mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-04 00:31:09 +00:00
1172 lines
46 KiB
C
1172 lines
46 KiB
C
/* Copyright (C) 1997-2023 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
/*
|
|
* ISO C99 Standard: 7.22 Type-generic math <tgmath.h>
|
|
*/
|
|
|
|
#ifndef _TGMATH_H
|
|
#define _TGMATH_H 1
|
|
|
|
#define __GLIBC_INTERNAL_STARTING_HEADER_IMPLEMENTATION
|
|
#include <bits/libc-header-start.h>
|
|
|
|
/* Include the needed headers. */
|
|
#include <bits/floatn.h>
|
|
#include <math.h>
|
|
#include <complex.h>
|
|
|
|
|
|
/* There are two variant implementations of type-generic macros in
|
|
this file: one for GCC 8 and later, using __builtin_tgmath and
|
|
where each macro expands each of its arguments only once, and one
|
|
for older GCC, using other compiler extensions but with macros
|
|
expanding their arguments many times (so resulting in exponential
|
|
blowup of the size of expansions when calls to such macros are
|
|
nested inside arguments to such macros). Because of a long series
|
|
of defect fixes made after the initial release of TS 18661-1, GCC
|
|
versions before GCC 13 have __builtin_tgmath semantics that, when
|
|
integer arguments are passed to narrowing macros returning
|
|
_Float32x, or non-narrowing macros with at least two generic
|
|
arguments, do not always correspond to the C2X semantics, so more
|
|
complicated macro definitions are also used in some cases for
|
|
versions from GCC 8 to GCC 12. */
|
|
|
|
#define __HAVE_BUILTIN_TGMATH __GNUC_PREREQ (8, 0)
|
|
#define __HAVE_BUILTIN_TGMATH_C2X __GNUC_PREREQ (13, 0)
|
|
|
|
#if __GNUC_PREREQ (2, 7)
|
|
|
|
/* Certain cases of narrowing macros only need to call a single
|
|
function so cannot use __builtin_tgmath and do not need any
|
|
complicated logic. */
|
|
# if __HAVE_FLOAT128X
|
|
# error "Unsupported _Float128x type for <tgmath.h>."
|
|
# endif
|
|
# if ((__HAVE_FLOAT64X && !__HAVE_FLOAT128) \
|
|
|| (__HAVE_FLOAT128 && !__HAVE_FLOAT64X))
|
|
# error "Unsupported combination of types for <tgmath.h>."
|
|
# endif
|
|
# define __TGMATH_1_NARROW_D(F, X) \
|
|
(F ## l (X))
|
|
# define __TGMATH_2_NARROW_D(F, X, Y) \
|
|
(F ## l (X, Y))
|
|
# define __TGMATH_3_NARROW_D(F, X, Y, Z) \
|
|
(F ## l (X, Y, Z))
|
|
# define __TGMATH_1_NARROW_F64X(F, X) \
|
|
(F ## f128 (X))
|
|
# define __TGMATH_2_NARROW_F64X(F, X, Y) \
|
|
(F ## f128 (X, Y))
|
|
# define __TGMATH_3_NARROW_F64X(F, X, Y, Z) \
|
|
(F ## f128 (X, Y, Z))
|
|
# if !__HAVE_FLOAT128
|
|
# define __TGMATH_1_NARROW_F32X(F, X) \
|
|
(F ## f64 (X))
|
|
# define __TGMATH_2_NARROW_F32X(F, X, Y) \
|
|
(F ## f64 (X, Y))
|
|
# define __TGMATH_3_NARROW_F32X(F, X, Y, Z) \
|
|
(F ## f64 (X, Y, Z))
|
|
# endif
|
|
|
|
# if __HAVE_BUILTIN_TGMATH
|
|
|
|
# if __HAVE_FLOAT16 && __GLIBC_USE (IEC_60559_TYPES_EXT)
|
|
# define __TG_F16_ARG(X) X ## f16,
|
|
# else
|
|
# define __TG_F16_ARG(X)
|
|
# endif
|
|
# if __HAVE_FLOAT32 && __GLIBC_USE (IEC_60559_TYPES_EXT)
|
|
# define __TG_F32_ARG(X) X ## f32,
|
|
# else
|
|
# define __TG_F32_ARG(X)
|
|
# endif
|
|
# if __HAVE_FLOAT64 && __GLIBC_USE (IEC_60559_TYPES_EXT)
|
|
# define __TG_F64_ARG(X) X ## f64,
|
|
# else
|
|
# define __TG_F64_ARG(X)
|
|
# endif
|
|
# if __HAVE_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT)
|
|
# define __TG_F128_ARG(X) X ## f128,
|
|
# else
|
|
# define __TG_F128_ARG(X)
|
|
# endif
|
|
# if __HAVE_FLOAT32X && __GLIBC_USE (IEC_60559_TYPES_EXT)
|
|
# define __TG_F32X_ARG(X) X ## f32x,
|
|
# else
|
|
# define __TG_F32X_ARG(X)
|
|
# endif
|
|
# if __HAVE_FLOAT64X && __GLIBC_USE (IEC_60559_TYPES_EXT)
|
|
# define __TG_F64X_ARG(X) X ## f64x,
|
|
# else
|
|
# define __TG_F64X_ARG(X)
|
|
# endif
|
|
# if __HAVE_FLOAT128X && __GLIBC_USE (IEC_60559_TYPES_EXT)
|
|
# define __TG_F128X_ARG(X) X ## f128x,
|
|
# else
|
|
# define __TG_F128X_ARG(X)
|
|
# endif
|
|
|
|
# define __TGMATH_FUNCS(X) X ## f, X, X ## l, \
|
|
__TG_F16_ARG (X) __TG_F32_ARG (X) __TG_F64_ARG (X) __TG_F128_ARG (X) \
|
|
__TG_F32X_ARG (X) __TG_F64X_ARG (X) __TG_F128X_ARG (X)
|
|
# define __TGMATH_RCFUNCS(F, C) __TGMATH_FUNCS (F) __TGMATH_FUNCS (C)
|
|
# define __TGMATH_1(F, X) __builtin_tgmath (__TGMATH_FUNCS (F) (X))
|
|
# define __TGMATH_2(F, X, Y) __builtin_tgmath (__TGMATH_FUNCS (F) (X), (Y))
|
|
# define __TGMATH_2STD(F, X, Y) __builtin_tgmath (F ## f, F, F ## l, (X), (Y))
|
|
# define __TGMATH_3(F, X, Y, Z) __builtin_tgmath (__TGMATH_FUNCS (F) \
|
|
(X), (Y), (Z))
|
|
# define __TGMATH_1C(F, C, X) __builtin_tgmath (__TGMATH_RCFUNCS (F, C) (X))
|
|
# define __TGMATH_2C(F, C, X, Y) __builtin_tgmath (__TGMATH_RCFUNCS (F, C) \
|
|
(X), (Y))
|
|
|
|
# define __TGMATH_NARROW_FUNCS_F(X) X, X ## l,
|
|
# define __TGMATH_NARROW_FUNCS_F16(X) \
|
|
__TG_F32_ARG (X) __TG_F64_ARG (X) __TG_F128_ARG (X) \
|
|
__TG_F32X_ARG (X) __TG_F64X_ARG (X) __TG_F128X_ARG (X)
|
|
# define __TGMATH_NARROW_FUNCS_F32(X) \
|
|
__TG_F64_ARG (X) __TG_F128_ARG (X) \
|
|
__TG_F32X_ARG (X) __TG_F64X_ARG (X) __TG_F128X_ARG (X)
|
|
# define __TGMATH_NARROW_FUNCS_F64(X) \
|
|
__TG_F128_ARG (X) \
|
|
__TG_F64X_ARG (X) __TG_F128X_ARG (X)
|
|
# define __TGMATH_NARROW_FUNCS_F32X(X) \
|
|
__TG_F64X_ARG (X) __TG_F128X_ARG (X) \
|
|
__TG_F64_ARG (X) __TG_F128_ARG (X)
|
|
|
|
# define __TGMATH_1_NARROW_F(F, X) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F (F) (X))
|
|
# define __TGMATH_2_NARROW_F(F, X, Y) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F (F) (X), (Y))
|
