x1.0000000000001p-1022 -0x1.0000000000001p-1022
|
|
|
|
csqrt 0x1.fp+16383 0x1.fp+16383
|
|
csqrt 0x1.fp+16383 0x1p+16383
|
|
csqrt 0x1p-16440 0x1p-16441
|
|
|
|
csqrt 0 0x1p-16445
|
|
csqrt 0x1p-5000 0x1p-16445
|
|
csqrt 0x1p+16383 0x1p-16445
|
|
csqrt 0x1p-16445 0x1p+16383
|
|
csqrt 0x1.0000000000000002p-16382 0x1.0000000000000002p-16382
|
|
csqrt -0x1.0000000000000002p-16382 -0x1.0000000000000002p-16382
|
|
|
|
csqrt 0 0x1p-16494
|
|
csqrt 0x1p-5000 0x1p-16494
|
|
csqrt 0x1p+16383 0x1p-16494
|
|
csqrt 0x1p-16494 0x1p+16383
|
|
csqrt 0x1.0000000000000000000000000001p-16382 0x1.0000000000000000000000000001p-16382
|
|
csqrt -0x1.0000000000000000000000000001p-16382 -0x1.0000000000000000000000000001p-16382
|
|
|
|
csqrt 0x0.ffp128 0x1.1p-61
|
|
csqrt -0x0.ffp128 0x1.1p-61
|
|
csqrt 0x0.ffp1024 0x1.1p-509
|
|
csqrt -0x0.ffp1024 0x1.1p-509
|
|
csqrt 0x0.ffp16384 0x1.1p-8189
|
|
csqrt -0x0.ffp16384 0x1.1p-8189
|
|
|
|
ctan 0 0
|
|
ctan 0 -0
|
|
ctan -0 0
|
|
ctan -0 -0
|
|
|
|
ctan 0.75 1.25
|
|
ctan -2 -3
|
|
|
|
ctan 1 45
|
|
ctan 1 47
|
|
ctan 1 355
|
|
ctan 1 365
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
ctan 1 5680 xfail-rounding:ldbl-128ibm
|
|
ctan 1 5690 xfail-rounding:ldbl-128ibm
|
|
|
|
ctan 0x3.243f6cp-1 0
|
|
|
|
ctan 0x1p127 1
|
|
ctan 0x1p1023 1
|
|
ctan 0x1p16383 1
|
|
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
ctan 50000 50000 xfail-rounding:ldbl-128ibm
|
|
ctan 50000 -50000 xfail-rounding:ldbl-128ibm
|
|
ctan -50000 50000 xfail-rounding:ldbl-128ibm
|
|
ctan -50000 -50000 xfail-rounding:ldbl-128ibm
|
|
|
|
ctan 0x1.921fb6p+0 0x1p-149
|
|
ctan 0x1.921fb54442d18p+0 0x1p-1074
|
|
ctan 0x1.921fb54442d1846ap+0 0x1p-16445
|
|
|
|
# Bug 18595: underflow exception may be missing
|
|
ctan min 0 missing-underflow
|
|
ctan -min 0 missing-underflow
|
|
ctan min_subnorm 0 missing-underflow
|
|
ctan -min_subnorm 0 missing-underflow
|
|
|
|
ctanh 0 0
|
|
ctanh 0 -0
|
|
ctanh -0 0
|
|
ctanh -0 -0
|
|
|
|
ctanh 0 pi/4
|
|
|
|
ctanh 0.75 1.25
|
|
ctanh -2 -3
|
|
|
|
ctanh 45 1
|
|
ctanh 47 1
|
|
ctanh 355 1
|
|
ctanh 365 1
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
ctanh 5680 1 xfail-rounding:ldbl-128ibm
|
|
ctanh 5690 1 xfail-rounding:ldbl-128ibm
|
|
|
|
ctanh 0 0x3.243f6cp-1
|
|
|
|
ctanh 1 0x1p127
|
|
ctanh 1 0x1p1023
|
|
ctanh 1 0x1p16383
|
|
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
ctanh 50000 50000 xfail-rounding:ldbl-128ibm
|
|
ctanh 50000 -50000 xfail-rounding:ldbl-128ibm
|
|
ctanh -50000 50000 xfail-rounding:ldbl-128ibm
|
|
ctanh -50000 -50000 xfail-rounding:ldbl-128ibm
|
|
|
|
ctanh 0x1p-149 0x1.921fb6p+0
|
|
ctanh 0x1p-1074 0x1.921fb54442d18p+0
|
|
ctanh 0x1p-16445 0x1.921fb54442d1846ap+0
|
|
|
|
# Bug 18595: underflow exception may be missing
|
|
ctanh 0 min missing-underflow
|
|
ctanh 0 -min missing-underflow
|
|
ctanh 0 min_subnorm missing-underflow
|
|
ctanh 0 -min_subnorm missing-underflow
|
|
|
|
erf 0
|
|
erf -0
|
|
erf 0.125
|
|
erf 0.75
|
|
erf 1.25
|
|
erf 2.0
|
|
erf 4.125
|
|
erf 27.0
|
|
erf -27.0
|
|
erf -0x1.fffffffffffff8p-2
|
|
erf 0x1.c5bf94p-127
|
|
erf 0x3.8b7fa8p-128
|
|
erf -0x3.8b7f12369ded8p-1024
|
|
erf 0x3.8b7f12369ded5518p-16384
|
|
erf 26.0
|
|
erf 28.0
|
|
erf 100
|
|
erf 106
|
|
erf 106.5
|
|
erf 106.625
|
|
erf 107
|
|
erf 108
|
|
erf 1000
|
|
erf max
|
|
|
|
erf -0x1.ddaea4p+0
|
|
erf -0x1.2b1f68p+0
|
|
erf 0x1.44e722p+0
|
|
erf -0x1.3a0d48p+0
|
|
|
|
erfc 0.0
|
|
erfc -0
|
|
erfc 0x1p-55
|
|
erfc -0x1p-55
|
|
erfc 0.125
|
|
erfc 0.75
|
|
erfc 1.25
|
|
erfc 2.0
|
|
erfc 0x1.f7303cp+1
|
|
erfc 4.125
|
|
erfc 0x1.ffa002p+2
|
|
erfc 0x1.ffffc8p+2
|
|
erfc -0x1.fffffffffffff8p-2
|
|
erfc 26.0
|
|
erfc 27.0
|
|
erfc 28.0
|
|
erfc 0x1.ffff56789abcdef0123456789a8p+2
|
|
erfc 100
|
|
erfc 106
|
|
erfc 106.5
|
|
erfc 106.625
|
|
erfc 107
|
|
erfc 108
|
|
erfc 1000
|
|
erfc max
|
|
|
|
erfc 0x1.8a0c64p+0
|
|
erfc 0x1.8a0c62p+0
|
|
erfc 0x1.64dafap+0
|
|
erfc 0x6.88fb08p+0
|
|
erfc 0xd.361d9p-4
|
|
erfc 0x8.c66b44ca40038p+0
|
|
erfc 0x2.586f1cp+0
|
|
erfc 0xb.acb72p+0
|
|
erfc 0xb.227499103357d84p+0
|
|
erfc 0xd.28abfp-4
|
|
erfc 0x1.5289fep+0
|
|
erfc 0x4.b48498p+0
|
|
erfc 0x2.f8646cp+0
|
|
erfc 0x1.514548p+0
|
|
|
|
exp 0
|
|
exp -0
|
|
exp 1
|
|
exp 2
|
|
exp 3
|
|
exp 0.75
|
|
exp 50.0
|
|
exp 88.72269439697265625
|
|
exp 709.75
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
exp 1000.0 xfail-rounding:ldbl-128ibm
|
|
exp 710 xfail-rounding:ldbl-128ibm
|
|
exp -1234
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
exp 0x2.c679d1f73f0fb628p+8 xfail-rounding:ldbl-128ibm
|
|
exp 1e5 xfail-rounding:ldbl-128ibm
|
|
exp max xfail-rounding:ldbl-128ibm
|
|
exp -7.4444006192138124e+02
|
|
exp -0x1.75f113c30b1c8p+9
|
|
exp -max
|
|
exp -11342.8125
|
|
exp -0x2.c5b2319c4843acc0p12
|
|
exp 0x1p-10
|
|
exp -0x1p-10
|
|
exp 0x1p-20
|
|
exp -0x1p-20
|
|
exp 0x1p-30
|
|
exp -0x1p-30
|
|
exp 0x1p-40
|
|
exp -0x1p-40
|
|
exp 0x1p-50
|
|
exp -0x1p-50
|
|
exp 0x1p-60
|
|
exp -0x1p-60
|
|
exp 0x1p-100
|
|
exp -0x1p-100
|
|
exp min
|
|
exp -min
|
|
exp min_subnorm
|
|
exp -min_subnorm
|
|
|
|
exp -0x1.760cd14774bd9p+0
|
|
exp 0x1.4bed28p+0
|
|
|
|
exp10 0
|
|
exp10 -0
|
|
exp10 3
|
|
exp10 -1
|
|
exp10 36
|
|
exp10 -36
|
|
exp10 305
|
|
exp10 -305
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
exp10 4932 xfail-rounding:ldbl-128ibm
|
|
exp10 -4932
|
|
exp10 -0x1.343793004f503232p12
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
exp10 1e5 xfail-rounding:ldbl-128ibm
|
|
exp10 -1e5
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
exp10 1e6 xfail-rounding:ldbl-128ibm
|
|
exp10 -1e6
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
exp10 max xfail-rounding:ldbl-128ibm
|
|
exp10 -max
|
|
exp10 0.75
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
exp10 0x1.348e45573a1dd72cp+8 xfail-rounding:ldbl-128ibm
|
|
exp10 0x1p-10
|
|
exp10 -0x1p-10
|
|
exp10 0x1p-20
|
|
exp10 -0x1p-20
|
|
exp10 0x1p-30
|
|
exp10 -0x1p-30
|
|
exp10 0x1p-40
|
|
exp10 -0x1p-40
|
|
exp10 0x1p-50
|
|
exp10 -0x1p-50
|
|
exp10 0x1p-60
|
|
exp10 -0x1p-60
|
|
exp10 0x1p-100
|
|
exp10 -0x1p-100
|
|
exp10 min
|
|
exp10 -min
|
|
exp10 min_subnorm
|
|
exp10 -min_subnorm
|
|
|
|
exp10 0xd.f73d6p-4
|
|
exp10 0x1.cc6776p+0
|
|
exp10 0x5.b00bcd891ffe56fp+0
|
|
|
|
exp2 0
|
|
exp2 -0
|
|
exp2 10
|
|
exp2 -1
|
|
exp2 1e6
|
|
exp2 -1e6
|
|
exp2 max
|
|
exp2 -max
|
|
exp2 0.75
|
|
exp2 100.5
|
|
exp2 -116.5
|
|
exp2 -123.5
|
|
exp2 -124.5
|
|
exp2 -125.5
|
|
exp2 127
|
|
exp2 -149
|
|
exp2 1000.25
|
|
exp2 -1019.5
|
|
exp2 -1020.5
|
|
exp2 -1021.5
|
|
exp2 1023
|
|
exp2 -1074
|
|
exp2 16383
|
|
exp2 -16400
|
|
exp2 0x1p-10
|
|
exp2 -0x1p-10
|
|
exp2 0x1p-20
|
|
exp2 -0x1p-20
|
|
exp2 0x1p-30
|
|
exp2 -0x1p-30
|
|
exp2 0x1p-40
|
|
exp2 -0x1p-40
|
|
exp2 0x1p-50
|
|
exp2 -0x1p-50
|
|
exp2 0x1p-60
|
|
exp2 -0x1p-60
|
|
exp2 0x1p-100
|
|
exp2 -0x1p-100
|
|
exp2 min
|
|
exp2 -min
|
|
exp2 min_subnorm
|
|
exp2 -min_subnorm
|
|
|
|
exp2 0xb.71754p-4
|
|
exp2 0xd.d77dp+0
|
|
exp2 0xc.122c4p-4
|
|
exp2 -0x1.567cc8p+0
|
|
exp2 -0x1.bbbd76p+0
|
|
exp2 -0x1.3045fep+8
|
|
exp2 0xa.87b8bp+0
|
|
exp2 -0xe.2ce69p-4
|
|
exp2 -0xc.1bf12p-16
|
|
|
|
expm1 0
|
|
expm1 -0
|
|
expm1 1
|
|
expm1 0.75
|
|
expm1 50.0
|
|
expm1 127.0
|
|
expm1 500.0
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
expm1 11356.25 xfail-rounding:ldbl-128ibm
|
|
expm1 -10.0
|
|
expm1 -16.0
|
|
expm1 -17.0
|
|
expm1 -18.0
|
|
expm1 -36.0
|
|
expm1 -37.0
|
|
expm1 -38.0
|
|
