mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-25 20:21:07 +00:00
607 lines
19 KiB
C
607 lines
19 KiB
C
/* Initialize CPU feature data.
|
|
This file is part of the GNU C Library.
|
|
Copyright (C) 2008-2020 Free Software Foundation, Inc.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include <cpuid.h>
|
|
#include <cpu-features.h>
|
|
#include <dl-hwcap.h>
|
|
#include <libc-pointer-arith.h>
|
|
|
|
#if HAVE_TUNABLES
|
|
# define TUNABLE_NAMESPACE cpu
|
|
# include <unistd.h> /* Get STDOUT_FILENO for _dl_printf. */
|
|
# include <elf/dl-tunables.h>
|
|
|
|
extern void TUNABLE_CALLBACK (set_hwcaps) (tunable_val_t *)
|
|
attribute_hidden;
|
|
|
|
# if CET_ENABLED
|
|
extern void TUNABLE_CALLBACK (set_x86_ibt) (tunable_val_t *)
|
|
attribute_hidden;
|
|
extern void TUNABLE_CALLBACK (set_x86_shstk) (tunable_val_t *)
|
|
attribute_hidden;
|
|
# endif
|
|
#endif
|
|
|
|
#if CET_ENABLED
|
|
# include <dl-cet.h>
|
|
# include <cet-tunables.h>
|
|
#endif
|
|
|
|
static void
|
|
get_extended_indices (struct cpu_features *cpu_features)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
__cpuid (0x80000000, eax, ebx, ecx, edx);
|
|
if (eax >= 0x80000001)
|
|
__cpuid (0x80000001,
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_80000001].eax,
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_80000001].ebx,
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_80000001].ecx,
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_80000001].edx);
|
|
if (eax >= 0x80000007)
|
|
__cpuid (0x80000007,
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_80000007].eax,
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_80000007].ebx,
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_80000007].ecx,
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_80000007].edx);
|
|
if (eax >= 0x80000008)
|
|
__cpuid (0x80000008,
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_80000008].eax,
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_80000008].ebx,
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_80000008].ecx,
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_80000008].edx);
|
|
}
|
|
|
|
static void
|
|
get_common_indices (struct cpu_features *cpu_features,
|
|
unsigned int *family, unsigned int *model,
|
|
unsigned int *extended_model, unsigned int *stepping)
|
|
{
|
|
if (family)
|
|
{
|
|
unsigned int eax;
|
|
__cpuid (1, eax, cpu_features->cpuid[COMMON_CPUID_INDEX_1].ebx,
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_1].ecx,
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_1].edx);
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_1].eax = eax;
|
|
*family = (eax >> 8) & 0x0f;
|
|
*model = (eax >> 4) & 0x0f;
|
|
*extended_model = (eax >> 12) & 0xf0;
|
|
*stepping = eax & 0x0f;
|
|
if (*family == 0x0f)
|
|
{
|
|
*family += (eax >> 20) & 0xff;
|
|
*model += *extended_model;
|
|
}
|
|
}
|
|
|
|
if (cpu_features->basic.max_cpuid >= 7)
|
|
__cpuid_count (7, 0,
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_7].eax,
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_7].ebx,
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_7].ecx,