|
# define __TGMATH_3_NARROW_F(F, X, Y, Z) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F (F) (X), (Y), (Z))
|
|
# define __TGMATH_1_NARROW_F16(F, X) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F16 (F) (X))
|
|
# define __TGMATH_2_NARROW_F16(F, X, Y) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F16 (F) (X), (Y))
|
|
# define __TGMATH_3_NARROW_F16(F, X, Y, Z) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F16 (F) (X), (Y), (Z))
|
|
# define __TGMATH_1_NARROW_F32(F, X) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F32 (F) (X))
|
|
# define __TGMATH_2_NARROW_F32(F, X, Y) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F32 (F) (X), (Y))
|
|
# define __TGMATH_3_NARROW_F32(F, X, Y, Z) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F32 (F) (X), (Y), (Z))
|
|
# define __TGMATH_1_NARROW_F64(F, X) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F64 (F) (X))
|
|
# define __TGMATH_2_NARROW_F64(F, X, Y) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F64 (F) (X), (Y))
|
|
# define __TGMATH_3_NARROW_F64(F, X, Y, Z) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F64 (F) (X), (Y), (Z))
|
|
# if __HAVE_FLOAT128 && __HAVE_BUILTIN_TGMATH_C2X
|
|
# define __TGMATH_1_NARROW_F32X(F, X) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F32X (F) (X))
|
|
# define __TGMATH_2_NARROW_F32X(F, X, Y) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F32X (F) (X), (Y))
|
|
# define __TGMATH_3_NARROW_F32X(F, X, Y, Z) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F32X (F) (X), (Y), (Z))
|
|
# endif
|
|
|
|
# endif
|
|
|
|
# if !__HAVE_BUILTIN_TGMATH_C2X
|
|
# ifdef __NO_LONG_DOUBLE_MATH
|
|
# define __tgml(fct) fct
|
|
# else
|
|
# define __tgml(fct) fct ## l
|
|
# endif
|
|
|
|
/* __floating_type expands to 1 if TYPE is a floating type (including
|
|
complex floating types), 0 if TYPE is an integer type (including
|
|
complex integer types). __real_integer_type expands to 1 if TYPE
|
|
is a real integer type. __complex_integer_type expands to 1 if
|
|
TYPE is a complex integer type. All these macros expand to integer
|
|
constant expressions. All these macros can assume their argument
|
|
has an arithmetic type (not vector, decimal floating-point or
|
|
fixed-point), valid to pass to tgmath.h macros. */
|
|
# if __GNUC_PREREQ (3, 1)
|
|
/* __builtin_classify_type expands to an integer constant expression
|
|
in GCC 3.1 and later. Default conversions applied to the argument
|
|
of __builtin_classify_type mean it always returns 1 for real
|
|
integer types rather than ever returning different values for
|
|
character, boolean or enumerated types. */
|
|
# define __floating_type(type) \
|
|
(__builtin_classify_type (__real__ ((type) 0)) == 8)
|
|
# define __real_integer_type(type) \
|
|
(__builtin_classify_type ((type) 0) == 1)
|
|
# define __complex_integer_type(type) \
|
|
(__builtin_classify_type ((type) 0) == 9 \
|
|
&& __builtin_classify_type (__real__ ((type) 0)) == 1)
|
|
# else
|
|
/* GCC versions predating __builtin_classify_type are also looser on
|
|
what counts as an integer constant expression. */
|
|
# define __floating_type(type) (((type) 1.25) != 1)
|
|
# define __real_integer_type(type) (((type) (1.25 + _Complex_I)) == 1)
|
|
# define __complex_integer_type(type) \
|
|
(((type) (1.25 + _Complex_I)) == (1 + _Complex_I))
|
|
# endif
|
|
|
|
/* Whether an expression (of arithmetic type) has a real type. */
|
|
# define __expr_is_real(E) (__builtin_classify_type (E) != 9)
|
|
|
|
/* Type T1 if E is 1, type T2 is E is 0. */
|
|
# define __tgmath_type_if(T1, T2, E) \
|
|
__typeof__ (*(0 ? (__typeof__ (0 ? (T2 *) 0 : (void *) (E))) 0 \
|
|
: (__typeof__ (0 ? (T1 *) 0 : (void *) (!(E)))) 0))
|
|
|
|
/* The tgmath real type for T, where E is 0 if T is an integer type
|
|
and 1 for a floating type. If T has a complex type, it is
|
|
unspecified whether the return type is real or complex (but it has
|
|
the correct corresponding real type). */
|
|
# define __tgmath_real_type_sub(T, E) \
|
|
__tgmath_type_if (T, double, E)
|
|
|
|
/* The tgmath real type of EXPR. */
|
|
# define __tgmath_real_type(expr) \
|
|
__tgmath_real_type_sub (__typeof__ ((__typeof__ (+(expr))) 0), \
|
|
__floating_type (__typeof__ (+(expr))))
|
|
|
|
/* The tgmath complex type for T, where E1 is 1 if T has a floating
|
|
type and 0 otherwise, E2 is 1 if T has a real integer type and 0
|
|
otherwise, and E3 is 1 if T has a complex type and 0 otherwise. */
|
|
# define __tgmath_complex_type_sub(T, E1, E2, E3) \
|
|
__typeof__ (*(0 \
|
|
? (__typeof__ (0 ? (T *) 0 : (void *) (!(E1)))) 0 \
|
|
: (__typeof__ (0 \
|
|
? (__typeof__ (0 \
|
|
? (double *) 0 \
|
|
: (void *) (!(E2)))) 0 \
|
|
: (__typeof__ (0 \
|
|
? (_Complex double *) 0 \
|
|
: (void *) (!(E3)))) 0)) 0))
|
|
|
|
/* The tgmath complex type of EXPR. */
|
|
# define __tgmath_complex_type(expr) \
|
|
__tgmath_complex_type_sub (__typeof__ ((__typeof__ (+(expr))) 0), \
|
|
__floating_type (__typeof__ (+(expr))), \
|
|
__real_integer_type (__typeof__ (+(expr))), \
|
|
__complex_integer_type (__typeof__ (+(expr))))
|
|
|
|
/* The tgmath real type of EXPR1 combined with EXPR2, without handling
|
|
the C2X rule of interpreting integer arguments as _Float32x if any
|
|
argument is _FloatNx. */
|
|
# define __tgmath_real_type2_base(expr1, expr2) \
|
|
__typeof ((__tgmath_real_type (expr1)) 0 + (__tgmath_real_type (expr2)) 0)
|
|
|
|