expm1 -44.0
|
|
expm1 -45.0
|
|
expm1 -46.0
|
|
expm1 -73.0
|
|
expm1 -74.0
|
|
expm1 -75.0
|
|
expm1 -78.0
|
|
expm1 -79.0
|
|
expm1 -80.0
|
|
expm1 -100.0
|
|
expm1 -1000.0
|
|
expm1 -10000.0
|
|
expm1 -100000.0
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
expm1 100000.0 xfail-rounding:ldbl-128ibm
|
|
expm1 max xfail-rounding:ldbl-128ibm
|
|
expm1 -max
|
|
expm1 0x1p-2
|
|
expm1 -0x1p-2
|
|
expm1 0x1p-10
|
|
expm1 -0x1p-10
|
|
expm1 0x1p-20
|
|
expm1 -0x1p-20
|
|
expm1 0x1p-29
|
|
expm1 -0x1p-29
|
|
expm1 0x1p-32
|
|
expm1 -0x1p-32
|
|
expm1 0x1p-50
|
|
expm1 -0x1p-50
|
|
expm1 0x1p-64
|
|
expm1 -0x1p-64
|
|
expm1 0x1p-100
|
|
expm1 -0x1p-100
|
|
expm1 0xe.4152ac57cd1ea7ap-60
|
|
expm1 0x6.660247486aed8p-4
|
|
expm1 0x6.289a78p-4
|
|
expm1 0x6.1b4d318238d4a2a8p-4
|
|
expm1 0x5.fb8dc64e91a74p-4
|
|
expm1 0x3.735f497c4e67535cp-4
|
|
expm1 0x4.0000000000000028p-16384
|
|
expm1 min
|
|
expm1 -min
|
|
expm1 min_subnorm
|
|
expm1 -min_subnorm
|
|
|
|
fma 1.0 2.0 3.0
|
|
fma 1.25 0.75 0.0625
|
|
|
|
fma 0 0 0
|
|
fma 0 0 -0
|
|
fma 0 -0 0
|
|
fma 0 -0 -0
|
|
fma -0 0 0
|
|
fma -0 0 -0
|
|
fma -0 -0 0
|
|
fma -0 -0 -0
|
|
fma 1.0 0 0
|
|
fma 1.0 0 -0
|
|
fma 1.0 -0 0
|
|
fma 1.0 -0 -0
|
|
fma -1.0 0 0
|
|
fma -1.0 0 -0
|
|
fma -1.0 -0 0
|
|
fma -1.0 -0 -0
|
|
fma 0 1.0 0
|
|
fma 0 1.0 -0
|
|
fma 0 -1.0 0
|
|
fma 0 -1.0 -0
|
|
fma -0 1.0 0
|
|
fma -0 1.0 -0
|
|
fma -0 -1.0 0
|
|
fma -0 -1.0 -0
|
|
|
|
fma 1.0 1.0 -1.0
|
|
fma 1.0 -1.0 1.0
|
|
fma -1.0 1.0 1.0
|
|
fma -1.0 -1.0 -1.0
|
|
|
|
fma 0 0 1
|
|
fma 0 0 2
|
|
fma 0 0 max
|
|
fma 0 1 1
|
|
fma 1 0 1
|
|
fma 0 1 2
|
|
fma 1 0 2
|
|
fma 0 1 max
|
|
fma 1 0 max
|
|
|
|
# Bug 6801: errno setting may be missing.
|
|
fma min min 0 missing-errno
|
|
fma min min -0 missing-errno
|
|
fma min -min 0 missing-errno
|
|
fma min -min -0 missing-errno
|
|
fma -min min 0 missing-errno
|
|
fma -min min -0 missing-errno
|
|
fma -min -min 0 missing-errno
|
|
fma -min -min -0 missing-errno
|
|
|
|
# Bug 6801: errno setting may be missing.
|
|
# Bug 13304: results on directed rounding may be incorrect.
|
|
fma max max min missing-errno xfail-rounding:ldbl-128ibm
|
|
fma max max -min missing-errno xfail-rounding:ldbl-128ibm
|
|
fma max -max min missing-errno xfail-rounding:ldbl-128ibm
|
|
fma max -max -min missing-errno xfail-rounding:ldbl-128ibm
|
|
fma -max max min missing-errno xfail-rounding:ldbl-128ibm
|
|
fma -max max -min missing-errno xfail-rounding:ldbl-128ibm
|
|
fma -max -max min missing-errno xfail-rounding:ldbl-128ibm
|
|
fma -max -max -min missing-errno xfail-rounding:ldbl-128ibm
|
|
|
|
fma 0x1.7ff8p+13 0x1.000002p+0 0x1.ffffp-24
|
|
fma 0x1.fffp+0 0x1.00001p+0 -0x1.fffp+0
|
|
fma 0x1.9abcdep+127 0x0.9abcdep-126 -0x1.f08948p+0
|
|
fma 0x1.9abcdep+100 0x0.9abcdep-126 -0x1.f08948p-27
|
|
fma 0x1.fffffep+127 0x1.001p+0 -0x1.fffffep+127
|
|
fma -0x1.fffffep+127 0x1.fffffep+0 0x1.fffffep+127
|
|
fma 0x1.fffffep+127 2.0 -0x1.fffffep+127
|
|
fma 0x1.4p-126 0x1.000004p-1 0x1p-128
|
|
fma -0x1.4p-126 0x1.000004p-1 -0x1p-128
|
|
fma 0x1.fffff8p-126 0x1.000002p-1 0x1p-149
|
|
fma -0x1.fffff8p-126 0x1.000002p-1 -0x1p-149
|
|
fma 0x1p-149 0x1p-1 0x0.fffffep-126
|
|
fma -0x1p-149 0x1p-1 -0x0.fffffep-126
|
|
fma 0x1p-149 0x1.1p-1 0x0.fffffep-126
|
|
fma -0x1p-149 0x1.1p-1 -0x0.fffffep-126
|
|
fma 0x1p-149 0x1p-149 0x1p127
|
|
fma 0x1p-149 -0x1p-149 0x1p127
|
|
fma 0x1p-149 0x1p-149 -0x1p127
|
|
fma 0x1p-149 -0x1p-149 -0x1p127
|
|
fma 0x1p-149 0x1p-149 0x1p-126
|
|
fma 0x1p-149 -0x1p-149 0x1p-126
|
|
fma 0x1p-149 0x1p-149 -0x1p-126
|
|
fma 0x1p-149 -0x1p-149 -0x1p-126
|
|
fma 0x1p-149 0x1p-149 0x0.fffffep-126
|
|
fma 0x1p-149 -0x1p-149 0x0.fffffep-126
|
|
fma 0x1p-149 0x1p-149 -0x0.fffffep-126
|
|
fma 0x1p-149 -0x1p-149 -0x0.fffffep-126
|
|
fma 0x1p-149 0x1p-149 0x1p-149
|
|
# Bug 6801: errno setting may be missing.
|
|
fma 0x1p-149 -0x1p-149 0x1p-149 missing-errno
|
|
fma 0x1p-149 0x1p-149 -0x1p-149 missing-errno
|
|
fma 0x1p-149 -0x1p-149 -0x1p-149
|
|
fma 0x0.fffp0 0x0.fffp0 -0x0.ffep0
|
|
fma 0x0.fffp0 -0x0.fffp0 0x0.ffep0
|
|
fma -0x0.fffp0 0x0.fffp0 0x0.ffep0
|
|
fma -0x0.fffp0 -0x0.fffp0 -0x0.ffep0
|
|
fma 0x1.000002p-126 0x1.000002p-26 0x1p127
|
|
fma 0x1.000002p-126 -0x1.000002p-26 0x1p127
|
|
fma 0x1.000002p-126 0x1.000002p-26 -0x1p127
|
|
fma 0x1.000002p-126 -0x1.000002p-26 -0x1p127
|
|
fma 0x1.000002p-126 0x1.000002p-26 0x1p103
|
|
fma 0x1.000002p-126 -0x1.000002p-26 0x1p103
|
|
fma 0x1.000002p-126 0x1.000002p-26 -0x1p103
|
|
fma 0x1.000002p-126 -0x1.000002p-26 -0x1p103
|
|
|
|
fma 0x1.7fp+13 0x1.0000000000001p+0 0x1.ffep-48
|
|
fma 0x1.fffp+0 0x1.0000000000001p+0 -0x1.fffp+0
|
|
fma 0x1.0000002p+0 0x1.ffffffcp-1 0x1p-300
|
|
fma 0x1.0000002p+0 0x1.ffffffcp-1 -0x1p-300
|
|
fma 0x1.deadbeef2feedp+1023 0x0.deadbeef2feedp-1022 -0x1.a05f8c01a4bfbp+1
|
|
fma 0x1.deadbeef2feedp+900 0x0.deadbeef2feedp-1022 -0x1.a05f8c01a4bfbp-122
|
|
fma 0x1.fffffffffffffp+1023 0x1.001p+0 -0x1.fffffffffffffp+1023
|
|
fma -0x1.fffffffffffffp+1023 0x1.fffffffffffffp+0 0x1.fffffffffffffp+1023
|
|
fma 0x1.fffffffffffffp+1023 2.0 -0x1.fffffffffffffp+1023
|
|
# Bug 6801: errno setting may be missing.
|
|
fma 0x1.6a09e667f3bccp-538 0x1.6a09e667f3bccp-538 0.0 missing-errno
|
|
fma 0x1.deadbeef2feedp-495 0x1.deadbeef2feedp-495 -0x1.bf86a5786a574p-989
|
|
fma 0x1.deadbeef2feedp-503 0x1.deadbeef2feedp-503 -0x1.bf86a5786a574p-1005
|
|
fma 0x1p-537 0x1p-538 0x1p-1074
|
|
fma 0x1.7fffff8p-968 0x1p-106 0x0.000001p-1022
|
|
fma 0x1.4000004p-967 0x1p-106 0x0.000001p-1022
|
|
fma 0x1.4p-967 -0x1p-106 -0x0.000001p-1022
|
|
fma -0x1.19cab66d73e17p-959 0x1.c7108a8c5ff51p-107 -0x0.80b0ad65d9b64p-1022
|
|
fma -0x1.d2eaed6e8e9d3p-979 -0x1.4e066c62ac9ddp-63 -0x0.9245e6b003454p-1022
|
|
fma 0x1.153d650bb9f06p-907 0x1.2d01230d48407p-125 -0x0.b278d5acfc3cp-1022
|
|
fma -0x1.fffffffffffffp-711 0x1.fffffffffffffp-275 0x1.fffffe00007ffp-983
|
|
fma 0x1.4p-1022 0x1.0000000000002p-1 0x1p-1024
|
|
fma -0x1.4p-1022 0x1.0000000000002p-1 -0x1p-1024
|
|
fma 0x1.ffffffffffffcp-1022 0x1.0000000000001p-1 0x1p-1074
|
|
fma -0x1.ffffffffffffcp-1022 0x1.0000000000001p-1 -0x1p-1074
|
|
fma 0x1p-1074 0x1p-1 0x0.fffffffffffffp-1022
|
|
fma -0x1p-1074 0x1p-1 -0x0.fffffffffffffp-1022
|
|
fma 0x1p-1074 0x1.1p-1 0x0.fffffffffffffp-1022
|
|
fma -0x1p-1074 0x1.1p-1 -0x0.fffffffffffffp-1022
|
|
fma 0x1p-1074 0x1p-1074 0x1p1023
|
|
fma 0x1p-1074 -0x1p-1074 0x1p1023
|
|
fma 0x1p-1074 0x1p-1074 -0x1p1023
|
|
fma 0x1p-1074 -0x1p-1074 -0x1p1023
|
|
fma 0x1p-1074 0x1p-1074 0x1p-1022
|
|
fma 0x1p-1074 -0x1p-1074 0x1p-1022
|
|
fma 0x1p-1074 0x1p-1074 -0x1p-1022
|
|
fma 0x1p-1074 -0x1p-1074 -0x1p-1022
|
|
fma 0x1p-1074 0x1p-1074 0x0.fffffffffffffp-1022
|
|
fma 0x1p-1074 -0x1p-1074 0x0.fffffffffffffp-1022
|
|
fma 0x1p-1074 0x1p-1074 -0x0.fffffffffffffp-1022
|
|
fma 0x1p-1074 -0x1p-1074 -0x0.fffffffffffffp-1022
|
|
fma 0x1p-1074 0x1p-1074 0x1p-1074
|
|
# Bug 6801: errno setting may be missing.
|
|
fma 0x1p-1074 -0x1p-1074 0x1p-1074 missing-errno
|
|
fma 0x1p-1074 0x1p-1074 -0x1p-1074 missing-errno
|
|
fma 0x1p-1074 -0x1p-1074 -0x1p-1074
|
|
fma 0x0.fffffffffffff8p0 0x0.fffffffffffff8p0 -0x0.fffffffffffffp0
|
|
fma 0x0.fffffffffffff8p0 -0x0.fffffffffffff8p0 0x0.fffffffffffffp0
|
|
fma -0x0.fffffffffffff8p0 0x0.fffffffffffff8p0 0x0.fffffffffffffp0
|
|
fma -0x0.fffffffffffff8p0 -0x0.fffffffffffff8p0 -0x0.fffffffffffffp0
|
|
fma 0x1.0000000000001p-1022 0x1.0000000000001p-55 0x1p1023
|
|
fma 0x1.0000000000001p-1022 -0x1.0000000000001p-55 0x1p1023