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_7].edx);
|
|
|
|
if (cpu_features->basic.max_cpuid >= 0xd)
|
|
__cpuid_count (0xd, 1,
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_D_ECX_1].eax,
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_D_ECX_1].ebx,
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_D_ECX_1].ecx,
|
|
cpu_features->cpuid[COMMON_CPUID_INDEX_D_ECX_1].edx);
|
|
|
|
/* Can we call xgetbv? */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, OSXSAVE))
|
|
{
|
|
unsigned int xcrlow;
|
|
unsigned int xcrhigh;
|
|
asm ("xgetbv" : "=a" (xcrlow), "=d" (xcrhigh) : "c" (0));
|
|
/* Is YMM and XMM state usable? */
|
|
if ((xcrlow & (bit_YMM_state | bit_XMM_state))
|
|
== (bit_YMM_state | bit_XMM_state))
|
|
{
|
|
/* Determine if AVX is usable. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, AVX))
|
|
{
|
|
cpu_features->feature[index_arch_AVX_Usable]
|
|
|= bit_arch_AVX_Usable;
|
|
/* The following features depend on AVX being usable. */
|
|
/* Determine if AVX2 is usable. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, AVX2))
|
|
{
|
|
cpu_features->feature[index_arch_AVX2_Usable]
|
|
|= bit_arch_AVX2_Usable;
|
|
|
|
/* Unaligned load with 256-bit AVX registers are faster on
|
|
Intel/AMD processors with AVX2. */
|
|
cpu_features->feature[index_arch_AVX_Fast_Unaligned_Load]
|
|
|= bit_arch_AVX_Fast_Unaligned_Load;
|
|
}
|
|
/* Determine if FMA is usable. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, FMA))
|
|
cpu_features->feature[index_arch_FMA_Usable]
|
|
|= bit_arch_FMA_Usable;
|
|
/* Determine if VAES is usable. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, VAES))
|
|
cpu_features->feature[index_arch_VAES_Usable]
|
|
|= bit_arch_VAES_Usable;
|
|
/* Determine if VPCLMULQDQ is usable. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, VPCLMULQDQ))
|
|
cpu_features->feature[index_arch_VPCLMULQDQ_Usable]
|
|
|= bit_arch_VPCLMULQDQ_Usable;
|
|
/* Determine if XOP is usable. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, XOP))
|
|
cpu_features->feature[index_arch_XOP_Usable]
|
|
|= bit_arch_XOP_Usable;
|
|
}
|
|
|
|
/* Check if OPMASK state, upper 256-bit of ZMM0-ZMM15 and
|
|
ZMM16-ZMM31 state are enabled. */
|
|
if ((xcrlow & (bit_Opmask_state | bit_ZMM0_15_state
|
|
| bit_ZMM16_31_state))
|
|
== (bit_Opmask_state | bit_ZMM0_15_state | bit_ZMM16_31_state))
|
|
{
|
|
/* Determine if AVX512F is usable. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, AVX512F))
|
|
{
|
|
cpu_features->feature[index_arch_AVX512F_Usable]
|
|
|= bit_arch_AVX512F_Usable;
|
|
/* Determine if AVX512CD is usable. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, AVX512CD))
|
|
cpu_features->feature[index_arch_AVX512CD_Usable]
|
|
|= bit_arch_AVX512CD_Usable;
|
|
/* Determine if AVX512ER is usable. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, AVX512ER))
|
|
cpu_features->feature[index_arch_AVX512ER_Usable]
|
|
|= bit_arch_AVX512ER_Usable;
|
|
/* Determine if AVX512PF is usable. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, AVX512PF))
|
|
cpu_features->feature[index_arch_AVX512PF_Usable]
|
|
|= bit_arch_AVX512PF_Usable;