/* The tgmath complex type of EXPR1 combined with EXPR2, without
|
|
handling the C2X rule of interpreting integer arguments as
|
|
_Float32x if any argument is _FloatNx. */
|
|
# define __tgmath_complex_type2_base(expr1, expr2) \
|
|
__typeof ((__tgmath_complex_type (expr1)) 0 \
|
|
+ (__tgmath_complex_type (expr2)) 0)
|
|
|
|
/* The tgmath real type of EXPR1 combined with EXPR2 and EXPR3,
|
|
without handling the C2X rule of interpreting integer arguments as
|
|
_Float32x if any argument is _FloatNx. */
|
|
# define __tgmath_real_type3_base(expr1, expr2, expr3) \
|
|
__typeof ((__tgmath_real_type (expr1)) 0 \
|
|
+ (__tgmath_real_type (expr2)) 0 \
|
|
+ (__tgmath_real_type (expr3)) 0)
|
|
|
|
/* The tgmath real or complex type of EXPR1 combined with EXPR2 (and
|
|
EXPR3 if applicable). */
|
|
# if __HAVE_FLOATN_NOT_TYPEDEF
|
|
# define __tgmath_real_type2(expr1, expr2) \
|
|
__tgmath_type_if (_Float32x, __tgmath_real_type2_base (expr1, expr2), \
|
|
_Generic ((expr1) + (expr2), _Float32x: 1, default: 0))
|
|
# define __tgmath_complex_type2(expr1, expr2) \
|
|
__tgmath_type_if (_Float32x, \
|
|
__tgmath_type_if (_Complex _Float32x, \
|
|
__tgmath_complex_type2_base (expr1, \
|
|
expr2), \
|
|
_Generic ((expr1) + (expr2), \
|
|
_Complex _Float32x: 1, \
|
|
default: 0)), \
|
|
_Generic ((expr1) + (expr2), _Float32x: 1, default: 0))
|
|
# define __tgmath_real_type3(expr1, expr2, expr3) \
|
|
__tgmath_type_if (_Float32x, \
|
|
__tgmath_real_type3_base (expr1, expr2, expr3), \
|
|
_Generic ((expr1) + (expr2) + (expr3), \
|
|
_Float32x: 1, default: 0))
|
|
# else
|
|
# define __tgmath_real_type2(expr1, expr2) \
|
|
__tgmath_real_type2_base (expr1, expr2)
|
|
# define __tgmath_complex_type2(expr1, expr2) \
|
|
__tgmath_complex_type2_base (expr1, expr2)
|
|
# define __tgmath_real_type3(expr1, expr2, expr3) \
|
|
__tgmath_real_type3_base (expr1, expr2, expr3)
|
|
# endif
|
|
|
|
# if (__HAVE_DISTINCT_FLOAT16 \
|
|
|| __HAVE_DISTINCT_FLOAT32 \
|
|
|| __HAVE_DISTINCT_FLOAT64 \
|
|
|| __HAVE_DISTINCT_FLOAT32X \
|
|
|| __HAVE_DISTINCT_FLOAT64X \
|
|
|| __HAVE_DISTINCT_FLOAT128X)
|
|
# error "Unsupported _FloatN or _FloatNx types for <tgmath.h>."
|
|
# endif
|
|
|
|
/* Expand to text that checks if ARG_COMB has type _Float128, and if
|
|
so calls the appropriately suffixed FCT (which may include a cast),
|
|
or FCT and CFCT for complex functions, with arguments ARG_CALL.
|
|
__TGMATH_F128LD (only used in the __HAVE_FLOAT64X_LONG_DOUBLE case,
|
|
for narrowing macros) handles long double the same as
|
|
_Float128. */
|
|
# if __HAVE_DISTINCT_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT)
|
|
# if (!__HAVE_FLOAT64X \
|
|
|| __HAVE_FLOAT64X_LONG_DOUBLE \
|
|
|| !__HAVE_FLOATN_NOT_TYPEDEF)
|
|
# define __TGMATH_F128(arg_comb, fct, arg_call) \
|
|
__builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128) \
|
|
? fct ## f128 arg_call :
|
|
# define __TGMATH_F128LD(arg_comb, fct, arg_call) \
|
|
(__builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128) \
|
|
|| __builtin_types_compatible_p (__typeof (+(arg_comb)), long double)) \
|
|
? fct ## f128 arg_call :
|
|
# define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) \
|
|
__builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), _Float128) \
|
|
? (__expr_is_real (arg_comb) \
|
|
? fct ## f128 arg_call \
|
|
: cfct ## f128 arg_call) :
|
|
# else
|
|
/* _Float64x is a distinct type at the C language level, which must be
|
|
handled like _Float128. */
|
|
# define __TGMATH_F128(arg_comb, fct, arg_call) \
|
|
(__builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128) \
|
|
|| __builtin_types_compatible_p (__typeof (+(arg_comb)), _Float64x)) \
|
|
? fct ## f128 arg_call :
|
|
# define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) \
|
|
(__builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), _Float128) \
|
|
|| __builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), \
|
|
_Float64x)) \
|
|
? (__expr_is_real (arg_comb) \
|
|
? fct ## f128 arg_call \
|
|
: cfct ## f128 arg_call) :
|
|
# endif
|
|
# else
|
|
# define __TGMATH_F128(arg_comb, fct, arg_call) /* Nothing. */
|
|
# define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) /* Nothing. */
|
|
# endif
|
|
|
|
# endif /* !__HAVE_BUILTIN_TGMATH_C2X. */
|
|
|
|
/* We have two kinds of generic macros: to support functions which are
|
|
only defined on real valued parameters and those which are defined
|
|
for complex functions as well. */
|
|
# if __HAVE_BUILTIN_TGMATH
|
|
|
|
# define __TGMATH_UNARY_REAL_ONLY(Val, Fct) __TGMATH_1 (Fct, (Val))
|
|
# define __TGMATH_UNARY_REAL_RET_ONLY(Val, Fct) __TGMATH_1 (Fct, (Val))
|
|
# define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
|
|
__TGMATH_2 (Fct, (Val1), (Val2))
|
|
# define __TGMATH_BINARY_FIRST_REAL_STD_ONLY(Val1, Val2, Fct) \
|
|
__TGMATH_2STD (Fct, (Val1), (Val2))
|
|
# if __HAVE_BUILTIN_TGMATH_C2X
|
|
# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
|
|
__TGMATH_2 (Fct, (Val1), (Val2))
|
|
# endif
|
|
# define __TGMATH_BINARY_REAL_STD_ONLY(Val1, Val2, Fct) \
|
|
__TGMATH_2STD (Fct, (Val1), (Val2))
|
|
# if __HAVE_BUILTIN_TGMATH_C2X
|
|
# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
|
|
__TGMATH_3 (Fct, (Val1), (Val2), (Val3))
|
|
# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
|
|
__TGMATH_3 (Fct, (Val1), (Val2), (Val3))
|
|
# endif
|
|
# define __TGMATH_TERNARY_FIRST_REAL_RET_ONLY(Val1, Val2, Val3, Fct) \
|
