glibc/sysdeps/ieee754/ldbl-128ibm/e_jnl.c
Joseph Myers a8e2112ae3 Use round-to-nearest internally in jn, test with ALL_RM_TEST (bug 18602).
Some existing jn tests, if run in non-default rounding modes, produce
errors above those accepted in glibc, which causes problems for moving
tests of jn to use ALL_RM_TEST.  This patch makes jn set rounding
to-nearest internally, as was done for yn some time ago, then computes
the appropriate underflowing value for results that underflowed to
zero in to-nearest, and moves the tests to ALL_RM_TEST.  It does
nothing about the general inaccuracy of Bessel function
implementations in glibc, though it should make jn more accurate on
average in non-default rounding modes through reduced error
accumulation.  The recomputation of results that underflowed to zero
should as a side-effect fix some cases of bug 16559, where jn just
used an exact zero, but that is *not* the goal of this patch and other
cases of that bug remain unfixed.

(Most of the changes in the patch are reindentation to add new scopes
for SET_RESTORE_ROUND*.)

Tested for x86_64, x86, powerpc and mips64.

	[BZ #16559]
	[BZ #18602]
	* sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Set
	round-to-nearest internally then recompute results that
	underflowed to zero in the original rounding mode.
	* sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise.
	* sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
	* sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise
	* math/libm-test.inc (jn_test): Use ALL_RM_TEST.
	* sysdeps/i386/fpu/libm-test-ulps: Update.
	* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2015-06-25 21:46:02 +00:00