|
|
fma 0x1.0000000000001p-1022 0x1.0000000000001p-55 -0x1p1023
|
|
fma 0x1.0000000000001p-1022 -0x1.0000000000001p-55 -0x1p1023
|
|
fma 0x1.0000000000001p-1022 0x1.0000000000001p-55 0x1p970
|
|
fma 0x1.0000000000001p-1022 -0x1.0000000000001p-55 0x1p970
|
|
fma 0x1.0000000000001p-1022 0x1.0000000000001p-55 -0x1p970
|
|
fma 0x1.0000000000001p-1022 -0x1.0000000000001p-55 -0x1p970
|
|
|
|
fma -0x8.03fcp+3696 0xf.fffffffffffffffp-6140 0x8.3ffffffffffffffp-2450
|
|
fma 0x9.fcp+2033 -0x8.000e1f000ff800fp-3613 -0xf.fffffffffffc0ffp-1579
|
|
fma 0xc.7fc000003ffffffp-1194 0x8.1e0003fffffffffp+15327 -0x8.fffep+14072
|
|
fma -0x8.0001fc000000003p+1798 0xcp-2230 0x8.f7e000000000007p-468
|
|
fma 0xc.0000000000007ffp+10130 -0x8.000000000000001p+4430 0xc.07000000001ffffp+14513
|
|
fma 0xb.ffffp-4777 0x8.000000fffffffffp-11612 -0x0.3800fff8p-16385
|
|
fma 0x1.4p-16382 0x1.0000000000000004p-1 0x1p-16384
|
|
fma -0x1.4p-16382 0x1.0000000000000004p-1 -0x1p-16384
|
|
fma 0x1.fffffffffffffff8p-16382 0x1.0000000000000002p-1 0x1p-16445
|
|
fma -0x1.fffffffffffffff8p-16382 0x1.0000000000000002p-1 -0x1p-16445
|
|
fma 0x1p-16445 0x1p-1 0x0.fffffffffffffffep-16382
|
|
fma -0x1p-16445 0x1p-1 -0x0.fffffffffffffffep-16382
|
|
fma 0x1p-16445 0x1.1p-1 0x0.fffffffffffffffep-16382
|
|
fma -0x1p-16445 0x1.1p-1 -0x0.fffffffffffffffep-16382
|
|
fma 0x1p-16445 0x1p-16445 0x1p16383
|
|
fma 0x1p-16445 -0x1p-16445 0x1p16383
|
|
fma 0x1p-16445 0x1p-16445 -0x1p16383
|
|
fma 0x1p-16445 -0x1p-16445 -0x1p16383
|
|
fma 0x1p-16445 0x1p-16445 0x1p-16382
|
|
fma 0x1p-16445 -0x1p-16445 0x1p-16382
|
|
fma 0x1p-16445 0x1p-16445 -0x1p-16382
|
|
fma 0x1p-16445 -0x1p-16445 -0x1p-16382
|
|
fma 0x1p-16445 0x1p-16445 0x0.fffffffffffffffep-16382
|
|
fma 0x1p-16445 -0x1p-16445 0x0.fffffffffffffffep-16382
|
|
fma 0x1p-16445 0x1p-16445 -0x0.fffffffffffffffep-16382
|
|
fma 0x1p-16445 -0x1p-16445 -0x0.fffffffffffffffep-16382
|
|
fma 0x1p-16445 0x1p-16445 0x1p-16445
|
|
# Bug 6801: errno setting may be missing.
|
|
fma 0x1p-16445 -0x1p-16445 0x1p-16445 missing-errno
|
|
fma 0x1p-16445 0x1p-16445 -0x1p-16445 missing-errno
|
|
fma 0x1p-16445 -0x1p-16445 -0x1p-16445
|
|
fma 0x0.ffffffffffffffffp0 0x0.ffffffffffffffffp0 -0x0.fffffffffffffffep0
|
|
fma 0x0.ffffffffffffffffp0 -0x0.ffffffffffffffffp0 0x0.fffffffffffffffep0
|
|
fma -0x0.ffffffffffffffffp0 0x0.ffffffffffffffffp0 0x0.fffffffffffffffep0
|
|
fma -0x0.ffffffffffffffffp0 -0x0.ffffffffffffffffp0 -0x0.fffffffffffffffep0
|
|
fma 0x1.0000000000000002p-16382 0x1.0000000000000002p-66 0x1p16383
|
|
fma 0x1.0000000000000002p-16382 -0x1.0000000000000002p-66 0x1p16383
|
|
fma 0x1.0000000000000002p-16382 0x1.0000000000000002p-66 -0x1p16383
|
|
fma 0x1.0000000000000002p-16382 -0x1.0000000000000002p-66 -0x1p16383
|
|
fma 0x1.0000000000000002p-16382 0x1.0000000000000002p-66 0x1p16319
|
|
fma 0x1.0000000000000002p-16382 -0x1.0000000000000002p-66 0x1p16319
|
|
fma 0x1.0000000000000002p-16382 0x1.0000000000000002p-66 -0x1p16319
|
|
fma 0x1.0000000000000002p-16382 -0x1.0000000000000002p-66 -0x1p16319
|
|
|
|
fma 0x1.bb2de33e02ccbbfa6e245a7c1f71p-2584 -0x1.6b500daf0580d987f1bc0cadfcddp-13777 0x1.613cd91d9fed34b33820e5ab9d8dp-16378
|
|
fma -0x1.f949b880cacb0f0c61540105321dp-5954 -0x1.3876cec84b4140f3bd6198731b7ep-10525 -0x0.a5dc1c6cfbc498c54fb0b504bf19p-16382
|
|
fma -0x1.0000fffffffffp-16221 0x1.0000001fffff8007fep-239 0x0.ff87ffffffffffffe000003fffffp-16382
|
|
fma -0x1.ac79c9376ef447f3827c9e9de008p-2228 -0x1.5ba830022b6139e21fbe7270cad8p-6314 0x1.e8282b6a26bb6a9daf5c8e73e9f9p-8616
|
|
fma -0x1.c69749ec574caaa2ab8e97ddb9f3p+2652 0x1.f34235ff9d095449c29b4831b62dp+3311 0x1.fbe4302df23354dbd0c4d3cfe606p+5879
|
|
fma -0x1.ca8835fc6ecfb5398625fc891be5p-1686 0x1.621e1972bbe2180e5be9dd7d8df5p-7671 -0x1.7d2d21b73b52cf20dec2a83902a4p-9395
|
|
fma -0x1.55cff679ec49c2541fab41fc843ep-11819 0x1.e60e9f464f9e8df0509647c7c971p+12325 0x1.eaa2a7649d765c2f564f7a5beca7p+454
|
|
fma 0x1.f0e7b1454908576f2537d863cf9bp+11432 0x1.cdce52f09d4ca76e68706f34b5d5p-1417 -0x1.2e986187c70f146235ea2066e486p+9979
|
|
fma 0x1.f102f7da4a57a3a4aab620e29452p-3098 -0x1.cc06a4ff40248f9e2dcc4b6afd84p-11727 0x1.d512a11126b5ac8ed8973b8580c8p-14849
|
|
fma -0x1.fc47ac7434b993cd8dcb2b431f25p-3816 0x1.fbc9750da8468852d84558e1db6dp-5773 -0x1.00a98abf783f75c40fe5b7a37d86p-9607
|
|
fma 0x1.00000000000007ffffffffffffffp-9045 -0x1.ffffffffffff80000001ffffffffp+4773 -0x1.f8p-4316
|
|
fma 0x1.4e922764c90701d4a2f21d01893dp-8683 -0x1.955a12e2d7c9447c27fa022fc865p+212 -0x1.e9634462eaef96528b90b6944578p-8521
|
|
fma 0x1.801181509c03bdbef10d6165588cp-15131 0x1.ad86f8e57d3d40bfa8007780af63p-368 -0x1.6e9df0dab1c9f1d7a6043c390741p-15507
|
|
fma 0x1.ffffffffffffffp0 0x1.000000000000008p0 -0x1p-1000
|
|
fma 0x1.4p-16382 0x1.0000000000000000000000000002p-1 0x1p-16384
|
|
fma -0x1.4p-16382 0x1.0000000000000000000000000002p-1 -0x1p-16384
|
|
fma 0x1.fffffffffffffffffffffffffffcp-16382 0x1.0000000000000000000000000001p-1 0x1p-16494
|
|
fma -0x1.fffffffffffffffffffffffffffcp-16382 0x1.0000000000000000000000000001p-1 -0x1p-16494
|
|
fma 0x1p-16494 0x1p-1 0x0.ffffffffffffffffffffffffffffp-16382
|
|
fma -0x1p-16494 0x1p-1 -0x0.ffffffffffffffffffffffffffffp-16382
|
|
fma 0x1p-16494 0x1.1p-1 0x0.ffffffffffffffffffffffffffffp-16382
|
|
fma -0x1p-16494 0x1.1p-1 -0x0.ffffffffffffffffffffffffffffp-16382
|
|
fma 0x1p-16494 0x1p-16494 0x1p16383
|
|
fma 0x1p-16494 -0x1p-16494 0x1p16383
|
|
fma 0x1p-16494 0x1p-16494 -0x1p16383
|
|
fma 0x1p-16494 -0x1p-16494 -0x1p16383
|
|
fma 0x1p-16494 0x1p-16494 0x1p-16382
|
|
fma 0x1p-16494 -0x1p-16494 0x1p-16382
|
|
fma 0x1p-16494 0x1p-16494 -0x1p-16382
|
|
fma 0x1p-16494 -0x1p-16494 -0x1p-16382
|
|
fma 0x1p-16494 0x1p-16494 0x0.ffffffffffffffffffffffffffffp-16382
|
|
fma 0x1p-16494 -0x1p-16494 0x0.ffffffffffffffffffffffffffffp-16382
|
|
fma 0x1p-16494 0x1p-16494 -0x0.ffffffffffffffffffffffffffffp-16382
|
|
fma 0x1p-16494 -0x1p-16494 -0x0.ffffffffffffffffffffffffffffp-16382
|
|
fma 0x1p-16494 0x1p-16494 0x1p-16494
|
|
# Bug 6801: errno setting may be missing.
|
|
fma 0x1p-16494 -0x1p-16494 0x1p-16494 missing-errno
|
|
fma 0x1p-16494 0x1p-16494 -0x1p-16494 missing-errno
|
|
fma 0x1p-16494 -0x1p-16494 -0x1p-16494
|
|
fma 0x0.ffffffffffffffffffffffffffff8p0 0x0.ffffffffffffffffffffffffffff8p0 -0x0.ffffffffffffffffffffffffffffp0
|
|
fma 0x0.ffffffffffffffffffffffffffff8p0 -0x0.ffffffffffffffffffffffffffff8p0 0x0.ffffffffffffffffffffffffffffp0
|
|
fma -0x0.ffffffffffffffffffffffffffff8p0 0x0.ffffffffffffffffffffffffffff8p0 0x0.ffffffffffffffffffffffffffffp0
|
|
fma -0x0.ffffffffffffffffffffffffffff8p0 -0x0.ffffffffffffffffffffffffffff8p0 -0x0.ffffffffffffffffffffffffffffp0
|
|
fma 0x1.0000000000000000000000000001p-16382 0x1.0000000000000000000000000001p-66 0x1p16383
|
|
fma 0x1.0000000000000000000000000001p-16382 -0x1.0000000000000000000000000001p-66 0x1p16383
|
|
fma 0x1.0000000000000000000000000001p-16382 0x1.0000000000000000000000000001p-66 -0x1p16383
|
|
fma 0x1.0000000000000000000000000001p-16382 -0x1.0000000000000000000000000001p-66 -0x1p16383
|
|
fma 0x1.0000000000000000000000000001p-16382 0x1.0000000000000000000000000001p-66 0x1p16319
|
|
fma 0x1.0000000000000000000000000001p-16382 -0x1.0000000000000000000000000001p-66 0x1p16319
|
|
fma 0x1.0000000000000000000000000001p-16382 0x1.0000000000000000000000000001p-66 -0x1p16319
|
|
fma 0x1.0000000000000000000000000001p-16382 -0x1.0000000000000000000000000001p-66 -0x1p16319