|
__TGMATH_3 (Fct, (Val1), (Val2), (Val3))
|
|
# define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
|
|
__TGMATH_1C (Fct, Cfct, (Val))
|
|
# define __TGMATH_UNARY_IMAG(Val, Cfct) __TGMATH_1 (Cfct, (Val))
|
|
# define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \
|
|
__TGMATH_1C (Fct, Cfct, (Val))
|
|
# define __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME(Val, Cfct) \
|
|
__TGMATH_1 (Cfct, (Val))
|
|
# if __HAVE_BUILTIN_TGMATH_C2X
|
|
# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
|
|
__TGMATH_2C (Fct, Cfct, (Val1), (Val2))
|
|
# endif
|
|
|
|
# endif
|
|
|
|
# if !__HAVE_BUILTIN_TGMATH
|
|
# define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \
|
|
(__extension__ ((sizeof (+(Val)) == sizeof (double) \
|
|
|| __builtin_classify_type (Val) != 8) \
|
|
? (__tgmath_real_type (Val)) Fct (Val) \
|
|
: (sizeof (+(Val)) == sizeof (float)) \
|
|
? (__tgmath_real_type (Val)) Fct##f (Val) \
|
|
: __TGMATH_F128 ((Val), (__tgmath_real_type (Val)) Fct, \
|
|
(Val)) \
|
|
(__tgmath_real_type (Val)) __tgml(Fct) (Val)))
|
|
|
|
# define __TGMATH_UNARY_REAL_RET_ONLY(Val, Fct) \
|
|
(__extension__ ((sizeof (+(Val)) == sizeof (double) \
|
|
|| __builtin_classify_type (Val) != 8) \
|
|
? Fct (Val) \
|
|
: (sizeof (+(Val)) == sizeof (float)) \
|
|
? Fct##f (Val) \
|
|
: __TGMATH_F128 ((Val), Fct, (Val)) \
|
|
__tgml(Fct) (Val)))
|
|
|
|
# define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
|
|
(__extension__ ((sizeof (+(Val1)) == sizeof (double) \
|
|
|| __builtin_classify_type (Val1) != 8) \
|
|
? (__tgmath_real_type (Val1)) Fct (Val1, Val2) \
|
|
: (sizeof (+(Val1)) == sizeof (float)) \
|
|
? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2) \
|
|
: __TGMATH_F128 ((Val1), (__tgmath_real_type (Val1)) Fct, \
|
|
(Val1, Val2)) \
|
|
(__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2)))
|
|
|
|
# define __TGMATH_BINARY_FIRST_REAL_STD_ONLY(Val1, Val2, Fct) \
|
|
(__extension__ ((sizeof (+(Val1)) == sizeof (double) \
|
|
|| __builtin_classify_type (Val1) != 8) \
|
|
? (__tgmath_real_type (Val1)) Fct (Val1, Val2) \
|
|
: (sizeof (+(Val1)) == sizeof (float)) \
|
|
? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2) \
|
|
: (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2)))
|
|
# endif
|
|
|
|
# if !__HAVE_BUILTIN_TGMATH_C2X
|
|
# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
|
|
(__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \
|
|
&& __builtin_classify_type ((Val1) + (Val2)) == 8) \
|
|
? __TGMATH_F128 ((Val1) + (Val2), \
|
|
(__tgmath_real_type2 (Val1, Val2)) Fct, \
|
|
(Val1, Val2)) \
|
|
(__tgmath_real_type2 (Val1, Val2)) \
|
|
__tgml(Fct) (Val1, Val2) \
|
|
: (sizeof (+(Val1)) == sizeof (double) \
|
|
|| sizeof (+(Val2)) == sizeof (double) \
|
|
|| __builtin_classify_type (Val1) != 8 \
|
|
|| __builtin_classify_type (Val2) != 8) \
|
|
? (__tgmath_real_type2 (Val1, Val2)) \
|
|
Fct (Val1, Val2) \
|
|
: (__tgmath_real_type2 (Val1, Val2)) \
|
|
Fct##f (Val1, Val2)))
|
|
# endif
|
|
|
|
# if !__HAVE_BUILTIN_TGMATH
|
|
# define __TGMATH_BINARY_REAL_STD_ONLY(Val1, Val2, Fct) \
|
|
(__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \
|
|
&& __builtin_classify_type ((Val1) + (Val2)) == 8) \
|
|
? (__typeof ((__tgmath_real_type (Val1)) 0 \
|
|
+ (__tgmath_real_type (Val2)) 0)) \
|
|
__tgml(Fct) (Val1, Val2) \
|
|
: (sizeof (+(Val1)) == sizeof (double) \
|
|
|| sizeof (+(Val2)) == sizeof (double) \
|
|
|| __builtin_classify_type (Val1) != 8 \
|
|
|| __builtin_classify_type (Val2) != 8) \
|
|
? (__typeof ((__tgmath_real_type (Val1)) 0 \
|
|
+ (__tgmath_real_type (Val2)) 0)) \
|
|
Fct (Val1, Val2) \
|
|
: (__typeof ((__tgmath_real_type (Val1)) 0 \
|
|
+ (__tgmath_real_type (Val2)) 0)) \
|
|
Fct##f (Val1, Val2)))
|
|
# endif
|
|
|
|
# if !__HAVE_BUILTIN_TGMATH_C2X
|
|
# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
|
|
(__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \
|
|
&& __builtin_classify_type ((Val1) + (Val2)) == 8) \
|
|
? __TGMATH_F128 ((Val1) + (Val2), \
|
|
(__tgmath_real_type2 (Val1, Val2)) Fct, \
|
|
(Val1, Val2, Val3)) \
|
|
(__tgmath_real_type2 (Val1, Val2)) \
|
|
__tgml(Fct) (Val1, Val2, Val3) \
|
|
: (sizeof (+(Val1)) == sizeof (double) \
|
|
|| sizeof (+(Val2)) == sizeof (double) \
|
|
|| __builtin_classify_type (Val1) != 8 \
|
|
|| __builtin_classify_type (Val2) != 8) \
|
|
? (__tgmath_real_type2 (Val1, Val2)) \
|
|
Fct (Val1, Val2, Val3) \
|
|
: (__tgmath_real_type2 (Val1, Val2)) \
|
|
Fct##f (Val1, Val2, Val3)))
|
|
|
|
# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
|
|
(__extension__ ((sizeof ((Val1) + (Val2) + (Val3)) > sizeof (double) \
|
|
&& __builtin_classify_type ((Val1) + (Val2) + (Val3)) \
|
|
== 8) \
|
|
? __TGMATH_F128 ((Val1) + (Val2) + (Val3), \
|
|
(__tgmath_real_type3 (Val1, Val2, \
|
|
Val3)) Fct, \
|
|
(Val1, Val2, Val3)) \
|
|
(__tgmath_real_type3 (Val1, Val2, Val3)) \
|
|
__tgml(Fct) (Val1, Val2, Val3) \
|
|
: (sizeof (+(Val1)) == sizeof (double) \
|
|
|| sizeof (+(Val2)) == sizeof (double) \
|
|
|| sizeof (+(Val3)) == sizeof (double) \
|
|
|| __builtin_classify_type (Val1) != 8 \
|
|
|| __builtin_classify_type (Val2) != 8 \
|
|
|| __builtin_classify_type (Val3) != 8) \
|
|
? (__tgmath_real_type3 (Val1, Val2, Val3)) \
|
|
Fct (Val1, Val2, Val3) \
|
|
: (__tgmath_real_type3 (Val1, Val2, Val3)) \
|
|
Fct##f (Val1, Val2, Val3)))
|
|
# endif
|
|
|
|
# if !__HAVE_BUILTIN_TGMATH
|
|