417 lines
10 KiB
C

/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* Modifications for 128-bit long double are
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
and are incorporated herein by permission of the author. The author
reserves the right to distribute this material elsewhere under different
copying permissions. These modifications are distributed here under
the following terms:
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/>. */
/*
* __ieee754_jn(n, x), __ieee754_yn(n, x)
* floating point Bessel's function of the 1st and 2nd kind
* of order n
*
* Special cases:
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
* Note 2. About jn(n,x), yn(n,x)
* For n=0, j0(x) is called,
* for n=1, j1(x) is called,
* for n<x, forward recursion us used starting
* from values of j0(x) and j1(x).
* for n>x, a continued fraction approximation to
* j(n,x)/j(n-1,x) is evaluated and then backward
* recursion is used starting from a supposed value
* for j(n,x). The resulting value of j(0,x) is
* compared with the actual value to correct the
* supposed value of j(n,x).
*
* yn(n,x) is similar in all respects, except
* that forward recursion is used for all
* values of n>1.
*
*/
#include <errno.h>
#include <float.h>
#include <math.h>
#include <math_private.h>
static const long double
invsqrtpi = 5.6418958354775628694807945156077258584405E-1L,
two = 2.0e0L,
one = 1.0e0L,
zero = 0.0L;
long double
__ieee754_jnl (int n, long double x)
{
uint32_t se, lx;
int32_t i, ix, sgn;
long double a, b, temp, di, ret;
long double z, w;
double xhi;
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
* Thus, J(-n,x) = J(n,-x)
*/
xhi = ldbl_high (x);
EXTRACT_WORDS (se, lx, xhi);
ix = se & 0x7fffffff;
/* if J(n,NaN) is NaN */
if (ix >= 0x7ff00000)
{
if (((ix - 0x7ff00000) | lx) != 0)
return x + x;
}
if (n < 0)
{
n = -n;
x = -x;
se ^= 0x80000000;
}
if (n == 0)
return (__ieee754_j0l (x));
if (n == 1)
return (__ieee754_j1l (x));
sgn = (n & 1) & (se >> 31); /* even n -- 0, odd n -- sign(x) */
x = fabsl (x);
{
SET_RESTORE_ROUNDL (FE_TONEAREST);
if (x == 0.0L || ix >= 0x7ff00000) /* if x is 0 or inf */
return sgn == 1 ? -zero : zero;
else if ((long double) n <= x)
{
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
if (ix >= 0x52d00000)
{ /* x > 2**302 */
/* ??? Could use an expansion for large x here. */
/* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
* ----------------------------------
* 0 s-c c+s
* 1 -s-c -c+s
* 2 -s+c -c-s
* 3 s+c c-s
*/
long double s;
long double c;
__sincosl (x, &s, &c);
switch (n & 3)
{
case 0:
temp = c + s;
break;
case 1:
temp = -c + s;
break;
case 2:
temp = -c - s;
break;
case 3:
temp = c - s;
break;
}
b = invsqrtpi * temp / __ieee754_sqrtl (x);
}
else
{
a = __ieee754_j0l (x);
b = __ieee754_j1l (x);
for (i = 1; i < n; i++)
{
temp = b;
b = b * ((long double) (i + i) / x) - a; /* avoid underflow */
a = temp;
}
}
}
else
{
if (ix < 0x3e100000)
{ /* x < 2**-29 */
/* x is tiny, return the first Taylor expansion of J(n,x)
* J(n,x) = 1/n!*(x/2)^n - ...
*/
if (n >= 33) /* underflow, result < 10^-300 */
b = zero;
else
{
temp = x * 0.5;
b = temp;
for (a = one, i = 2; i <= n; i++)
{
a *= (long double) i; /* a = n! */
b *= temp; /* b = (x/2)^n */
}
b = b / a;
}
}
else
{
/* use backward recurrence */
/* x x^2 x^2
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
* 2n - 2(n+1) - 2(n+2)
*
* 1 1 1
* (for large x) = ---- ------ ------ .....
* 2n 2(n+1) 2(n+2)
* -- - ------ - ------ -
* x x x
*
* Let w = 2n/x and h=2/x, then the above quotient
* is equal to the continued fraction:
* 1
* = -----------------------
* 1
* w - -----------------
* 1
* w+h - ---------
* w+2h - ...
*
* To determine how many terms needed, let
* Q(0) = w, Q(1) = w(w+h) - 1,
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
* When Q(k) > 1e4 good for single
* When Q(k) > 1e9 good for double
* When Q(k) > 1e17 good for quadruple
*/
/* determine k */
long double t, v;
long double q0, q1, h, tmp;
int32_t k, m;
w = (n + n) / (long double) x;
h = 2.0L / (long double) x;
q0 = w;
z = w + h;
q1 = w * z - 1.0L;
k = 1;
while (q1 < 1.0e17L)
{
k += 1;
z += h;
tmp = z * q1 - q0;
q0 = q1;
q1 = tmp;
}
m = n + n;
for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
t = one / (i / x - t);
a = t;
b = one;
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
* Hence, if n*(log(2n/x)) > ...
* single 8.8722839355e+01
* double 7.09782712893383973096e+02
* long double 1.1356523406294143949491931077970765006170e+04
* then recurrent value may overflow and the result is
* likely underflow to zero
*/
tmp = n;
v = two / x;
tmp = tmp * __ieee754_logl (fabsl (v * tmp));
if (tmp < 1.1356523406294143949491931077970765006170e+04L)
{
for (i = n - 1, di = (long double) (i + i); i > 0; i--)
{
temp = b;
b *= di;
b = b / x - a;
a = temp;
di -= two;
}
}
else
{
for (i = n - 1, di = (long double) (i + i); i > 0; i--)
{
temp = b;
b *= di;
b = b / x - a;
a = temp;
di -= two;
/* scale b to avoid spurious overflow */
if (b > 1e100L)
{
a /= b;
t /= b;
b = one;
}
}
}
/* j0() and j1() suffer enormous loss of precision at and
* near zero; however, we know that their zero points never
* coincide, so just choose the one further away from zero.
*/
z = __ieee754_j0l (x);
w = __ieee754_j1l (x);
if (fabsl (z) >= fabsl (w))
b = (t * z / b);
else
b = (t * w / a);
}
}
if (sgn == 1)
ret = -b;
else
ret = b;
}
if (ret == 0)
ret = __copysignl (LDBL_MIN, ret) * LDBL_MIN;
return ret;
}
strong_alias (__ieee754_jnl, __jnl_finite)
long double
__ieee754_ynl (int n, long double x)
{
uint32_t se, lx;
int32_t i, ix;
int32_t sign;
long double a, b, temp, ret;
double xhi;
xhi = ldbl_high (x);
EXTRACT_WORDS (se, lx, xhi);
ix = se & 0x7fffffff;
/* if Y(n,NaN) is NaN */
if (ix >= 0x7ff00000)
{
if (((ix - 0x7ff00000) | lx) != 0)
return x + x;
}
if (x <= 0.0L)
{
if (x == 0.0L)
return ((n < 0 && (n & 1) != 0) ? 1.0L : -1.0L) / 0.0L;
if (se & 0x80000000)
return zero / (zero * x);
}
sign = 1;
if (n < 0)
{
n = -n;
sign = 1 - ((n & 1) << 1);
}
if (n == 0)
return (__ieee754_y0l (x));
{
SET_RESTORE_ROUNDL (FE_TONEAREST);
if (n == 1)
{
ret = sign * __ieee754_y1l (x);
goto out;
}
if (ix >= 0x7ff00000)
return zero;
if (ix >= 0x52D00000)
{ /* x > 2**302 */
/* ??? See comment above on the possible futility of this. */
/* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
* ----------------------------------
* 0 s-c c+s
* 1 -s-c -c+s
* 2 -s+c -c-s
* 3 s+c c-s
*/
long double s;
long double c;
__sincosl (x, &s, &c);
switch (n & 3)
{
case 0:
temp = s - c;
break;
case 1:
temp = -s - c;
break;
case 2:
temp = -s + c;
break;
case 3:
temp = s + c;
break;
}
b = invsqrtpi * temp / __ieee754_sqrtl (x);
}
else
{
a = __ieee754_y0l (x);
b = __ieee754_y1l (x);
/* quit if b is -inf */
xhi = ldbl_high (b);
GET_HIGH_WORD (se, xhi);
se &= 0xfff00000;
for (i = 1; i < n && se != 0xfff00000; i++)
{
temp = b;
b = ((long double) (i + i) / x) * b - a;
xhi = ldbl_high (b);
GET_HIGH_WORD (se, xhi);
se &= 0xfff00000;
a = temp;
}
}
/* If B is +-Inf, set up errno accordingly. */
if (! isfinite (b))
__set_errno (ERANGE);
if (sign > 0)
ret = b;
else
ret = -b;
}
out:
if (isinf (ret))
ret = __copysignl (LDBL_MAX, ret) * LDBL_MAX;
return ret;
}
strong_alias (__ieee754_ynl, __ynl_finite)