mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-05 17:11:06 +00:00
220622dde5
This patch adds a new macro, libm_alias_finite, to define all _finite symbol. It sets all _finite symbol as compat symbol based on its first version (obtained from the definition at built generated first-versions.h). The <fn>f128_finite symbols were introduced in GLIBC 2.26 and so need special treatment in code that is shared between long double and float128. It is done by adding a list, similar to internal symbol redifinition, on sysdeps/ieee754/float128/float128_private.h. Alpha also needs some tricky changes to ensure we still emit 2 compat symbols for sqrt(f). Passes buildmanyglibc. Co-authored-by: Adhemerval Zanella <adhemerval.zanella@linaro.org> Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
141 lines
3.6 KiB
C
141 lines
3.6 KiB
C
/* @(#)e_hypotl.c 5.1 93/09/24 */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/* __ieee754_hypotl(x,y)
|
|
*
|
|
* Method :
|
|
* If (assume round-to-nearest) z=x*x+y*y
|
|
* has error less than sqrtl(2)/2 ulp, than
|
|
* sqrtl(z) has error less than 1 ulp (exercise).
|
|
*
|
|
* So, compute sqrtl(x*x+y*y) with some care as
|
|
* follows to get the error below 1 ulp:
|
|
*
|
|
* Assume x>y>0;
|
|
* (if possible, set rounding to round-to-nearest)
|
|
* 1. if x > 2y use
|
|
* x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
|
|
* where x1 = x with lower 53 bits cleared, x2 = x-x1; else
|
|
* 2. if x <= 2y use
|
|
* t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
|
|
* where t1 = 2x with lower 53 bits cleared, t2 = 2x-t1,
|
|
* y1= y with lower 53 bits chopped, y2 = y-y1.
|
|
*
|
|
* NOTE: scaling may be necessary if some argument is too
|
|
* large or too tiny
|
|
*
|
|
* Special cases:
|
|
* hypotl(x,y) is INF if x or y is +INF or -INF; else
|
|
* hypotl(x,y) is NAN if x or y is NAN.
|
|
*
|
|
* Accuracy:
|
|
* hypotl(x,y) returns sqrtl(x^2+y^2) with error less
|
|
* than 1 ulps (units in the last place)
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <math-underflow.h>
|
|
#include <libm-alias-finite.h>
|
|
|
|
long double
|
|
__ieee754_hypotl(long double x, long double y)
|
|
{
|
|
long double a,b,a1,a2,b1,b2,w,kld;
|
|
int64_t j,k,ha,hb;
|
|
double xhi, yhi, hi, lo;
|
|
|
|
xhi = ldbl_high (x);
|
|
EXTRACT_WORDS64 (ha, xhi);
|
|
yhi = ldbl_high (y);
|
|
EXTRACT_WORDS64 (hb, yhi);
|
|
ha &= 0x7fffffffffffffffLL;
|
|
hb &= 0x7fffffffffffffffLL;
|
|
if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
|
|
a = fabsl(a); /* a <- |a| */
|
|
b = fabsl(b); /* b <- |b| */
|
|
if((ha-hb)>0x0780000000000000LL) {return a+b;} /* x/y > 2**120 */
|
|
k=0;
|
|
kld = 1.0L;
|
|
if(ha > 0x5f30000000000000LL) { /* a>2**500 */
|
|
if(ha >= 0x7ff0000000000000LL) { /* Inf or NaN */
|
|
w = a+b; /* for sNaN */
|
|
if (issignaling (a) || issignaling (b))
|
|
return w;
|
|
if(ha == 0x7ff0000000000000LL)
|
|
w = a;
|
|
if(hb == 0x7ff0000000000000LL)
|
|
w = b;
|
|
return w;
|
|
}
|
|
/* scale a and b by 2**-600 */
|
|
a *= 0x1p-600L;
|
|
b *= 0x1p-600L;
|
|
k = 600;
|
|
kld = 0x1p+600L;
|
|
}
|
|
else if(hb < 0x23d0000000000000LL) { /* b < 2**-450 */
|
|
if(hb <= 0x000fffffffffffffLL) { /* subnormal b or 0 */
|
|
if(hb==0) return a;
|
|
a *= 0x1p+1022L;
|
|
b *= 0x1p+1022L;
|
|
k = -1022;
|
|
kld = 0x1p-1022L;
|
|
} else { /* scale a and b by 2^600 */
|
|
a *= 0x1p+600L;
|
|
b *= 0x1p+600L;
|
|
k = -600;
|
|
kld = 0x1p-600L;
|
|
}
|
|
}
|
|
/* medium size a and b */
|
|
w = a-b;
|
|
if (w>b) {
|
|
ldbl_unpack (a, &hi, &lo);
|
|
a1 = hi;
|
|
a2 = lo;
|
|
/* a*a + b*b
|
|
= (a1+a2)*a + b*b
|
|
= a1*a + a2*a + b*b
|
|
= a1*(a1+a2) + a2*a + b*b
|
|
= a1*a1 + a1*a2 + a2*a + b*b
|
|
= a1*a1 + a2*(a+a1) + b*b */
|
|
w = sqrtl(a1*a1-(b*(-b)-a2*(a+a1)));
|
|
} else {
|
|
a = a+a;
|
|
ldbl_unpack (b, &hi, &lo);
|
|
b1 = hi;
|
|
b2 = lo;
|
|
ldbl_unpack (a, &hi, &lo);
|
|
a1 = hi;
|
|
a2 = lo;
|
|
/* a*a + b*b
|
|
= a*a + (a-b)*(a-b) - (a-b)*(a-b) + b*b
|
|
= a*a + w*w - (a*a - 2*a*b + b*b) + b*b
|
|
= w*w + 2*a*b
|
|
= w*w + (a1+a2)*b
|
|
= w*w + a1*b + a2*b
|
|
= w*w + a1*(b1+b2) + a2*b
|
|
= w*w + a1*b1 + a1*b2 + a2*b */
|
|
w = sqrtl(a1*b1-(w*(-w)-(a1*b2+a2*b)));
|
|
}
|
|
if(k!=0)
|
|
{
|
|
w *= kld;
|
|
math_check_force_underflow_nonneg (w);
|
|
return w;
|
|
}
|
|
else
|
|
return w;
|
|
}
|
|
libm_alias_finite (__ieee754_hypotl, __hypotl)
|