# define __TGMATH_TERNARY_FIRST_REAL_RET_ONLY(Val1, Val2, Val3, Fct) \
|
|
(__extension__ ((sizeof (+(Val1)) == sizeof (double) \
|
|
|| __builtin_classify_type (Val1) != 8) \
|
|
? Fct (Val1, Val2, Val3) \
|
|
: (sizeof (+(Val1)) == sizeof (float)) \
|
|
? Fct##f (Val1, Val2, Val3) \
|
|
: __TGMATH_F128 ((Val1), Fct, (Val1, Val2, Val3)) \
|
|
__tgml(Fct) (Val1, Val2, Val3)))
|
|
|
|
/* XXX This definition has to be changed as soon as the compiler understands
|
|
the imaginary keyword. */
|
|
# define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
|
|
(__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \
|
|
|| __builtin_classify_type (__real__ (Val)) != 8) \
|
|
? (__expr_is_real (Val) \
|
|
? (__tgmath_complex_type (Val)) Fct (Val) \
|
|
: (__tgmath_complex_type (Val)) Cfct (Val)) \
|
|
: (sizeof (+__real__ (Val)) == sizeof (float)) \
|
|
? (__expr_is_real (Val) \
|
|
? (__tgmath_complex_type (Val)) Fct##f (Val) \
|
|
: (__tgmath_complex_type (Val)) Cfct##f (Val)) \
|
|
: __TGMATH_CF128 ((Val), \
|
|
(__tgmath_complex_type (Val)) Fct, \
|
|
(__tgmath_complex_type (Val)) Cfct, \
|
|
(Val)) \
|
|
(__expr_is_real (Val) \
|
|
? (__tgmath_complex_type (Val)) __tgml(Fct) (Val) \
|
|
: (__tgmath_complex_type (Val)) __tgml(Cfct) (Val))))
|
|
|
|
# define __TGMATH_UNARY_IMAG(Val, Cfct) \
|
|
(__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \
|
|
|| __builtin_classify_type (__real__ (Val)) != 8) \
|
|
? (__typeof__ ((__tgmath_real_type (Val)) 0 \
|
|
+ _Complex_I)) Cfct (Val) \
|
|
: (sizeof (+__real__ (Val)) == sizeof (float)) \
|
|
? (__typeof__ ((__tgmath_real_type (Val)) 0 \
|
|
+ _Complex_I)) Cfct##f (Val) \
|
|
: __TGMATH_F128 (__real__ (Val), \
|
|
(__typeof__ \
|
|
((__tgmath_real_type (Val)) 0 \
|
|
+ _Complex_I)) Cfct, (Val)) \
|
|
(__typeof__ ((__tgmath_real_type (Val)) 0 \
|
|
+ _Complex_I)) __tgml(Cfct) (Val)))
|
|
|
|
/* XXX This definition has to be changed as soon as the compiler understands
|
|
the imaginary keyword. */
|
|
# define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \
|
|
(__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \
|
|
|| __builtin_classify_type (__real__ (Val)) != 8) \
|
|
? (__expr_is_real (Val) \
|
|
? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
|
|
Fct (Val) \
|
|
: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
|
|
Cfct (Val)) \
|
|
: (sizeof (+__real__ (Val)) == sizeof (float)) \
|
|
? (__expr_is_real (Val) \
|
|
? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
|
|
Fct##f (Val) \
|
|
: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
|
|
Cfct##f (Val)) \
|
|
: __TGMATH_CF128 ((Val), \
|
|
(__typeof__ \
|
|
(__real__ \
|
|
(__tgmath_real_type (Val)) 0)) Fct, \
|
|
(__typeof__ \
|
|
(__real__ \
|
|
(__tgmath_real_type (Val)) 0)) Cfct, \
|
|
(Val)) \
|
|
(__expr_is_real (Val) \
|
|
? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0)) \
|
|
__tgml(Fct) (Val) \
|
|
: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0)) \
|
|
__tgml(Cfct) (Val))))
|
|
# define __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME(Val, Cfct) \
|
|
__TGMATH_UNARY_REAL_IMAG_RET_REAL ((Val), Cfct, Cfct)
|
|
# endif
|
|
|
|
# if !__HAVE_BUILTIN_TGMATH_C2X
|
|
/* XXX This definition has to be changed as soon as the compiler understands
|
|
the imaginary keyword. */
|
|
# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
|
|
(__extension__ ((sizeof (__real__ (Val1) \
|
|
+ __real__ (Val2)) > sizeof (double) \
|
|
&& __builtin_classify_type (__real__ (Val1) \
|
|
+ __real__ (Val2)) == 8) \
|
|
? __TGMATH_CF128 ((Val1) + (Val2), \
|
|
(__tgmath_complex_type2 (Val1, Val2)) \
|
|
Fct, \
|
|
(__tgmath_complex_type2 (Val1, Val2)) \
|
|
Cfct, \
|
|
(Val1, Val2)) \
|
|
(__expr_is_real ((Val1) + (Val2)) \
|
|
? (__tgmath_complex_type2 (Val1, Val2)) \
|
|
__tgml(Fct) (Val1, Val2) \
|
|
: (__tgmath_complex_type2 (Val1, Val2)) \
|
|
__tgml(Cfct) (Val1, Val2)) \
|
|
: (sizeof (+__real__ (Val1)) == sizeof (double) \
|
|
|| sizeof (+__real__ (Val2)) == sizeof (double) \
|
|
|| __builtin_classify_type (__real__ (Val1)) != 8 \
|
|
|| __builtin_classify_type (__real__ (Val2)) != 8) \
|
|
? (__expr_is_real ((Val1) + (Val2)) \
|
|
? (__tgmath_complex_type2 (Val1, Val2)) \
|
|
Fct (Val1, Val2) \
|
|
: (__tgmath_complex_type2 (Val1, Val2)) \
|
|
Cfct (Val1, Val2)) \
|
|
: (__expr_is_real ((Val1) + (Val2)) \
|
|
? (__tgmath_complex_type2 (Val1, Val2)) \
|
|
Fct##f (Val1, Val2) \
|
|
: (__tgmath_complex_type2 (Val1, Val2)) \
|
|
Cfct##f (Val1, Val2))))
|
|
# endif
|
|
|
|
# if !__HAVE_BUILTIN_TGMATH
|
|
# define __TGMATH_1_NARROW_F(F, X) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (double) \
|
|
? F ## l (X) \
|
|
: F (X)))
|
|
# define __TGMATH_2_NARROW_F(F, X, Y) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
|
|
+ (__tgmath_real_type (Y)) 0) > sizeof (double) \
|
|
? F ## l (X, Y) \
|
|
: F (X, Y)))
|
|
# define __TGMATH_3_NARROW_F(F, X, Y, Z) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
|
|
+ (__tgmath_real_type (Y)) 0 \
|
|
+ (__tgmath_real_type (Z)) 0) > sizeof (double) \
|
|
? F ## l (X, Y, Z) \
|
|
: F (X, Y, Z)))
|
|
# endif
|
|
/* In most cases, these narrowing macro definitions based on sizeof
|
|
ensure that the function called has the right argument format, as
|
|
for other <tgmath.h> macros for compilers before GCC 8, but may not
|
|
have exactly the argument type (among the types with that format)
|
|
specified in the standard logic.