|
|
/* Determine if AVX512VL is usable. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, AVX512VL))
|
|
cpu_features->feature[index_arch_AVX512VL_Usable]
|
|
|= bit_arch_AVX512VL_Usable;
|
|
/* Determine if AVX512DQ is usable. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, AVX512DQ))
|
|
cpu_features->feature[index_arch_AVX512DQ_Usable]
|
|
|= bit_arch_AVX512DQ_Usable;
|
|
/* Determine if AVX512BW is usable. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, AVX512BW))
|
|
cpu_features->feature[index_arch_AVX512BW_Usable]
|
|
|= bit_arch_AVX512BW_Usable;
|
|
/* Determine if AVX512_4FMAPS is usable. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, AVX512_4FMAPS))
|
|
cpu_features->feature[index_arch_AVX512_4FMAPS_Usable]
|
|
|= bit_arch_AVX512_4FMAPS_Usable;
|
|
/* Determine if AVX512_4VNNIW is usable. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, AVX512_4VNNIW))
|
|
cpu_features->feature[index_arch_AVX512_4VNNIW_Usable]
|
|
|= bit_arch_AVX512_4VNNIW_Usable;
|
|
/* Determine if AVX512_BITALG is usable. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, AVX512_BITALG))
|
|
cpu_features->feature[index_arch_AVX512_BITALG_Usable]
|
|
|= bit_arch_AVX512_BITALG_Usable;
|
|
/* Determine if AVX512_IFMA is usable. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, AVX512_IFMA))
|
|
cpu_features->feature[index_arch_AVX512_IFMA_Usable]
|
|
|= bit_arch_AVX512_IFMA_Usable;
|
|
/* Determine if AVX512_VBMI is usable. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, AVX512_VBMI))
|
|
cpu_features->feature[index_arch_AVX512_VBMI_Usable]
|
|
|= bit_arch_AVX512_VBMI_Usable;
|
|
/* Determine if AVX512_VBMI2 is usable. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, AVX512_VBMI2))
|
|
cpu_features->feature[index_arch_AVX512_VBMI2_Usable]
|
|
|= bit_arch_AVX512_VBMI2_Usable;
|
|
/* Determine if is AVX512_VNNI usable. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, AVX512_VNNI))
|
|
cpu_features->feature[index_arch_AVX512_VNNI_Usable]
|
|
|= bit_arch_AVX512_VNNI_Usable;
|
|
/* Determine if AVX512_VPOPCNTDQ is usable. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, AVX512_VPOPCNTDQ))
|
|
cpu_features->feature[index_arch_AVX512_VPOPCNTDQ_Usable]
|
|
|= bit_arch_AVX512_VPOPCNTDQ_Usable;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* For _dl_runtime_resolve, set xsave_state_size to xsave area
|
|
size + integer register save size and align it to 64 bytes. */
|
|
if (cpu_features->basic.max_cpuid >= 0xd)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
|
|
__cpuid_count (0xd, 0, eax, ebx, ecx, edx);
|
|
if (ebx != 0)
|
|
{
|
|
unsigned int xsave_state_full_size
|
|
= ALIGN_UP (ebx + STATE_SAVE_OFFSET, 64);
|
|
|
|
cpu_features->xsave_state_size
|
|
= xsave_state_full_size;
|
|
cpu_features->xsave_state_full_size
|
|
= xsave_state_full_size;
|
|
|
|
/* Check if XSAVEC is available. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, XSAVEC))
|
|
{
|
|
unsigned int xstate_comp_offsets[32];
|
|
unsigned int xstate_comp_sizes[32];
|
|
unsigned int i;
|
|
|
|
xstate_comp_offsets[0] = 0;
|
|
xstate_comp_offsets[1] = 160;
|
|