|
|
|
|
hypot 0 0
|
|
hypot 0 -0
|
|
hypot -0 0
|
|
hypot -0 -0
|
|
# hypot (x,y) == hypot (+-x, +-y).
|
|
hypot 0.7 12.4
|
|
hypot -0.7 12.4
|
|
hypot 0.7 -12.4
|
|
hypot -0.7 -12.4
|
|
hypot 12.4 0.7
|
|
hypot -12.4 0.7
|
|
hypot 12.4 -0.7
|
|
hypot -12.4 -0.7
|
|
# hypot (x,0) == fabs (x).
|
|
hypot 0.75 0
|
|
hypot -0.75 0
|
|
hypot -5.7e7 0
|
|
hypot 0.75 1.25
|
|
hypot 1.0 0x1p-61
|
|
hypot 0x1p+0 0x1.fp-129
|
|
hypot 0x1.23456789abcdef0123456789ab8p-500 0x1.23456789abcdef0123456789ab8p-500
|
|
hypot 0x3p125 0x4p125 no-test-inline:flt-32
|
|
hypot 0x1.234566p-126 0x1.234566p-126 no-test-inline:flt-32
|
|
hypot 0x3p1021 0x4p1021 no-test-inline:dbl-64
|
|
hypot 0x1p+0 0x0.3ep-1022 no-test-inline:dbl-64
|
|
hypot 0x3p16381 0x4p16381 no-test-inline
|
|
hypot 0x1p-149 0x1p-149
|
|
hypot 0x1p-1074 0x1p-1074
|
|
hypot 0x1p-16445 0x1p-16445 no-test-inline
|
|
hypot 0x1p-16494 0x1p-16494 no-test-inline
|
|
hypot 0x0.fffffep-126 0x0.fp-127
|
|
hypot 0x0.fffffep-126 0x0.fp-130
|
|
hypot 0x0.fffffffffffffp-1022 0x0.fp-1023
|
|
hypot 0x0.fffffffffffffp-1022 0x0.fp-1026
|
|
hypot 0x0.ffffffp-16382 0x0.fp-16383 no-test-inline
|
|
hypot 0x0.ffffffp-16382 0x0.fp-16386 no-test-inline
|
|
hypot 0 min_subnorm no-test-inline
|
|
|
|
j0 -1.0
|
|
j0 0.0
|
|
j0 0.125
|
|
j0 0.75
|
|
j0 1.0
|
|
j0 1.5
|
|
j0 2.0
|
|
j0 8.0
|
|
j0 10.0
|
|
j0 4.0
|
|
j0 -4.0
|
|
j0 0x1.d7ce3ap+107
|
|
j0 -0x1.001000001p+593
|
|
j0 0x1p1023
|
|
j0 0x1p16382
|
|
j0 0x1p16383
|
|
|
|
j1 -1.0
|
|
j1 0.0
|
|
j1 0.125
|
|
j1 0.75
|
|
j1 1.0
|
|
j1 1.5
|
|
j1 2.0
|
|
j1 8.0
|
|
j1 10.0
|
|
j1 0x1.3ffp+74
|
|
j1 0x1.ff00000000002p+840
|
|
j1 0x1p1023
|
|
j1 0x1p16382
|
|
j1 0x1p16383
|
|
|
|
# jn (0, x) == j0 (x).
|
|
jn 0 -1.0
|
|
jn 0 0.0
|
|
jn 0 0.125
|
|
jn 0 0.75
|
|
jn 0 1.0
|
|
jn 0 1.5
|
|
jn 0 2.0
|
|
jn 0 8.0
|
|
jn 0 10.0
|
|
jn 0 4.0
|
|
jn 0 -4.0
|
|
|
|
# jn (1, x) == j1 (x).
|
|
jn 1 -1.0
|
|
jn 1 0.0
|
|
jn 1 0.125
|
|
jn 1 0.75
|
|
jn 1 1.0
|
|
jn 1 1.5
|
|
jn 1 2.0
|
|
jn 1 8.0
|
|
jn 1 10.0
|
|
|
|
jn 3 -1.0
|
|
jn 3 0.0
|
|
jn 3 0.125
|
|
jn 3 0.75
|
|
jn 3 1.0
|
|
jn 3 2.0
|
|
jn 3 10.0
|
|
|
|
jn 10 -1.0
|
|
jn 10 0.0
|
|
jn 10 0.125
|
|
jn 10 0.75
|
|
jn 10 1.0
|
|
jn 10 2.0
|
|
jn 10 10.0
|
|
|
|
jn 2 2.4048255576957729
|
|
jn 3 2.4048255576957729
|
|
jn 4 2.4048255576957729
|
|
jn 5 2.4048255576957729
|
|
jn 6 2.4048255576957729
|
|
jn 7 2.4048255576957729
|
|
jn 8 2.4048255576957729
|
|
jn 9 2.4048255576957729
|
|
|
|
jn 2 0x1.ffff62p+99
|
|
jn 2 0x1p127
|
|
jn 2 0x1p1023
|
|
jn 2 0x1p16383
|
|
|
|
lgamma max
|
|
lgamma 1
|
|
lgamma 3
|
|
lgamma 0.5
|
|
lgamma -0.5
|
|
lgamma 0.7
|
|
lgamma 1.2
|
|
lgamma 0x3.8p56
|
|
lgamma 0x1p-5
|
|
lgamma -0x1p-5
|
|
lgamma 0x1p-10
|
|
lgamma -0x1p-10
|
|
lgamma 0x1p-15
|
|
lgamma -0x1p-15
|
|
lgamma 0x1p-20
|
|
lgamma -0x1p-20
|
|
lgamma 0x1p-25
|
|
lgamma -0x1p-25
|
|
lgamma 0x1p-30
|
|
lgamma -0x1p-30
|
|
lgamma 0x1p-40
|
|
lgamma -0x1p-40
|
|
lgamma 0x1p-50
|
|
lgamma -0x1p-50
|
|
lgamma 0x1p-60
|
|
lgamma -0x1p-60
|
|
lgamma 0x1p-64
|
|
lgamma -0x1p-64
|
|
lgamma 0x1p-70
|
|
lgamma -0x1p-70
|
|
lgamma 0x1p-100
|
|
lgamma -0x1p-100
|
|
lgamma 0x1p-126
|
|
lgamma -0x1p-126
|
|
lgamma 0x1p-149
|
|
lgamma -0x1p-149
|
|
lgamma 0x1p-200
|
|
lgamma -0x1p-200
|
|
lgamma 0x1p-500
|
|
lgamma -0x1p-500
|
|
lgamma 0x1p-1000
|
|
lgamma -0x1p-1000
|
|
lgamma 0x1p-1022
|
|
lgamma -0x1p-1022
|
|
lgamma 0x1p-1074
|
|
lgamma -0x1p-1074
|
|
lgamma 0x1p-5000
|
|
lgamma -0x1p-5000
|
|
lgamma 0x1p-10000
|
|
lgamma -0x1p-10000
|
|
lgamma 0x1p-16382
|
|
lgamma -0x1p-16382
|
|
lgamma 0x1p-16445
|
|
lgamma -0x1p-16445
|
|
lgamma 0x1p-16494
|
|
lgamma -0x1p-16494
|
|
|
|
lgamma 0x8.8d2d5p+0
|
|
lgamma 0x1.6a324ap+52
|
|
lgamma 0x9.62f59p+0
|
|
lgamma 0xa.d55d6b4d78e28p+0
|
|
lgamma 0x8.d6315p+0
|
|
lgamma 0xb.2e679p+0
|
|
lgamma 0xb.01191p+0
|
|
lgamma 0xb.26fdap+0
|
|
lgamma 0xb.4ad0ap+0
|
|
|
|
log 1
|
|
log e
|
|
log 1/e
|
|
log 2
|
|
log 10
|
|
log 0.75
|
|
log min
|
|
log min_subnorm
|
|
|
|
log 0xb.0d5dfp-4
|
|
log 0x1.6c3f6p+0
|
|
log 0xa.ae688p-4
|
|
log 0x1.017f8ap+44
|
|
|
|
log10 1
|
|
log10 0.1
|
|
log10 10.0
|
|
log10 100.0
|
|
log10 10000.0
|
|
log10 e
|
|
log10 0.75
|
|
log10 min
|
|
log10 min_subnorm
|
|
|
|
log10 0x9.ad6e3p-4
|
|
log10 0x1.7163aep+0
|
|
log10 0xa.9d0d4p-4
|
|
log10 0x1.251ec6p+0
|
|
log10 0x1.022e82p+0
|
|
log10 0x9.b3727e3feb538p-4
|
|
log10 0xf.bf1b2p-4
|
|
|
|
log1p 0
|
|
log1p -0
|
|
log1p e-1
|
|
log1p -0.25
|
|
log1p -0.875
|
|
log1p min
|
|
log1p min_subnorm
|
|
log1p -min
|
|
log1p -min_subnorm
|
|
log1p 0x1p10
|
|
log1p 0x1p20
|
|
log1p 0x1p30
|
|
log1p 0x1p50
|
|
log1p 0x1p60
|
|
log1p 0x1p100
|
|
log1p 0x1p1000
|
|
log1p max
|
|
|
|
log1p 0x7.2a4368p-4
|
|
log1p 0x6.d3a118p-4
|
|
log1p 0x5.03f228p+0
|
|
log1p 0x7.264963888ac9p-4
|
|
log1p 0x8.786bdp-4
|
|
log1p 0x7.89dc17790eeb4p-4
|
|
log1p 0x9.81ccf8887c24a7bp-4
|
|
log1p 0xa.5028608bd65f38dp-4
|
|
log1p 0x5.bf78873e20a2d468p-4
|
|
log1p 0x7.aa5198p-4
|
|
|
|
log2 1
|
|
log2 e
|
|
log2 2.0
|
|
log2 16.0
|
|
log2 256.0
|
|
log2 0.75
|
|
log2 0x1.28d3b4p+0
|
|
log2 0xe.d99dap-4
|
|
log2 0x1.63d202d04392cp+0
|
|
log2 0xf.d9ce0b1a50e08p-4
|
|
log2 0x1.07465bdc7e41b52ep+0
|
|
log2 0xf.4dfb4p-48
|
|
log2 0x1.0a588ep+0
|
|
log2 0xb.e77c6p-4
|
|
log2 0x1.4fe37ep+0
|
|
log2 min
|
|
log2 min_subnorm
|
|
|
|
pow 0 0
|
|
pow 0 -0
|
|
pow -0 0
|
|
pow -0 -0
|
|
|
|
pow 10 0
|
|
pow 10 -0
|
|
pow -10 0
|
|
pow -10 -0
|
|
|
|
pow 1 1
|
|
pow 1 -1
|
|
pow 1 1.25
|
|
pow 1 -1.25
|
|
pow 1 0x1p62
|
|
pow 1 0x1p63
|
|
pow 1 0x1p64
|
|
pow 1 0x1p72
|
|
pow 1 min_subnorm
|
|
pow 1 -min_subnorm
|
|
|
|
# pow (x, +-0) == 1.
|
|
pow 32.75 0
|
|
pow 32.75 -0
|
|
pow -32.75 0
|
|
pow -32.75 -0
|
|
pow 0x1p72 0
|
|
pow 0x1p72 -0
|
|
pow 0x1p-72 0
|
|
pow 0x1p-72 -0
|
|
|
|
pow 0x1p72 0x1p72
|
|
pow 10 -0x1p72
|
|
pow max max
|
|
pow 10 -max
|
|
|
|
pow 0 1
|
|
pow 0 11
|
|
|
|
pow -0 1
|
|
pow -0 11
|
|
|
|
pow 0 2
|
|
pow 0 11.1
|
|
|
|
pow -0 2
|
|
pow -0 11.1
|
|
|
|
# pow (+0, y) == +0 for y an odd integer > 0.
|
|
pow 0.0 27
|
|
pow 0.0 0xffffff
|
|
pow 0.0 0x1.fffffffffffffp+52
|
|
pow 0.0 0x1.fffffffffffffffep+63
|
|
pow 0.0 0x1.ffffffffffffffffffffffffff8p+105
|
|
pow 0.0 0x1.ffffffffffffffffffffffffffffp+112
|
|
|
|
# pow (-0, y) == -0 for y an odd integer > 0.
|
|
pow -0 27
|
|
pow -0 0xffffff
|
|
pow -0 0x1fffffe
|
|
pow -0 0x1.fffffffffffffp+52
|
|
pow -0 0x1.fffffffffffffp+53
|
|
pow -0 0x1.fffffffffffffffep+63
|
|
pow -0 0x1.fffffffffffffffep+64
|
|
pow -0 0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -0 0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -0 0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -0 0x1.ffffffffffffffffffffffffffffp+113
|
|
|
|
# pow (+0, y) == +0 for y > 0 and not an odd integer.
|
|
pow 0.0 4
|
|
pow 0.0 0x1p24
|
|
pow 0.0 0x1p127
|
|
pow 0.0 max
|
|
pow 0.0 min_subnorm
|
|
|
|
# pow (-0, y) == +0 for y > 0 and not an odd integer.
|
|
pow -0 4
|
|
pow -0 0x1p24
|
|
pow -0 0x1p127
|
|
pow -0 max
|
|
pow -0 min_subnorm
|
|
|
|
pow 16 0.25
|
|
pow 0x1p64 0.125
|
|
pow 2 4
|
|
pow 256 8
|
|
|
|
pow 0.75 1.25
|
|
|
|
pow -7.49321e+133 -9.80818e+16
|
|
|
|
pow -1.0 -0xffffff
|
|
pow -1.0 -0x1fffffe
|
|
pow -1.0 -0x1.fffffffffffffp+52
|
|
pow -1.0 -0x1.fffffffffffffp+53
|
|
pow -1.0 -0x1.fffffffffffffffep+63
|
|
pow -1.0 -0x1.fffffffffffffffep+64
|
|
pow -1.0 -0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -1.0 -0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -1.0 -0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -1.0 -0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -1.0 -max