|
|
|
|
In the case of macros for _Float32x return type, when _Float64x
|
|
exists, _Float64 arguments should result in the *f64 function being
|
|
called while _Float32x, float and double arguments should result in
|
|
the *f64x function being called (and integer arguments are
|
|
considered to have type _Float32x if any argument has type
|
|
_FloatNx, or double otherwise). These cases cannot be
|
|
distinguished using sizeof (or at all if the types are typedefs
|
|
rather than different types, in which case we err on the side of
|
|
using the wider type if unsure). */
|
|
# if !__HAVE_BUILTIN_TGMATH_C2X
|
|
# if __HAVE_FLOATN_NOT_TYPEDEF
|
|
# define __TGMATH_NARROW_F32X_USE_F64X(X) \
|
|
!__builtin_types_compatible_p (__typeof (+(X)), _Float64)
|
|
# else
|
|
# define __TGMATH_NARROW_F32X_USE_F64X(X) \
|
|
(__builtin_types_compatible_p (__typeof (+(X)), double) \
|
|
|| __builtin_types_compatible_p (__typeof (+(X)), float) \
|
|
|| !__floating_type (__typeof (+(X))))
|
|
# endif
|
|
# endif
|
|
# if __HAVE_FLOAT64X_LONG_DOUBLE && __HAVE_DISTINCT_FLOAT128
|
|
# if !__HAVE_BUILTIN_TGMATH
|
|
# define __TGMATH_1_NARROW_F32(F, X) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float64) \
|
|
? __TGMATH_F128LD ((X), F, (X)) \
|
|
F ## f64x (X) \
|
|
: F ## f64 (X)))
|
|
# define __TGMATH_2_NARROW_F32(F, X, Y) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
|
|
+ (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \
|
|
? __TGMATH_F128LD ((X) + (Y), F, (X, Y)) \
|
|
F ## f64x (X, Y) \
|
|
: F ## f64 (X, Y)))
|
|
# define __TGMATH_3_NARROW_F32(F, X, Y, Z) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
|
|
+ (__tgmath_real_type (Y)) 0 \
|
|
+ (__tgmath_real_type (Z)) 0) > sizeof (_Float64) \
|
|
? __TGMATH_F128LD ((X) + (Y) + (Z), F, (X, Y, Z)) \
|
|
F ## f64x (X, Y, Z) \
|
|
: F ## f64 (X, Y, Z)))
|
|
# define __TGMATH_1_NARROW_F64(F, X) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float64) \
|
|
? __TGMATH_F128LD ((X), F, (X)) \
|
|
F ## f64x (X) \
|
|
: F ## f128 (X)))
|
|
# define __TGMATH_2_NARROW_F64(F, X, Y) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
|
|
+ (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \
|
|
? __TGMATH_F128LD ((X) + (Y), F, (X, Y)) \
|
|
F ## f64x (X, Y) \
|
|
: F ## f128 (X, Y)))
|
|
# define __TGMATH_3_NARROW_F64(F, X, Y, Z) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
|
|
+ (__tgmath_real_type (Y)) 0 \
|
|
+ (__tgmath_real_type (Z)) 0) > sizeof (_Float64) \
|
|
? __TGMATH_F128LD ((X) + (Y) + (Z), F, (X, Y, Z)) \
|
|
F ## f64x (X, Y, Z) \
|
|
: F ## f128 (X, Y, Z)))
|
|
# endif
|
|
# if !__HAVE_BUILTIN_TGMATH_C2X
|
|
# define __TGMATH_1_NARROW_F32X(F, X) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float64) \
|
|
|| __TGMATH_NARROW_F32X_USE_F64X (X) \
|
|
? __TGMATH_F128 ((X), F, (X)) \
|
|
F ## f64x (X) \
|
|
: F ## f64 (X)))
|
|
# define __TGMATH_2_NARROW_F32X(F, X, Y) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
|
|
+ (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \
|
|
|| __TGMATH_NARROW_F32X_USE_F64X ((X) + (Y)) \
|
|
? __TGMATH_F128 ((X) + (Y), F, (X, Y)) \
|
|
F ## f64x (X, Y) \
|
|
: F ## f64 (X, Y)))
|
|
# define __TGMATH_3_NARROW_F32X(F, X, Y, Z) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
|
|
+ (__tgmath_real_type (Y)) 0 \
|
|
+ (__tgmath_real_type (Z)) 0) > sizeof (_Float64) \
|
|
|| __TGMATH_NARROW_F32X_USE_F64X ((X) + (Y) + (Z)) \
|
|
? __TGMATH_F128 ((X) + (Y) + (Z), F, (X, Y, Z)) \
|
|
F ## f64x (X, Y, Z) \
|
|
: F ## f64 (X, Y, Z)))
|
|
# endif
|
|
# elif __HAVE_FLOAT128
|
|
# if !__HAVE_BUILTIN_TGMATH
|
|
# define __TGMATH_1_NARROW_F32(F, X) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float64) \
|
|
? F ## f128 (X) \
|
|
: F ## f64 (X)))
|
|
# define __TGMATH_2_NARROW_F32(F, X, Y) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
|
|
+ (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \
|
|
? F ## f128 (X, Y) \
|
|
: F ## f64 (X, Y)))
|
|
# define __TGMATH_3_NARROW_F32(F, X, Y, Z) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
|
|
+ (__tgmath_real_type (Y)) 0 \
|
|
+ (__tgmath_real_type (Z)) 0) > sizeof (_Float64) \
|
|
? F ## f128 (X, Y, Z) \
|
|
: F ## f64 (X, Y, Z)))
|
|
# define __TGMATH_1_NARROW_F64(F, X) \
|
|
(F ## f128 (X))
|
|
# define __TGMATH_2_NARROW_F64(F, X, Y) \
|
|
(F ## f128 (X, Y))
|
|
# define __TGMATH_3_NARROW_F64(F, X, Y, Z) \
|
|
(F ## f128 (X, Y, Z))
|
|
# endif
|
|
# if !__HAVE_BUILTIN_TGMATH_C2X
|
|
# define __TGMATH_1_NARROW_F32X(F, X) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float32x) \
|
|
|| __TGMATH_NARROW_F32X_USE_F64X (X) \
|
|
? F ## f64x (X) \
|
|
: F ## f64 (X)))
|
|
# define __TGMATH_2_NARROW_F32X(F, X, Y) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
|
|
+ (__tgmath_real_type (Y)) 0) > sizeof (_Float32x) \
|
|
|| __TGMATH_NARROW_F32X_USE_F64X ((X) + (Y)) \
|
|
? F ## f64x (X, Y) \
|
|
: F ## f64 (X, Y)))
|
|
# define __TGMATH_3_NARROW_F32X(F, X, Y, Z) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
|
|
+ (__tgmath_real_type (Y)) 0 \
|
|
+ (__tgmath_real_type (Z)) 0) > sizeof (_Float32x) \
|
|
|| __TGMATH_NARROW_F32X_USE_F64X ((X) + (Y) + (Z)) \
|
|
? F ## f64x (X, Y, Z) \
|
|
: F ## f64 (X, Y, Z)))
|
|
# endif
|
|
# else
|
|
# if !__HAVE_BUILTIN_TGMATH
|
|
# define __TGMATH_1_NARROW_F32(F, X) \
|
|
(F ## f64 (X))
|
|
# define __TGMATH_2_NARROW_F32(F, X, Y) \
|
|
(F ## f64 (X, Y))
|
|
# define __TGMATH_3_NARROW_F32(F, X, Y, Z) \
|
|
(F ## f64 (X, Y, Z))
|
|
# endif
|
|
# endif
|
|
#else
|
|
# error "Unsupported compiler; you cannot use <tgmath.h>"
|
|
#endif
|
|
|
|
|
|
/* Unary functions defined for real and complex values. */
|
|
|
|
|
|
/* Trigonometric functions. */
|
|
|
|
/* Arc cosine of X. */
|
|
#define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos)
|
|
/* Arc sine of X. */
|
|
#define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin)
|
|
/* Arc tangent of X. */
|
|
#define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan)
|
|
/* Arc tangent of Y/X. */
|
|
#define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2)
|
|
|
|
/* Cosine of X. */
|
|
#define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos)
|
|
/* Sine of X. */
|
|
#define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin)
|
|
/* Tangent of X. */
|
|
#define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)
|
|
|
|
|
|
/* Hyperbolic functions. */
|
|
|
|
/* Hyperbolic arc cosine of X. */
|
|
#define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh)
|
|
/* Hyperbolic arc sine of X. */
|
|
#define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh)
|
|
/* Hyperbolic arc tangent of X. */
|
|
#define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)
|
|
|
|
/* Hyperbolic cosine of X. */
|
|
#define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh)
|
|
/* Hyperbolic sine of X. */
|
|