xstate_comp_offsets[2] = 576;
|
|
xstate_comp_sizes[0] = 160;
|
|
xstate_comp_sizes[1] = 256;
|
|
|
|
for (i = 2; i < 32; i++)
|
|
{
|
|
if ((STATE_SAVE_MASK & (1 << i)) != 0)
|
|
{
|
|
__cpuid_count (0xd, i, eax, ebx, ecx, edx);
|
|
xstate_comp_sizes[i] = eax;
|
|
}
|
|
else
|
|
{
|
|
ecx = 0;
|
|
xstate_comp_sizes[i] = 0;
|
|
}
|
|
|
|
if (i > 2)
|
|
{
|
|
xstate_comp_offsets[i]
|
|
= (xstate_comp_offsets[i - 1]
|
|
+ xstate_comp_sizes[i -1]);
|
|
if ((ecx & (1 << 1)) != 0)
|
|
xstate_comp_offsets[i]
|
|
= ALIGN_UP (xstate_comp_offsets[i], 64);
|
|
}
|
|
}
|
|
|
|
/* Use XSAVEC. */
|
|
unsigned int size
|
|
= xstate_comp_offsets[31] + xstate_comp_sizes[31];
|
|
if (size)
|
|
{
|
|
cpu_features->xsave_state_size
|
|
= ALIGN_UP (size + STATE_SAVE_OFFSET, 64);
|
|
cpu_features->feature[index_arch_XSAVEC_Usable]
|
|
|= bit_arch_XSAVEC_Usable;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
_Static_assert (((index_arch_Fast_Unaligned_Load
|
|
== index_arch_Fast_Unaligned_Copy)
|
|
&& (index_arch_Fast_Unaligned_Load
|
|
== index_arch_Prefer_PMINUB_for_stringop)
|
|
&& (index_arch_Fast_Unaligned_Load
|
|
== index_arch_Slow_SSE4_2)
|
|
&& (index_arch_Fast_Unaligned_Load
|
|
== index_arch_Fast_Rep_String)
|
|
&& (index_arch_Fast_Unaligned_Load
|
|
== index_arch_Fast_Copy_Backward)),
|
|
"Incorrect index_arch_Fast_Unaligned_Load");
|
|
|
|
static inline void
|
|
init_cpu_features (struct cpu_features *cpu_features)
|
|
{
|
|
unsigned int ebx, ecx, edx;
|
|
unsigned int family = 0;
|
|
unsigned int model = 0;
|
|
unsigned int stepping = 0;
|
|
enum cpu_features_kind kind;
|
|
|
|
#if !HAS_CPUID
|
|
if (__get_cpuid_max (0, 0) == 0)
|
|
{
|
|
kind = arch_kind_other;
|
|
goto no_cpuid;
|
|
}
|
|
#endif
|
|
|
|
__cpuid (0, cpu_features->basic.max_cpuid, ebx, ecx, edx);
|
|
|
|
/* This spells out "GenuineIntel". */
|
|
if (ebx == 0x756e6547 && ecx == 0x6c65746e && edx == 0x49656e69)
|
|
{
|
|
unsigned int extended_model;
|
|
|
|
kind = arch_kind_intel;
|
|
|
|
get_common_indices (cpu_features, &family, &model, &extended_model,
|
|
&stepping);
|
|
|
|
get_extended_indices (cpu_features);
|
|
|
|
if (family == 0x06)
|
|
{
|
|
model += extended_model;
|
|
switch (model)
|
|
{
|
|
case 0x1c:
|
|
case 0x26:
|
|
/* BSF is slow on Atom. */
|
|
cpu_features->feature[index_arch_Slow_BSF]
|
|
|= bit_arch_Slow_BSF;
|
|
break;
|
|
|
|
case 0x57:
|
|
/* Knights Landing. Enable Silvermont optimizations. */
|
|
|
|
case 0x5c:
|
|
case 0x5f:
|
|
/* Unaligned load versions are faster than SSSE3
|
|
on Goldmont. */
|
|
|
|
case 0x4c:
|
|
/* Airmont is a die shrink of Silvermont. */
|
|
|
|
case 0x37:
|
|
case 0x4a:
|
|
case 0x4d:
|
|
case 0x5a:
|
|
case 0x5d:
|
|
/* Unaligned load versions are faster than SSSE3
|
|
on Silvermont. */
|
|
cpu_features->feature[index_arch_Fast_Unaligned_Load]
|
|
|= (bit_arch_Fast_Unaligned_Load
|
|
| bit_arch_Fast_Unaligned_Copy
|
|
| bit_arch_Prefer_PMINUB_for_stringop
|
|
| bit_arch_Slow_SSE4_2);
|
|
break;
|
|
|
|
default:
|
|
/* Unknown family 0x06 processors. Assuming this is one
|
|
of Core i3/i5/i7 processors if AVX is available. */
|
|
if (!CPU_FEATURES_CPU_P (cpu_features, AVX))