|
|
|
|
pow -1.0 0xffffff
|
|
pow -1.0 0x1fffffe
|
|
pow -1.0 0x1.fffffffffffffp+52
|
|
pow -1.0 0x1.fffffffffffffp+53
|
|
pow -1.0 0x1.fffffffffffffffep+63
|
|
pow -1.0 0x1.fffffffffffffffep+64
|
|
pow -1.0 0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -1.0 0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -1.0 0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -1.0 0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -1.0 max
|
|
|
|
pow -2.0 126
|
|
pow -2.0 127
|
|
pow -2.0 -126
|
|
pow -2.0 -127
|
|
|
|
pow -2.0 -0xffffff
|
|
pow -2.0 -0x1fffffe
|
|
pow -2.0 -0x1.fffffffffffffp+52
|
|
pow -2.0 -0x1.fffffffffffffp+53
|
|
pow -2.0 -0x1.fffffffffffffffep+63
|
|
pow -2.0 -0x1.fffffffffffffffep+64
|
|
pow -2.0 -0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -2.0 -0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -2.0 -0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -2.0 -0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -2.0 -max
|
|
|
|
pow -2.0 0xffffff
|
|
pow -2.0 0x1fffffe
|
|
pow -2.0 0x1.fffffffffffffp+52
|
|
pow -2.0 0x1.fffffffffffffp+53
|
|
pow -2.0 0x1.fffffffffffffffep+63
|
|
pow -2.0 0x1.fffffffffffffffep+64
|
|
pow -2.0 0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -2.0 0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -2.0 0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -2.0 0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -2.0 max
|
|
|
|
pow -max -2
|
|
pow -max -3
|
|
pow -max 2
|
|
pow -max 3
|
|
|
|
pow -max -0xffffff
|
|
pow -max -0x1fffffe
|
|
pow -max -0x1.fffffffffffffp+52
|
|
pow -max -0x1.fffffffffffffp+53
|
|
pow -max -0x1.fffffffffffffffep+63
|
|
pow -max -0x1.fffffffffffffffep+64
|
|
pow -max -0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -max -0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -max -0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -max -0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -max -max
|
|
|
|
pow -max 0xffffff
|
|
pow -max 0x1fffffe
|
|
pow -max 0x1.fffffffffffffp+52
|
|
pow -max 0x1.fffffffffffffp+53
|
|
pow -max 0x1.fffffffffffffffep+63
|
|
pow -max 0x1.fffffffffffffffep+64
|
|
pow -max 0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -max 0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -max 0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -max 0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -max max
|
|
|
|
pow -0x1p65 2
|
|
pow -0x1p65 3
|
|
pow -0x1p65 4
|
|
pow -0x1p65 5
|
|
pow -0x1p43 3
|
|
pow -0x1p43 4
|
|
pow -0x1p43 5
|
|
pow -0x1p33 4
|
|
pow -0x1p33 5
|
|
pow -0x1p26 5
|
|
pow -0x1p-65 -2
|
|
pow -0x1p-65 -3
|
|
pow -0x1p-65 -4
|
|
pow -0x1p-65 -5
|
|
pow -0x1p-43 -3
|
|
pow -0x1p-43 -4
|
|
pow -0x1p-43 -5
|
|
pow -0x1p-33 -4
|
|
pow -0x1p-33 -5
|
|
pow -0x1p-26 -5
|
|
|
|
pow -0x1p513 2
|
|
pow -0x1p513 3
|
|
pow -0x1p513 4
|
|
pow -0x1p513 5
|
|
pow -0x1p342 3
|
|
pow -0x1p342 4
|
|
pow -0x1p342 5
|
|
pow -0x1p257 4
|
|
pow -0x1p257 5
|
|
pow -0x1p205 5
|
|
pow -0x1p-513 -2
|
|
pow -0x1p-513 -3
|
|
pow -0x1p-513 -4
|
|
pow -0x1p-513 -5
|
|
pow -0x1p-342 -3
|
|
pow -0x1p-342 -4
|
|
pow -0x1p-342 -5
|
|
pow -0x1p-257 -4
|
|
pow -0x1p-257 -5
|
|
pow -0x1p-205 -5
|
|
|
|
pow -0x1p8192 2
|
|
pow -0x1p8192 3
|
|
pow -0x1p8192 4
|
|
pow -0x1p8192 5
|
|
pow -0x1p5462 3
|
|
pow -0x1p5462 4
|
|
pow -0x1p5462 5
|
|
pow -0x1p4097 4
|
|
pow -0x1p4097 5
|
|
pow -0x1p3277 5
|
|
pow -0x1p64 257
|
|
pow -0x1p-8192 -2
|
|
pow -0x1p-8192 -3
|
|
pow -0x1p-8192 -4
|
|
pow -0x1p-8192 -5
|
|
pow -0x1p-5462 -3
|
|
pow -0x1p-5462 -4
|
|
pow -0x1p-5462 -5
|
|
pow -0x1p-4097 -4
|
|
pow -0x1p-4097 -5
|
|
pow -0x1p-3277 -5
|
|
pow -0x1p-64 -257
|
|
|
|
pow -0.5 126
|
|
pow -0.5 127
|
|
pow -0.5 -126
|
|
pow -0.5 -127
|
|
|
|
pow -0.5 -0xffffff
|
|
pow -0.5 -0x1fffffe
|
|
pow -0.5 -0x1.fffffffffffffp+52
|
|
pow -0.5 -0x1.fffffffffffffp+53
|
|
pow -0.5 -0x1.fffffffffffffffep+63
|
|
pow -0.5 -0x1.fffffffffffffffep+64
|
|
pow -0.5 -0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -0.5 -0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -0.5 -0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -0.5 -0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -0.5 -max
|
|
|
|
pow -0.5 0xffffff
|
|
pow -0.5 0x1fffffe
|
|
pow -0.5 0x1.fffffffffffffp+52
|
|
pow -0.5 0x1.fffffffffffffp+53
|
|
pow -0.5 0x1.fffffffffffffffep+63
|
|
pow -0.5 0x1.fffffffffffffffep+64
|
|
pow -0.5 0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -0.5 0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -0.5 0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -0.5 0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -0.5 max
|
|
|
|
pow -min -2
|
|
pow -min -3
|
|
pow -min 1
|
|
pow -min 2
|
|
pow -min 3
|
|
|
|
pow -min -0xffffff
|
|
pow -min -0x1fffffe
|
|
pow -min -0x1.fffffffffffffp+52
|
|
pow -min -0x1.fffffffffffffp+53
|
|
pow -min -0x1.fffffffffffffffep+63
|
|
pow -min -0x1.fffffffffffffffep+64
|
|
pow -min -0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -min -0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -min -0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -min -0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -min -max
|
|
|
|
pow -min 0xffffff
|
|
pow -min 0x1fffffe
|
|
pow -min 0x1.fffffffffffffp+52
|
|
pow -min 0x1.fffffffffffffp+53
|
|
pow -min 0x1.fffffffffffffffep+63
|
|
pow -min 0x1.fffffffffffffffep+64
|
|
pow -min 0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -min 0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -min 0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -min 0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -min max
|
|
|
|
pow 0x0.ffffffp0 10
|
|
pow 0x0.ffffffp0 100
|
|
pow 0x0.ffffffp0 1000
|
|
pow 0x0.ffffffp0 0x1p24
|
|
pow 0x0.ffffffp0 0x1p30
|
|
pow 0x0.ffffffp0 0x1.234566p30
|
|
pow 0x0.ffffffp0 -10
|
|
pow 0x0.ffffffp0 -100
|
|
pow 0x0.ffffffp0 -1000
|
|
pow 0x0.ffffffp0 -0x1p24
|
|
pow 0x0.ffffffp0 -0x1p30
|
|
pow 0x0.ffffffp0 -0x1.234566p30
|
|
pow 0x1.000002p0 0x1p24
|
|
pow 0x1.000002p0 0x1.234566p29
|
|
pow 0x1.000002p0 -0x1.234566p29
|
|
|
|
pow 0x0.fffffffffffff8p0 0x1.23456789abcdfp62
|
|
pow 0x0.fffffffffffff8p0 -0x1.23456789abcdfp62
|
|
pow 0x1.0000000000001p0 0x1.23456789abcdfp61
|
|
pow 0x1.0000000000001p0 -0x1.23456789abcdfp61
|
|
|
|
pow 0x0.ffffffffffffffffp0 0x1.23456789abcdef0ep77
|
|
pow 0x0.ffffffffffffffffp0 -0x1.23456789abcdef0ep77
|
|
pow 0x1.0000000000000002p0 0x1.23456789abcdef0ep76
|
|
pow 0x1.0000000000000002p0 -0x1.23456789abcdef0ep76
|
|
|
|
pow 0x0.ffffffffffffffffffffffffffff8p0 0x1.23456789abcdef0123456789abcdp126
|
|
pow 0x0.ffffffffffffffffffffffffffff8p0 -0x1.23456789abcdef0123456789abcdp126
|
|
pow 0x1.0000000000000000000000000001p0 0x1.23456789abcdef0123456789abcdp125
|
|
pow 0x1.0000000000000000000000000001p0 -0x1.23456789abcdef0123456789abcdp125
|
|
|
|
pow 1e4932 0.75
|
|
pow 1e4928 0.75
|
|
pow 1e4924 0.75
|
|
pow 1e4920 0.75
|
|
pow 10.0 4932.0
|
|
pow 10.0 4931.0
|
|
pow 10.0 4930.0
|
|
pow 10.0 4929.0
|
|
pow 10.0 -4931.0
|
|
pow 10.0 -4930.0
|
|
pow 10.0 -4929.0
|
|
pow 1e27 182.0
|
|
pow 1e27 -182.0
|
|
|
|
pow min_subnorm min_subnorm
|
|
pow min_subnorm -min_subnorm
|
|
pow max min_subnorm
|
|
pow max -min_subnorm
|
|
pow 0.99 min_subnorm
|
|
pow 0.99 -min_subnorm
|
|
pow 1.01 min_subnorm
|
|
pow 1.01 -min_subnorm
|
|
|
|
pow 2.0 -100000.0
|
|
|
|
pow 1.0625 1.125
|
|
pow 1.5 1.03125
|
|
pow 0x1.7d1a0a6f2p+681 1.5