#define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh)
|
|
/* Hyperbolic tangent of X. */
|
|
#define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)
|
|
|
|
|
|
/* Exponential and logarithmic functions. */
|
|
|
|
/* Exponential function of X. */
|
|
#define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)
|
|
|
|
/* Break VALUE into a normalized fraction and an integral power of 2. */
|
|
#define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)
|
|
|
|
/* X times (two to the EXP power). */
|
|
#define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)
|
|
|
|
/* Natural logarithm of X. */
|
|
#define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)
|
|
|
|
/* Base-ten logarithm of X. */
|
|
#ifdef __USE_GNU
|
|
# define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, clog10)
|
|
#else
|
|
# define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10)
|
|
#endif
|
|
|
|
/* Return exp(X) - 1. */
|
|
#define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)
|
|
|
|
/* Return log(1 + X). */
|
|
#define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)
|
|
|
|
/* Return the base 2 signed integral exponent of X. */
|
|
#define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)
|
|
|
|
/* Compute base-2 exponential of X. */
|
|
#define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)
|
|
|
|
/* Compute base-2 logarithm of X. */
|
|
#define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)
|
|
|
|
#if __GLIBC_USE (IEC_60559_FUNCS_EXT_C2X)
|
|
/* Compute exponent to base ten. */
|
|
#define exp10(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp10)
|
|
#endif
|
|
|
|
|
|
/* Power functions. */
|
|
|
|
/* Return X to the Y power. */
|
|
#define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)
|
|
|
|
/* Return the square root of X. */
|
|
#define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)
|
|
|
|
/* Return `sqrt(X*X + Y*Y)'. */
|
|
#define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)
|
|
|
|
/* Return the cube root of X. */
|
|
#define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)
|
|
|
|
|
|
/* Nearest integer, absolute value, and remainder functions. */
|
|
|
|
/* Smallest integral value not less than X. */
|
|
#define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)
|
|
|
|
/* Absolute value of X. */
|
|
#define fabs(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, fabs, cabs)
|
|
|
|
/* Largest integer not greater than X. */
|
|
#define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)
|
|
|
|
/* Floating-point modulo remainder of X/Y. */
|
|
#define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)
|
|
|
|
/* Round X to integral valuein floating-point format using current
|
|
rounding direction, but do not raise inexact exception. */
|
|
#define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)
|
|
|
|
/* Round X to nearest integral value, rounding halfway cases away from
|
|
zero. */
|
|
#define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)
|
|
|
|
/* Round X to the integral value in floating-point format nearest but
|
|
not larger in magnitude. */
|
|
#define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)
|
|
|
|
/* Compute remainder of X and Y and put in *QUO a value with sign of x/y
|
|
and magnitude congruent `mod 2^n' to the magnitude of the integral
|
|
quotient x/y, with n >= 3. */
|
|
#define remquo(Val1, Val2, Val3) \
|
|
__TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)
|
|
|
|
/* Round X to nearest integral value according to current rounding
|
|
direction. */
|
|
#define lrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, lrint)
|
|
#define llrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llrint)
|
|
|
|
/* Round X to nearest integral value, rounding halfway cases away from
|
|
zero. */
|
|
#define lround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, lround)
|
|
#define llround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llround)
|
|
|
|
|
|
/* Return X with its signed changed to Y's. */
|
|
#define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)
|
|
|
|
/* Error and gamma functions. */
|
|
#define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf)
|
|
#define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc)
|
|
#define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma)
|
|
#define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)
|
|
|
|
|
|
/* Return the integer nearest X in the direction of the
|
|
prevailing rounding mode. */
|
|
#define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)
|
|
|
|
#if __GLIBC_USE (IEC_60559_BFP_EXT_C2X)
|
|
/* Return X - epsilon. */
|
|
# define nextdown(Val) __TGMATH_UNARY_REAL_ONLY (Val, nextdown)
|
|
/* Return X + epsilon. */
|
|
# define nextup(Val) __TGMATH_UNARY_REAL_ONLY (Val, nextup)
|
|
#endif
|
|
|
|
/* Return X + epsilon if X < Y, X - epsilon if X > Y. */
|
|
#define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter)
|
|
#define nexttoward(Val1, Val2) \
|
|
__TGMATH_BINARY_FIRST_REAL_STD_ONLY (Val1, Val2, nexttoward)
|
|
|
|
/* Return the remainder of integer divison X / Y with infinite precision. */
|
|
#define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)
|
|
|
|
/* Return X times (2 to the Nth power). */
|
|
#ifdef __USE_MISC
|
|
# define scalb(Val1, Val2) __TGMATH_BINARY_REAL_STD_ONLY (Val1, Val2, scalb)
|
|
#endif
|
|
|
|
/* Return X times (2 to the Nth power). */
|
|
#define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)
|
|
|
|
/* Return X times (2 to the Nth power). */
|
|
#define scalbln(Val1, Val2) \
|
|
__TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)
|
|
|
|
/* Return the binary exponent of X, which must be nonzero. */
|
|
#define ilogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, ilogb)
|
|
|
|
|
|
/* Return positive difference between X and Y. */
|
|
#define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)
|
|
|
|
#if __GLIBC_USE (ISOC2X) && !defined __USE_GNU
|
|
/* Return maximum numeric value from X and Y. */
|
|
# define fmax(Val1, Val2) __TGMATH_BINARY_REAL_STD_ONLY (Val1, Val2, fmax)
|
|
|
|
/* Return minimum numeric value from X and Y. */
|
|
# define fmin(Val1, Val2) __TGMATH_BINARY_REAL_STD_ONLY (Val1, Val2, fmin)
|
|
#else
|
|
/* Return maximum numeric value from X and Y. */
|
|
# define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)
|
|
|
|
/* Return minimum numeric value from X and Y. */
|
|
# define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)
|
|
#endif
|
|
|
|
|
|
/* Multiply-add function computed as a ternary operation. */
|
|
#define fma(Val1, Val2, Val3) \
|
|
__TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)
|
|
|
|
#if __GLIBC_USE (IEC_60559_BFP_EXT_C2X)
|
|
/* Round X to nearest integer value, rounding halfway cases to even. */
|
|
