mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-27 13:10:29 +00:00
149 lines
3.6 KiB
C
149 lines
3.6 KiB
C
/* Return value of complex exponential function for float complex value.
|
|
Copyright (C) 1997-2012 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <complex.h>
|
|
#include <fenv.h>
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <float.h>
|
|
|
|
__complex__ float
|
|
__cexpf (__complex__ float x)
|
|
{
|
|
__complex__ float retval;
|
|
int rcls = fpclassify (__real__ x);
|
|
int icls = fpclassify (__imag__ x);
|
|
|
|
if (__builtin_expect (rcls >= FP_ZERO, 1))
|
|
{
|
|
/* Real part is finite. */
|
|
if (__builtin_expect (icls >= FP_ZERO, 1))
|
|
{
|
|
/* Imaginary part is finite. */
|
|
const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2);
|
|
float sinix, cosix;
|
|
|
|
if (__builtin_expect (icls != FP_SUBNORMAL, 1))
|
|
{
|
|
__sincosf (__imag__ x, &sinix, &cosix);
|
|
}
|
|
else
|
|
{
|
|
sinix = __imag__ x;
|
|
cosix = 1.0f;
|
|
}
|
|
|
|
if (__real__ x > t)
|
|
{
|
|
float exp_t = __ieee754_expf (t);
|
|
__real__ x -= t;
|
|
sinix *= exp_t;
|
|
cosix *= exp_t;
|
|
if (__real__ x > t)
|
|
{
|
|
__real__ x -= t;
|
|
sinix *= exp_t;
|
|
cosix *= exp_t;
|
|
}
|
|
}
|
|
if (__real__ x > t)
|
|
{
|
|
/* Overflow (original real part of x > 3t). */
|
|
__real__ retval = FLT_MAX * cosix;
|
|
__imag__ retval = FLT_MAX * sinix;
|
|
}
|
|
else
|
|
{
|
|
float exp_val = __ieee754_expf (__real__ x);
|
|
__real__ retval = exp_val * cosix;
|
|
__imag__ retval = exp_val * sinix;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* If the imaginary part is +-inf or NaN and the real part
|
|
is not +-inf the result is NaN + iNaN. */
|
|
__real__ retval = __nanf ("");
|
|
__imag__ retval = __nanf ("");
|
|
|
|
feraiseexcept (FE_INVALID);
|
|
}
|
|
}
|
|
else if (__builtin_expect (rcls == FP_INFINITE, 1))
|
|
{
|
|
/* Real part is infinite. */
|
|
if (__builtin_expect (icls >= FP_ZERO, 1))
|
|
{
|
|
/* Imaginary part is finite. */
|
|
float value = signbit (__real__ x) ? 0.0 : HUGE_VALF;
|
|
|
|
if (icls == FP_ZERO)
|
|
{
|
|
/* Imaginary part is 0.0. */
|
|
__real__ retval = value;
|
|
__imag__ retval = __imag__ x;
|
|
}
|
|
else
|
|
{
|
|
float sinix, cosix;
|
|
|
|
if (__builtin_expect (icls != FP_SUBNORMAL, 1))
|
|
{
|
|
__sincosf (__imag__ x, &sinix, &cosix);
|
|
}
|
|
else
|
|
{
|
|
sinix = __imag__ x;
|
|
cosix = 1.0f;
|
|
}
|
|
|
|
__real__ retval = __copysignf (value, cosix);
|
|
__imag__ retval = __copysignf (value, sinix);
|
|
}
|
|
}
|
|
else if (signbit (__real__ x) == 0)
|
|
{
|
|
__real__ retval = HUGE_VALF;
|
|
__imag__ retval = __nanf ("");
|
|
|
|
if (icls == FP_INFINITE)
|
|
feraiseexcept (FE_INVALID);
|
|
}
|
|
else
|
|
{
|
|
__real__ retval = 0.0;
|
|
__imag__ retval = __copysignf (0.0, __imag__ x);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* If the real part is NaN the result is NaN + iNaN. */
|
|
__real__ retval = __nanf ("");
|
|
__imag__ retval = __nanf ("");
|
|
|
|
if (rcls != FP_NAN || icls != FP_NAN)
|
|
feraiseexcept (FE_INVALID);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
#ifndef __cexpf
|
|
weak_alias (__cexpf, cexpf)
|
|
#endif
|