|
|
pow 0x1.ce78f2p+0 -0x2.7f1f78p+4
|
|
|
|
sin 0
|
|
sin -0
|
|
sin pi/6
|
|
sin -pi/6
|
|
sin pi/2
|
|
sin -pi/2
|
|
sin 0.75
|
|
sin 0x1p65
|
|
sin -0x1p65
|
|
sin 0x1.7f4134p+103
|
|
sin 0.80190127184058835
|
|
sin 2.522464e-1
|
|
sin 1e22
|
|
sin 0x1p1023
|
|
sin 0x1p16383
|
|
sin 0x1p+120
|
|
sin 0x1p+127
|
|
sin 0x1.fffff8p+127
|
|
sin 0x1.fffffep+127
|
|
sin 0x1p+50
|
|
sin 0x1p+28
|
|
sin 0.93340582292648832662962377071381
|
|
sin 2.3328432680770916363144351635128
|
|
sin 3.7439477503636453548097051680088
|
|
sin 3.9225160069792437411706487182528
|
|
sin 4.0711651639931289992091478779912
|
|
sin 4.7858438478542097982426639646292
|
|
sin 5.9840767662578002727968851104379
|
|
sin 1
|
|
sin 2
|
|
sin 3
|
|
sin 4
|
|
sin 5
|
|
sin 6
|
|
sin 7
|
|
sin 8
|
|
sin 9
|
|
sin 10
|
|
sin 0x1.2001469775ce6p32
|
|
sin -0x3.3de320f6be87ep+1020
|
|
sin 0xe.9f1e5bc3bb88p+112
|
|
sin 0x4.7857dp+68
|
|
sin min
|
|
sin -min
|
|
sin min_subnorm
|
|
sin -min_subnorm
|
|
|
|
sincos 0
|
|
sincos -0
|
|
sincos pi/2
|
|
sincos pi/6
|
|
sincos pi/3
|
|
sincos 0.75
|
|
sincos 0x1p65
|
|
sincos -0x1p65
|
|
sincos 0.80190127184058835
|
|
sincos 1e22
|
|
sincos 0x1p1023
|
|
sincos 0x1p16383
|
|
sincos 0x1p+120
|
|
sincos 0x1p+127
|
|
sincos 0x1.fffff8p+127
|
|
sincos 0x1.fffffep+127
|
|
sincos 0x1p+50
|
|
sincos 0x1p+28
|
|
sincos -0x3.3de320f6be87ep+1020
|
|
sincos 0xe.9f1e5bc3bb88p+112
|
|
sincos 0x4.7857dp+68
|
|
sincos min
|
|
sincos -min
|
|
sincos min_subnorm
|
|
sincos -min_subnorm
|
|
|
|
sinh 0
|
|
sinh -0
|
|
sinh 0.75
|
|
sinh 0x8p-32
|
|
sinh 22
|
|
sinh 23
|
|
sinh 24
|
|
sinh -0x7.55d7f8p-4
|
|
sinh -0x3.f392f8p-4
|
|
sinh 0x1.c56446p+0
|
|
sinh 0x6.cac622d51eebcp-4
|
|
sinh -0x5.c4cb02389c094p+0
|
|
sinh -0x1.646850f515ef2p+0
|
|
sinh -0x7.a8c5f68c81fae5dp-4
|
|
sinh 0x3.4a037p-4
|
|
sinh -0x3.eba6dbcbeceb2p-4
|
|
sinh -0x2.55f63p+0
|
|
sinh -0x3.ca68c96337692p-4
|
|
sinh -0x3.92da05a85024b314p-4
|
|
sinh -0x3.3e6292ed442d450cp-4
|
|
sinh 0x7.6e259d2436fc4p-4
|
|
sinh 0x3.d6e088p-4
|
|
sinh -0x7.688eap-4
|
|
sinh -0xd.dce79p-4
|
|
|
|
sqrt 0
|
|
sqrt -0
|
|
sqrt 2209
|
|
sqrt 4
|
|
sqrt 2
|
|
sqrt 0.25
|
|
sqrt 6642.25
|
|
sqrt 15190.5625
|
|
sqrt 0.75
|
|
sqrt 0x1.fffffffffffffp+1023
|
|
sqrt 0x1.ffffffffffffbp+1023
|
|
sqrt 0x1.ffffffffffff7p+1023
|
|
sqrt 0x1.ffffffffffff3p+1023
|
|
sqrt 0x1.fffffffffffefp+1023
|
|
sqrt 0x1.fffffffffffebp+1023
|
|
sqrt 0x1.fffffffffffe7p+1023
|
|
sqrt 0x1.fffffffffffe3p+1023
|
|
sqrt 0x1.fffffffffffdfp+1023
|
|
sqrt 0x1.fffffffffffdbp+1023
|
|
sqrt 0x1.fffffffffffd7p+1023
|
|
sqrt 0x1.0000000000003p-1022
|
|
sqrt 0x1.0000000000007p-1022
|
|
sqrt 0x1.000000000000bp-1022
|
|
sqrt 0x1.000000000000fp-1022
|
|
sqrt 0x1.0000000000013p-1022
|
|
sqrt 0x1.0000000000017p-1022
|
|
sqrt 0x1.000000000001bp-1022
|
|
sqrt 0x1.000000000001fp-1022
|
|
sqrt 0x1.0000000000023p-1022
|
|
sqrt 0x1.0000000000027p-1022
|
|
sqrt 0x1.000000000002bp-1022
|
|
sqrt 0x1.000000000002fp-1022
|
|
sqrt 0x1.0000000000033p-1022
|
|
sqrt 0x1.0000000000037p-1022
|
|
sqrt 0x1.7167bc36eaa3bp+6
|
|
sqrt 0x1.7570994273ad7p+6
|
|
sqrt 0x1.7dae969442fe6p+6
|
|
sqrt 0x1.7f8444fcf67e5p+6
|
|
sqrt 0x1.8364650e63a54p+6
|
|
sqrt 0x1.85bedd274edd8p+6
|
|
sqrt 0x1.8609cf496ab77p+6
|
|
sqrt 0x1.873849c70a375p+6
|
|
sqrt 0x1.8919c962cbaaep+6
|
|
sqrt 0x1.8de4493e22dc6p+6
|
|
sqrt 0x1.924829a17a288p+6
|
|
sqrt 0x1.92702cd992f12p+6
|
|
sqrt 0x1.92b763a8311fdp+6
|
|
sqrt 0x1.947da013c7293p+6
|
|
sqrt 0x1.9536091c494d2p+6
|
|
sqrt 0x1.61b04c6p-1019
|
|
sqrt 0x1.93789f1p-1018
|
|
sqrt 0x1.a1989b4p-1018
|
|
sqrt 0x1.f93bc9p-1018
|
|
sqrt 0x1.2f675e3p-1017
|
|
sqrt 0x1.a158508p-1017
|
|
sqrt 0x1.cd31f078p-1017
|
|
sqrt 0x1.33b43b08p-1016
|
|
sqrt 0x1.6e66a858p-1016
|
|
sqrt 0x1.8661cbf8p-1016
|
|
sqrt 0x1.bbb221b4p-1016
|
|
sqrt 0x1.c4942f3cp-1016
|
|
sqrt 0x1.dbb258c8p-1016
|
|
sqrt 0x1.57103ea4p-1015
|
|
sqrt 0x1.9b294f88p-1015
|
|
sqrt 0x1.0000000000001p+0
|
|
sqrt 0x1.fffffffffffffp-1
|
|
|
|
tan 0
|
|
tan -0
|
|
tan pi/4
|
|
tan 0.75
|
|
tan 0x1p65
|
|
tan -0x1p65
|
|
tan 0x1p-27
|
|
tan -0x1p-27
|
|
tan 0xc.9p-4
|
|
tan 0xc.908p-4
|
|
tan 0xc.90cp-4
|
|
tan 0xc.90ep-4
|
|
tan 0xc.90fp-4
|
|
tan 0xc.90f8p-4
|
|
tan 0xc.90fcp-4
|
|
tan 0xc.90fdp-4
|
|
tan 0xc.90fd8p-4
|
|
tan 0xc.90fdap-4
|
|
tan 0xc.ap-4
|
|
tan 0xc.98p-4
|
|
tan 0xc.94p-4
|
|
tan 0xc.92p-4
|
|
tan 0xc.91p-4
|
|
tan 0xc.90fep-4
|
|
tan 0xc.90fdcp-4
|
|
tan 0xc.90fdbp-4
|
|
tan -0xc.9p-4
|
|
tan -0xc.908p-4
|
|
tan -0xc.90cp-4
|
|
tan -0xc.90ep-4
|
|
tan -0xc.90fp-4
|
|
tan -0xc.90f8p-4
|
|
tan -0xc.90fcp-4
|
|
tan -0xc.90fdp-4
|
|
tan -0xc.90fd8p-4
|
|
tan -0xc.90fdap-4
|
|
tan -0xc.ap-4
|
|
tan -0xc.98p-4
|
|
tan -0xc.94p-4
|
|
tan -0xc.92p-4
|
|
tan -0xc.91p-4
|
|
tan -0xc.90fep-4
|
|
tan -0xc.90fdcp-4
|
|
tan -0xc.90fdbp-4
|
|
tan 1e22
|
|
tan 0x1p1023
|
|
tan 0x1p16383
|
|
tan 1
|
|
tan 2
|
|
tan 3
|
|
tan 4
|
|
tan 5
|
|
tan 6
|
|
tan 7
|
|
tan 8
|
|
tan 9
|
|
tan 10
|
|
tan -0x1.062a48p+0
|
|
tan -0x1.4f69cp+0
|
|
|
|
tanh 0
|
|
tanh -0
|
|
tanh 0.75
|
|
tanh -0.75
|
|
tanh 1.0
|
|
tanh -1.0
|
|
tanh 0x1p-57
|
|
tanh 0xe.6c659p-4
|
|
tanh 0x8.c259ep-4
|
|
tanh 0x6.5821dp-4
|
|
tanh 0x8.7c9e5p-4
|
|
tanh -0x3.b60d7cp-4
|
|
tanh 0x7.b9985p-4
|
|
tanh 0x7.a18e8p-4
|
|
tanh -0x2.6082fp-4
|
|
tanh 0xe.05031p-16
|
|
tanh 0x3.c80eaa7adaa3p-4
|
|
tanh 0x2.00f9857616524p-4
|
|
|
|
tgamma 0.5
|
|
tgamma -0.5
|
|
|
|
tgamma 1
|
|
tgamma 2
|
|
tgamma 3
|
|
tgamma 4
|
|
tgamma 5
|
|
tgamma 6
|
|
tgamma 7
|
|
tgamma 8
|
|
tgamma 9
|
|
tgamma 10
|
|
|
|
tgamma 0.7
|
|
tgamma 1.2
|
|
|
|
tgamma 1.5
|
|
tgamma 2.5
|
|
tgamma 3.5
|
|
tgamma 4.5
|
|
tgamma 5.5
|
|
tgamma 6.5
|
|
tgamma 7.5
|
|
tgamma 8.5
|
|
tgamma 9.5
|
|
tgamma -1.5
|
|
tgamma -2.5
|
|
tgamma -3.5
|
|
tgamma -4.5
|
|
tgamma -5.5
|
|
tgamma -6.5
|
|
tgamma -7.5
|
|
tgamma -8.5
|
|
tgamma -9.5
|
|
tgamma 0x1p-24
|
|
tgamma -0x1p-24
|
|
tgamma 0x1p-53
|
|
tgamma -0x1p-53
|
|
tgamma 0x1p-64
|
|
tgamma -0x1p-64
|
|
tgamma 0x1p-106
|
|
tgamma -0x1p-106
|
|
tgamma 0x1p-113
|
|
tgamma -0x1p-113
|
|
tgamma 0x1p-127
|
|
tgamma -0x1p-127
|
|
tgamma 0x1p-128
|
|
tgamma -0x1p-128
|
|
tgamma 0x1p-149
|
|
tgamma -0x1p-149
|
|
tgamma 0x1p-1023
|
|
tgamma -0x1p-1023
|
|
tgamma 0x1p-1024
|
|
tgamma -0x1p-1024
|
|
tgamma 0x1p-1074
|
|
tgamma -0x1p-1074
|
|
tgamma 0x1p-16383
|
|
tgamma -0x1p-16383
|
|
tgamma 0x1p-16384
|
|
tgamma -0x1p-16384
|
|
tgamma 0x1p-16445
|
|
tgamma -0x1p-16445
|
|
tgamma 0x1p-16494
|
|
tgamma -0x1p-16494
|
|
tgamma 0x8.00001p0
|
|
tgamma 0x7.fffff8p0
|
|
tgamma 0x7.000008p0
|
|
tgamma 0x6.fffff8p0
|
|
tgamma 0x6.000008p0
|
|
tgamma 0x5.fffff8p0
|
|
tgamma 0x5.000008p0
|
|
tgamma 0x4.fffff8p0
|
|
tgamma 0x4.000008p0
|
|
tgamma 0x3.fffffcp0
|
|
tgamma 0x3.000004p0
|
|
tgamma 0x2.fffffcp0
|
|
tgamma 0x2.000004p0
|
|
tgamma 0x1.fffffep0
|
|
tgamma 0x1.000002p0
|
|
tgamma 0x0.ffffffp0
|
|
tgamma -0x0.ffffffp0
|
|
tgamma -0x1.000002p0
|
|
tgamma -0x1.fffffep0
|
|
tgamma -0x2.000004p0
|
|
tgamma -0x2.fffffcp0
|
|
tgamma -0x3.000004p0
|
|
tgamma -0x3.fffffcp0
|
|
tgamma -0x4.000008p0
|
|
tgamma -0x4.fffff8p0
|
|
tgamma -0x5.000008p0
|
|
tgamma -0x5.fffff8p0
|
|
tgamma -0x6.000008p0
|
|
tgamma -0x6.fffff8p0
|
|
tgamma -0x7.000008p0
|
|
tgamma -0x7.fffff8p0
|
|
tgamma -0x8.00001p0
|
|
tgamma -0x9.fffffp0
|
|
tgamma -0xa.00001p0
|
|
tgamma -0x13.ffffep0
|
|
tgamma -0x14.00002p0
|
|
tgamma -0x1d.ffffep0
|
|
tgamma -0x1e.00002p0
|
|
tgamma -0x27.ffffcp0
|
|
tgamma -0x28.00004p0
|
|
tgamma -0x28.ffffcp0
|
|
tgamma -0x29.00004p0
|
|
tgamma -0x29.ffffcp0