# define roundeven(Val) __TGMATH_UNARY_REAL_ONLY (Val, roundeven)
|
|
|
|
# define fromfp(Val1, Val2, Val3) \
|
|
__TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, fromfp)
|
|
|
|
# define ufromfp(Val1, Val2, Val3) \
|
|
__TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, ufromfp)
|
|
|
|
# define fromfpx(Val1, Val2, Val3) \
|
|
__TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, fromfpx)
|
|
|
|
# define ufromfpx(Val1, Val2, Val3) \
|
|
__TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, ufromfpx)
|
|
|
|
/* Like ilogb, but returning long int. */
|
|
# define llogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llogb)
|
|
#endif
|
|
|
|
#if __GLIBC_USE (IEC_60559_BFP_EXT)
|
|
/* Return value with maximum magnitude. */
|
|
# define fmaxmag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaxmag)
|
|
|
|
/* Return value with minimum magnitude. */
|
|
# define fminmag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminmag)
|
|
#endif
|
|
|
|
#if __GLIBC_USE (ISOC2X)
|
|
/* Return maximum value from X and Y. */
|
|
# define fmaximum(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaximum)
|
|
|
|
/* Return minimum value from X and Y. */
|
|
# define fminimum(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminimum)
|
|
|
|
/* Return maximum numeric value from X and Y. */
|
|
# define fmaximum_num(Val1, Val2) \
|
|
__TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaximum_num)
|
|
|
|
/* Return minimum numeric value from X and Y. */
|
|
# define fminimum_num(Val1, Val2) \
|
|
__TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminimum_num)
|
|
|
|
/* Return value with maximum magnitude. */
|
|
# define fmaximum_mag(Val1, Val2) \
|
|
__TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaximum_mag)
|
|
|
|
/* Return value with minimum magnitude. */
|
|
# define fminimum_mag(Val1, Val2) \
|
|
__TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminimum_mag)
|
|
|
|
/* Return numeric value with maximum magnitude. */
|
|
# define fmaximum_mag_num(Val1, Val2) \
|
|
__TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaximum_mag_num)
|
|
|
|
/* Return numeric value with minimum magnitude. */
|
|
# define fminimum_mag_num(Val1, Val2) \
|
|
__TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminimum_mag_num)
|
|
#endif
|
|
|
|
|
|
/* Absolute value, conjugates, and projection. */
|
|
|
|
/* Argument value of Z. */
|
|
#define carg(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, carg)
|
|
|
|
/* Complex conjugate of Z. */
|
|
#define conj(Val) __TGMATH_UNARY_IMAG (Val, conj)
|
|
|
|
/* Projection of Z onto the Riemann sphere. */
|
|
#define cproj(Val) __TGMATH_UNARY_IMAG (Val, cproj)
|
|
|
|
|
|
/* Decomposing complex values. */
|
|
|
|
/* Imaginary part of Z. */
|
|
#define cimag(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, cimag)
|
|
|
|
/* Real part of Z. */
|
|
#define creal(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, creal)
|
|
|
|
|
|
/* Narrowing functions. */
|
|
|
|
#if __GLIBC_USE (IEC_60559_BFP_EXT_C2X)
|
|
|
|
/* Add. */
|
|
# define fadd(Val1, Val2) __TGMATH_2_NARROW_F (fadd, Val1, Val2)
|
|
# define dadd(Val1, Val2) __TGMATH_2_NARROW_D (dadd, Val1, Val2)
|
|
|
|
/* Divide. */
|
|
# define fdiv(Val1, Val2) __TGMATH_2_NARROW_F (fdiv, Val1, Val2)
|
|
# define ddiv(Val1, Val2) __TGMATH_2_NARROW_D (ddiv, Val1, Val2)
|
|
|
|
/* Multiply. */
|
|
# define fmul(Val1, Val2) __TGMATH_2_NARROW_F (fmul, Val1, Val2)
|
|
# define dmul(Val1, Val2) __TGMATH_2_NARROW_D (dmul, Val1, Val2)
|
|
|
|
/* Subtract. */
|
|
# define fsub(Val1, Val2) __TGMATH_2_NARROW_F (fsub, Val1, Val2)
|
|
# define dsub(Val1, Val2) __TGMATH_2_NARROW_D (dsub, Val1, Val2)
|
|
|
|
/* Square root. */
|
|
# define fsqrt(Val) __TGMATH_1_NARROW_F (fsqrt, Val)
|
|
# define dsqrt(Val) __TGMATH_1_NARROW_D (dsqrt, Val)
|
|
|
|
/* Fused multiply-add. */
|
|
# define ffma(Val1, Val2, Val3) __TGMATH_3_NARROW_F (ffma, Val1, Val2, Val3)
|
|
# define dfma(Val1, Val2, Val3) __TGMATH_3_NARROW_D (dfma, Val1, Val2, Val3)
|
|
|
|
#endif
|
|
|
|
#if __GLIBC_USE (IEC_60559_TYPES_EXT)
|
|
|
|
# if __HAVE_FLOAT16
|
|
# define f16add(Val1, Val2) __TGMATH_2_NARROW_F16 (f16add, Val1, Val2)
|
|
# define f16div(Val1, Val2) __TGMATH_2_NARROW_F16 (f16div, Val1, Val2)
|
|
# define f16mul(Val1, Val2) __TGMATH_2_NARROW_F16 (f16mul, Val1, Val2)
|
|
# define f16sub(Val1, Val2) __TGMATH_2_NARROW_F16 (f16sub, Val1, Val2)
|
|
# define f16sqrt(Val) __TGMATH_1_NARROW_F16 (f16sqrt, Val)
|
|
# define f16fma(Val1, Val2, Val3) \
|
|
__TGMATH_3_NARROW_F16 (f16fma, Val1, Val2, Val3)
|
|
# endif
|
|
|
|
# if __HAVE_FLOAT32
|
|
# define f32add(Val1, Val2) __TGMATH_2_NARROW_F32 (f32add, Val1, Val2)
|
|
# define f32div(Val1, Val2) __TGMATH_2_NARROW_F32 (f32div, Val1, Val2)
|
|
# define f32mul(Val1, Val2) __TGMATH_2_NARROW_F32 (f32mul, Val1, Val2)
|
|
# define f32sub(Val1, Val2) __TGMATH_2_NARROW_F32 (f32sub, Val1, Val2)
|
|
# define f32sqrt(Val) __TGMATH_1_NARROW_F32 (f32sqrt, Val)
|
|
# define f32fma(Val1, Val2, Val3) \
|
|
__TGMATH_3_NARROW_F32 (f32fma, Val1, Val2, Val3)
|
|
# endif
|
|
|
|
# if __HAVE_FLOAT64 && (__HAVE_FLOAT64X || __HAVE_FLOAT128)
|
|
# define f64add(Val1, Val2) __TGMATH_2_NARROW_F64 (f64add, Val1, Val2)
|
|
# define f64div(Val1, Val2) __TGMATH_2_NARROW_F64 (f64div, Val1, Val2)
|
|
# define f64mul(Val1, Val2) __TGMATH_2_NARROW_F64 (f64mul, Val1, Val2)
|
|
# define f64sub(Val1, Val2) __TGMATH_2_NARROW_F64 (f64sub, Val1, Val2)
|
|
# define f64sqrt(Val) __TGMATH_1_NARROW_F64 (f64sqrt, Val)
|
|
# define f64fma(Val1, Val2, Val3) \
|
|
__TGMATH_3_NARROW_F64 (f64fma, Val1, Val2, Val3)
|
|
# endif
|
|
|
|
# if __HAVE_FLOAT32X
|
|
# define f32xadd(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xadd, Val1, Val2)
|
|
# define f32xdiv(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xdiv, Val1, Val2)
|
|
# define f32xmul(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xmul, Val1, Val2)
|
|
# define f32xsub(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xsub, Val1, Val2)
|
|
# define f32xsqrt(Val) __TGMATH_1_NARROW_F32X (f32xsqrt, Val)
|
|
# define f32xfma(Val1, Val2, Val3) \
|
|
__TGMATH_3_NARROW_F32X (f32xfma, Val1, Val2, Val3)
|
|
# endif
|
|
|
|
# if __HAVE_FLOAT64X && (__HAVE_FLOAT128X || __HAVE_FLOAT128)
|
|
# define f64xadd(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xadd, Val1, Val2)
|
|
# define f64xdiv(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xdiv, Val1, Val2)
|
|
# define f64xmul(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xmul, Val1, Val2)
|
|
# define f64xsub(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xsub, Val1, Val2)
|
|
# define f64xsqrt(Val) __TGMATH_1_NARROW_F64X (f64xsqrt, Val)
|
|
# define f64xfma(Val1, Val2, Val3) \
|
|
__TGMATH_3_NARROW_F64X (f64xfma, Val1, Val2, Val3)
|
|
# endif
|
|
|
|
#endif
|
|
|
|
#endif /* tgmath.h */
|