|
|
tgamma -0x2a.00004p0
|
|
tgamma 0x8.0000000000008p0
|
|
tgamma 0x7.ffffffffffffcp0
|
|
tgamma 0x7.0000000000004p0
|
|
tgamma 0x6.ffffffffffffcp0
|
|
tgamma 0x6.0000000000004p0
|
|
tgamma 0x5.ffffffffffffcp0
|
|
tgamma 0x5.0000000000004p0
|
|
tgamma 0x4.ffffffffffffcp0
|
|
tgamma 0x4.0000000000004p0
|
|
tgamma 0x3.ffffffffffffep0
|
|
tgamma 0x3.0000000000002p0
|
|
tgamma 0x2.ffffffffffffep0
|
|
tgamma 0x2.0000000000002p0
|
|
tgamma 0x1.fffffffffffffp0
|
|
tgamma 0x1.0000000000001p0
|
|
tgamma 0x0.fffffffffffff8p0
|
|
tgamma -0x0.fffffffffffff8p0
|
|
tgamma -0x1.0000000000001p0
|
|
tgamma -0x1.fffffffffffffp0
|
|
tgamma -0x2.0000000000002p0
|
|
tgamma -0x2.ffffffffffffep0
|
|
tgamma -0x3.0000000000002p0
|
|
tgamma -0x3.ffffffffffffep0
|
|
tgamma -0x4.0000000000004p0
|
|
tgamma -0x4.ffffffffffffcp0
|
|
tgamma -0x5.0000000000004p0
|
|
tgamma -0x5.ffffffffffffcp0
|
|
tgamma -0x6.0000000000004p0
|
|
tgamma -0x6.ffffffffffffcp0
|
|
tgamma -0x7.0000000000004p0
|
|
tgamma -0x7.ffffffffffffcp0
|
|
tgamma -0x8.0000000000008p0
|
|
tgamma -0x9.ffffffffffff8p0
|
|
tgamma -0xa.0000000000008p0
|
|
tgamma -0x13.ffffffffffffp0
|
|
tgamma -0x14.000000000001p0
|
|
tgamma -0x1d.ffffffffffffp0
|
|
tgamma -0x1e.000000000001p0
|
|
tgamma -0x27.fffffffffffep0
|
|
tgamma -0x28.000000000002p0
|
|
tgamma -0x28.fffffffffffep0
|
|
tgamma -0x29.000000000002p0
|
|
tgamma -0x29.fffffffffffep0
|
|
tgamma -0x2a.000000000002p0
|
|
tgamma -0x31.fffffffffffep0
|
|
tgamma -0x32.000000000002p0
|
|
tgamma -0x63.fffffffffffcp0
|
|
tgamma -0x64.000000000004p0
|
|
tgamma -0x95.fffffffffff8p0
|
|
tgamma -0x96.000000000008p0
|
|
tgamma -0xb4.fffffffffff8p0
|
|
tgamma -0xb5.000000000008p0
|
|
tgamma -0xb5.fffffffffff8p0
|
|
tgamma -0xb6.000000000008p0
|
|
tgamma -0xb6.fffffffffff8p0
|
|
tgamma -0xb7.000000000008p0
|
|
tgamma -0xb7.fffffffffff8p0
|
|
tgamma -0xb8.000000000008p0
|
|
tgamma 0x8.00000000000000000000000004p0
|
|
tgamma 0x7.fffffffffffffffffffffffffep0
|
|
tgamma 0x7.00000000000000000000000002p0
|
|
tgamma 0x6.fffffffffffffffffffffffffep0
|
|
tgamma 0x6.00000000000000000000000002p0
|
|
tgamma 0x5.fffffffffffffffffffffffffep0
|
|
tgamma 0x5.00000000000000000000000002p0
|
|
tgamma 0x4.fffffffffffffffffffffffffep0
|
|
tgamma 0x4.00000000000000000000000002p0
|
|
tgamma 0x3.ffffffffffffffffffffffffffp0
|
|
tgamma 0x3.00000000000000000000000001p0
|
|
tgamma 0x2.ffffffffffffffffffffffffffp0
|
|
tgamma 0x2.00000000000000000000000001p0
|
|
tgamma 0x1.ffffffffffffffffffffffffff8p0
|
|
tgamma 0x1.000000000000000000000000008p0
|
|
tgamma 0x0.ffffffffffffffffffffffffffcp0
|
|
tgamma -0x0.ffffffffffffffffffffffffffcp0
|
|
tgamma -0x1.000000000000000000000000008p0
|
|
tgamma -0x1.ffffffffffffffffffffffffff8p0
|
|
tgamma -0x2.00000000000000000000000001p0
|
|
tgamma -0x2.ffffffffffffffffffffffffffp0
|
|
tgamma -0x3.00000000000000000000000001p0
|
|
tgamma -0x3.ffffffffffffffffffffffffffp0
|
|
tgamma -0x4.00000000000000000000000002p0
|
|
tgamma -0x4.fffffffffffffffffffffffffep0
|
|
tgamma -0x5.00000000000000000000000002p0
|
|
tgamma -0x5.fffffffffffffffffffffffffep0
|
|
tgamma -0x6.00000000000000000000000002p0
|
|
tgamma -0x6.fffffffffffffffffffffffffep0
|
|
tgamma -0x7.00000000000000000000000002p0
|
|
tgamma -0x7.fffffffffffffffffffffffffep0
|
|
tgamma -0x8.00000000000000000000000004p0
|
|
tgamma -0x9.fffffffffffffffffffffffffcp0
|
|
tgamma -0xa.00000000000000000000000004p0
|
|
tgamma -0x13.fffffffffffffffffffffffff8p0
|
|
tgamma -0x14.00000000000000000000000008p0
|
|
tgamma -0x1d.fffffffffffffffffffffffff8p0
|
|
tgamma -0x1e.00000000000000000000000008p0
|
|
tgamma -0x27.fffffffffffffffffffffffffp0
|
|
tgamma -0x28.0000000000000000000000001p0
|
|
tgamma -0x28.fffffffffffffffffffffffffp0
|
|
tgamma -0x29.0000000000000000000000001p0
|
|
tgamma -0x29.fffffffffffffffffffffffffp0
|
|
tgamma -0x2a.0000000000000000000000001p0
|
|
tgamma -0x31.fffffffffffffffffffffffffp0
|
|
tgamma -0x32.0000000000000000000000001p0
|
|
tgamma -0x63.ffffffffffffffffffffffffep0
|
|
tgamma -0x64.0000000000000000000000002p0
|
|
tgamma -0x95.ffffffffffffffffffffffffcp0
|
|
tgamma -0x96.0000000000000000000000004p0
|
|
tgamma -0xb4.ffffffffffffffffffffffffcp0
|
|
tgamma -0xb5.0000000000000000000000004p0
|
|
tgamma -0xb5.ffffffffffffffffffffffffcp0
|
|
tgamma -0xb6.0000000000000000000000004p0
|
|
tgamma -0xb6.ffffffffffffffffffffffffcp0
|
|
tgamma -0xb7.0000000000000000000000004p0
|
|
tgamma -0xb7.ffffffffffffffffffffffffcp0
|
|
tgamma -0xb8.0000000000000000000000004p0
|
|
tgamma -0xbb.ffffffffffffffffffffffffcp0
|
|
tgamma -0xbc.0000000000000000000000004p0
|
|
tgamma -0xbc.ffffffffffffffffffffffffcp0
|
|
tgamma -0xbd.0000000000000000000000004p0
|
|
tgamma -0xbd.ffffffffffffffffffffffffcp0
|
|
tgamma -0xbe.0000000000000000000000004p0
|
|
tgamma -0xbe.ffffffffffffffffffffffffcp0
|
|
tgamma -0xbf.0000000000000000000000004p0
|
|
tgamma 0x8.000000000000001p0
|
|
tgamma 0x7.fffffffffffffff8p0
|
|
tgamma 0x7.0000000000000008p0
|
|
tgamma 0x6.fffffffffffffff8p0
|
|
tgamma 0x6.0000000000000008p0
|
|
tgamma 0x5.fffffffffffffff8p0
|
|
tgamma 0x5.0000000000000008p0
|
|
tgamma 0x4.fffffffffffffff8p0
|
|
tgamma 0x4.0000000000000008p0
|
|
tgamma 0x3.fffffffffffffffcp0
|
|
tgamma 0x3.0000000000000004p0
|
|
tgamma 0x2.fffffffffffffffcp0
|
|
tgamma 0x2.0000000000000004p0
|
|
tgamma 0x1.fffffffffffffffep0
|
|
tgamma 0x1.0000000000000002p0
|
|
tgamma 0x0.ffffffffffffffffp0
|
|
tgamma -0x0.ffffffffffffffffp0
|
|
tgamma -0x1.0000000000000002p0
|
|
tgamma -0x1.fffffffffffffffep0
|
|
tgamma -0x2.0000000000000004p0
|
|
tgamma -0x2.fffffffffffffffcp0
|
|
tgamma -0x3.0000000000000004p0
|
|
tgamma -0x3.fffffffffffffffcp0
|
|
tgamma -0x4.0000000000000008p0
|
|
tgamma -0x4.fffffffffffffff8p0
|
|
tgamma -0x5.0000000000000008p0
|
|
tgamma -0x5.fffffffffffffff8p0
|
|
tgamma -0x6.0000000000000008p0
|
|
tgamma -0x6.fffffffffffffff8p0
|
|
tgamma -0x7.0000000000000008p0
|
|
tgamma -0x7.fffffffffffffff8p0
|
|
tgamma -0x8.000000000000001p0
|
|
tgamma -0x9.fffffffffffffffp0
|
|
tgamma -0xa.000000000000001p0
|
|
tgamma -0x13.ffffffffffffffep0
|
|
tgamma -0x14.000000000000002p0
|
|
tgamma -0x1d.ffffffffffffffep0
|
|
tgamma -0x1e.000000000000002p0
|
|
tgamma -0x27.ffffffffffffffcp0
|
|
tgamma -0x28.000000000000004p0
|
|
tgamma -0x28.ffffffffffffffcp0
|
|
tgamma -0x29.000000000000004p0
|
|
tgamma -0x29.ffffffffffffffcp0
|
|
tgamma -0x2a.000000000000004p0
|
|
tgamma -0x31.ffffffffffffffcp0
|
|
tgamma -0x32.000000000000004p0
|
|
tgamma -0x63.ffffffffffffff8p0
|
|
tgamma -0x64.000000000000008p0
|
|
tgamma -0x95.ffffffffffffffp0
|
|
tgamma -0x96.00000000000001p0
|
|
tgamma -0xb4.ffffffffffffffp0
|
|
tgamma -0xb5.00000000000001p0
|
|
tgamma -0xb5.ffffffffffffffp0
|
|
tgamma -0xb6.00000000000001p0
|
|
tgamma -0xb6.ffffffffffffffp0
|
|
tgamma -0xb7.00000000000001p0
|
|
tgamma -0xb7.ffffffffffffffp0
|
|
tgamma -0xb8.00000000000001p0
|
|
tgamma -0xbb.ffffffffffffffp0
|
|
tgamma -0xbc.00000000000001p0
|
|
tgamma -0xbc.ffffffffffffffp0
|
|
tgamma -0xbd.00000000000001p0
|
|
tgamma -0xbd.ffffffffffffffp0
|
|
tgamma -0xbe.00000000000001p0
|
|
tgamma -0xbe.ffffffffffffffp0
|
|
tgamma -0xbf.00000000000001p0
|
|
tgamma -0xf9.ffffffffffffffp0
|
|
tgamma -0xfa.00000000000001p0
|
|
tgamma -0x1f3.fffffffffffffep0
|
|
tgamma -0x1f4.00000000000002p0
|
|
tgamma -0x2ed.fffffffffffffcp0
|
|
tgamma -0x2ee.00000000000004p0
|
|
tgamma -0x3e7.fffffffffffffcp0
|
|
tgamma -0x3e8.00000000000004p0
|
|
tgamma -0x4e1.fffffffffffff8p0
|
|
tgamma -0x4e2.00000000000008p0
|
|
tgamma -0x5db.fffffffffffff8p0
|
|
tgamma -0x5dc.00000000000008p0
|
|
tgamma -0x6d5.fffffffffffff8p0
|
|
tgamma -0x6d6.00000000000008p0
|
|
tgamma -0x6e2.fffffffffffff8p0
|
|
tgamma -0x6e3.00000000000008p0
|
|
tgamma -0x6e3.fffffffffffff8p0
|
|
tgamma -0x6e4.00000000000008p0
|
|
tgamma -0x6e4.fffffffffffff8p0
|
|
tgamma -0x6e5.00000000000008p0
|
|
tgamma -0x6e5.fffffffffffff8p0
|
|
tgamma -0x6e6.00000000000008p0
|
|
tgamma 0x8.0000000000000000000000000008p0
|
|
tgamma 0x7.fffffffffffffffffffffffffffcp0
|
|
tgamma 0x7.0000000000000000000000000004p0
|
|
tgamma 0x6.fffffffffffffffffffffffffffcp0
|
|
tgamma 0x6.0000000000000000000000000004p0
|
|
tgamma 0x5.fffffffffffffffffffffffffffcp0
|
|
tgamma 0x5.0000000000000000000000000004p0
|
|
tgamma 0x4.fffffffffffffffffffffffffffcp0
|
|
tgamma 0x4.0000000000000000000000000004p0
|
|
tgamma 0x3.fffffffffffffffffffffffffffep0
|
|
tgamma 0x3.0000000000000000000000000002p0
|
|
tgamma 0x2.fffffffffffffffffffffffffffep0
|
|
tgamma 0x2.0000000000000000000000000002p0
|
|
tgamma 0x1.ffffffffffffffffffffffffffffp0
|
|
tgamma 0x1.0000000000000000000000000001p0
|
|
tgamma 0x0.ffffffffffffffffffffffffffff8p0
|
|
tgamma -0x0.ffffffffffffffffffffffffffff8p0
|
|
tgamma -0x1.0000000000000000000000000001p0
|
|
tgamma -0x1.ffffffffffffffffffffffffffffp0
|
|
tgamma -0x2.0000000000000000000000000002p0
|
|
tgamma -0x2.fffffffffffffffffffffffffffep0
|
|
tgamma -0x3.0000000000000000000000000002p0
|
|
tgamma -0x3.fffffffffffffffffffffffffffep0
|
|
tgamma -0x4.0000000000000000000000000004p0
|
|
tgamma -0x4.fffffffffffffffffffffffffffcp0
|
|
tgamma -0x5.0000000000000000000000000004p0
|
|
tgamma -0x5.fffffffffffffffffffffffffffcp0
|
|
tgamma -0x6.0000000000000000000000000004p0
|
|
tgamma -0x6.fffffffffffffffffffffffffffcp0
|
|
tgamma -0x7.0000000000000000000000000004p0
|
|
tgamma -0x7.fffffffffffffffffffffffffffcp0
|
|
tgamma -0x8.0000000000000000000000000008p0
|
|
tgamma -0x9.fffffffffffffffffffffffffff8p0
|
|
tgamma -0xa.0000000000000000000000000008p0
|
|
tgamma -0x13.fffffffffffffffffffffffffffp0
|
|
tgamma -0x14.000000000000000000000000001p0
|
|
tgamma -0x1d.fffffffffffffffffffffffffffp0
|
|
tgamma -0x1e.000000000000000000000000001p0
|
|
tgamma -0x27.ffffffffffffffffffffffffffep0
|
|
tgamma -0x28.000000000000000000000000002p0
|
|
tgamma -0x28.ffffffffffffffffffffffffffep0
|
|
tgamma -0x29.000000000000000000000000002p0
|
|
tgamma -0x29.ffffffffffffffffffffffffffep0
|
|
tgamma -0x2a.000000000000000000000000002p0
|
|
tgamma -0x31.ffffffffffffffffffffffffffep0
|
|
tgamma -0x32.000000000000000000000000002p0
|
|
tgamma -0x63.ffffffffffffffffffffffffffcp0
|
|
tgamma -0x64.000000000000000000000000004p0
|
|
tgamma -0x95.ffffffffffffffffffffffffff8p0
|
|
tgamma -0x96.000000000000000000000000008p0
|
|
tgamma -0xb4.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xb5.000000000000000000000000008p0
|
|
tgamma -0xb5.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xb6.000000000000000000000000008p0
|
|
tgamma -0xb6.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xb7.000000000000000000000000008p0
|
|
tgamma -0xb7.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xb8.000000000000000000000000008p0
|
|
tgamma -0xbb.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xbc.000000000000000000000000008p0
|
|
tgamma -0xbc.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xbd.000000000000000000000000008p0
|
|
tgamma -0xbd.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xbe.000000000000000000000000008p0
|
|
tgamma -0xbe.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xbf.000000000000000000000000008p0
|
|
tgamma -0xf9.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xfa.000000000000000000000000008p0
|
|
tgamma -0x1f3.ffffffffffffffffffffffffffp0
|
|
tgamma -0x1f4.00000000000000000000000001p0
|
|
tgamma -0x2ed.fffffffffffffffffffffffffep0
|
|
tgamma -0x2ee.00000000000000000000000002p0
|
|
tgamma -0x3e7.fffffffffffffffffffffffffep0
|
|
tgamma -0x3e8.00000000000000000000000002p0
|
|
tgamma -0x4e1.fffffffffffffffffffffffffcp0
|
|
tgamma -0x4e2.00000000000000000000000004p0
|
|
tgamma -0x5db.fffffffffffffffffffffffffcp0
|
|
tgamma -0x5dc.00000000000000000000000004p0
|
|
tgamma -0x6d5.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6d6.00000000000000000000000004p0
|
|
tgamma -0x6e2.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6e3.00000000000000000000000004p0
|
|
tgamma -0x6e3.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6e4.00000000000000000000000004p0
|
|
tgamma -0x6e4.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6e5.00000000000000000000000004p0
|
|
tgamma -0x6e5.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6e6.00000000000000000000000004p0
|
|
tgamma -0x6eb.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6ec.00000000000000000000000004p0
|
|
tgamma -0x6ec.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6ed.00000000000000000000000004p0
|
|
tgamma -0x6ed.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6ee.00000000000000000000000004p0
|
|
tgamma -0x6ee.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6ef.00000000000000000000000004p0
|
|
tgamma -0x1.0a32a2p+5
|
|
tgamma -0x1.5800000080001p+7
|
|
tgamma 18.5
|
|
tgamma 19.5
|
|
tgamma 23.5
|
|
tgamma 29.5
|
|
tgamma 30.5
|
|
tgamma 31.5
|
|
tgamma 32.5
|
|
tgamma 33.5
|
|
tgamma 34.5
|
|
tgamma 0x2.30a43cp+4
|
|
tgamma 0x2.30a44p+4
|
|
tgamma 0xa.b9fd72b0fb238p+4
|
|
tgamma 0xa.b9fd72b0fb24p+4
|
|
tgamma 0xa.b9fd72b0fb23a9ddbf0d3804f4p+4
|
|
tgamma 0xa.b9fd72b0fb23a9ddbf0d3804f8p+4
|
|
tgamma 0x6.db8c603359a97108p+8
|
|
tgamma 0x6.db8c603359a9711p+8
|
|
tgamma 0x6.db8c603359a971081bc4a2e9dfdp+8
|
|
tgamma 0x6.db8c603359a971081bc4a2e9dfd4p+8
|
|
tgamma 1e3
|
|
tgamma -100000.5
|
|
|
|
tgamma -0x3.06644cp+0
|
|
tgamma -0x6.fe4636e0c5064p+0
|
|
tgamma -0x7.a13d7a2945cd5718p+0
|
|
tgamma -0x1.4a5caap+4
|
|
|
|
y0 0.125
|
|
y0 0.75
|
|
y0 1.0
|
|
y0 1.5
|
|
y0 2.0
|
|
y0 8.0
|
|
y0 10.0
|
|
y0 0x1.3ffp+74
|
|
y0 0x1.ff00000000002p+840
|
|
y0 0x1p1023
|
|
y0 0x1p16382
|
|
y0 0x1p16383
|
|
y0 0x1p-10
|
|
y0 0x1p-20
|
|
y0 0x1p-30
|
|
y0 0x1p-40
|
|
y0 0x1p-50
|
|
y0 0x1p-60
|
|
y0 0x1p-70
|
|
y0 0x1p-80
|
|
y0 0x1p-90
|
|
y0 0x1p-100
|
|
y0 0x1p-110
|
|
y0 min
|
|
y0 min_subnorm
|
|
|
|
y1 0.125
|
|
y1 0.75
|
|
y1 1.0
|
|
y1 1.5
|
|
y1 2.0
|
|
y1 8.0
|
|
y1 10.0
|
|
y1 0x1.27e204p+99
|
|
y1 0x1.001000001p+593
|
|
y1 0x1p1023
|
|
y1 0x1p16382
|
|
y1 0x1p16383
|
|
y1 0x1p-10
|
|
y1 0x1p-20
|
|
y1 0x1p-30
|
|
y1 0x1p-40
|
|
y1 0x1p-50
|
|
y1 0x1p-60
|
|
y1 0x1p-70
|
|
y1 0x1p-80
|
|
y1 0x1p-90
|
|
y1 0x1p-100
|
|
y1 0x1p-110
|
|
y1 min
|
|
y1 min_subnorm
|
|
|
|
# yn (0, x) == y0 (x).
|
|
yn 0 0.125
|
|
yn 0 0.75
|
|
yn 0 1.0
|
|
yn 0 1.5
|
|
yn 0 2.0
|
|
yn 0 8.0
|
|
yn 0 10.0
|
|
|
|
# yn (1, x) == y1 (x).
|
|
yn 1 0.125
|
|
yn 1 0.75
|
|
yn 1 1.0
|
|
yn 1 1.5
|
|
yn 1 2.0
|
|
yn 1 8.0
|
|
yn 1 10.0
|
|
|
|
# yn (-1, x) == -y1 (x).
|
|
yn -1 1.0
|
|
|
|
# yn (3, x).
|
|
yn 3 0.125
|
|
yn 3 0.75
|
|
yn 3 1.0
|
|
yn 3 2.0
|
|
yn 3 10.0
|
|
|
|
# yn (10, x).
|
|
yn 10 0.125
|
|
yn 10 0.75
|
|
yn 10 1.0
|
|
yn 10 2.0
|
|
yn 10 10.0
|
|
|
|
yn -10 1.0
|
|
|
|
yn 10 min
|
|
|
|
yn 2 0x1.ffff62p+99
|
|
yn 2 0x1p127
|
|
yn 2 0x1p1023
|
|
yn 2 0x1p16383
|
|
|
|
yn 0 min
|
|
yn 0 min_subnorm
|
|
yn 1 min
|
|
yn 1 min_subnorm
|
|
yn -1 min
|
|
yn -1 min_subnorm
|
|
yn 2 min
|
|
yn 2 min_subnorm
|
|
yn -2 min
|
|
yn -2 min_subnorm
|
|
yn 17 min
|
|
yn 17 min_subnorm
|
|
yn -17 min
|
|
yn -17 min_subnorm
|
|
yn 42 min
|
|
yn 42 min_subnorm
|
|
yn -42 min
|
|
yn -42 min_subnorm
|