|
|
break;
|
|
/* Fall through. */
|
|
|
|
case 0x1a:
|
|
case 0x1e:
|
|
case 0x1f:
|
|
case 0x25:
|
|
case 0x2c:
|
|
case 0x2e:
|
|
case 0x2f:
|
|
/* Rep string instructions, unaligned load, unaligned copy,
|
|
and pminub are fast on Intel Core i3, i5 and i7. */
|
|
cpu_features->feature[index_arch_Fast_Rep_String]
|
|
|= (bit_arch_Fast_Rep_String
|
|
| bit_arch_Fast_Unaligned_Load
|
|
| bit_arch_Fast_Unaligned_Copy
|
|
| bit_arch_Prefer_PMINUB_for_stringop);
|
|
break;
|
|
}
|
|
|
|
/* Disable TSX on some Haswell processors to avoid TSX on kernels that
|
|
weren't updated with the latest microcode package (which disables
|
|
broken feature by default). */
|
|
switch (model)
|
|
{
|
|
case 0x3f:
|
|
/* Xeon E7 v3 with stepping >= 4 has working TSX. */
|
|
if (stepping >= 4)
|
|
break;
|
|
/* Fall through. */
|
|
case 0x3c:
|
|
case 0x45:
|
|
case 0x46:
|
|
/* Disable Intel TSX on Haswell processors (except Xeon E7 v3
|
|
with stepping >= 4) to avoid TSX on kernels that weren't
|
|
updated with the latest microcode package (which disables
|
|
broken feature by default). */
|
|
cpu_features->cpuid[index_cpu_RTM].reg_RTM &= ~bit_cpu_RTM;
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/* Since AVX512ER is unique to Xeon Phi, set Prefer_No_VZEROUPPER
|
|
if AVX512ER is available. Don't use AVX512 to avoid lower CPU
|
|
frequency if AVX512ER isn't available. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, AVX512ER))
|
|
cpu_features->feature[index_arch_Prefer_No_VZEROUPPER]
|
|
|= bit_arch_Prefer_No_VZEROUPPER;
|
|
else
|
|
cpu_features->feature[index_arch_Prefer_No_AVX512]
|
|
|= bit_arch_Prefer_No_AVX512;
|
|
}
|
|
/* This spells out "AuthenticAMD" or "HygonGenuine". */
|
|
else if ((ebx == 0x68747541 && ecx == 0x444d4163 && edx == 0x69746e65)
|
|
|| (ebx == 0x6f677948 && ecx == 0x656e6975 && edx == 0x6e65476e))
|
|
{
|
|
unsigned int extended_model;
|
|
|
|
kind = arch_kind_amd;
|
|
|
|
get_common_indices (cpu_features, &family, &model, &extended_model,
|
|
&stepping);
|
|
|
|
get_extended_indices (cpu_features);
|
|
|
|
ecx = cpu_features->cpuid[COMMON_CPUID_INDEX_1].ecx;
|
|
|
|
if (HAS_ARCH_FEATURE (AVX_Usable))
|
|
{
|
|
/* Since the FMA4 bit is in COMMON_CPUID_INDEX_80000001 and
|
|
FMA4 requires AVX, determine if FMA4 is usable here. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, FMA4))
|
|
cpu_features->feature[index_arch_FMA4_Usable]
|
|
|= bit_arch_FMA4_Usable;
|
|
}
|
|
|
|
if (family == 0x15)
|
|
{
|
|
/* "Excavator" */
|
|
if (model >= 0x60 && model <= 0x7f)
|
|
{
|
|
cpu_features->feature[index_arch_Fast_Unaligned_Load]
|
|
|= (bit_arch_Fast_Unaligned_Load
|
|
| bit_arch_Fast_Copy_Backward);
|
|
|
|
/* Unaligned AVX loads are slower.*/
|
|
cpu_features->feature[index_arch_AVX_Fast_Unaligned_Load]
|
|
&= ~bit_arch_AVX_Fast_Unaligned_Load;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
kind = arch_kind_other;
|
|
get_common_indices (cpu_features, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
/* Support i586 if CX8 is available. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, CX8))
|
|
cpu_features->feature[index_arch_I586] |= bit_arch_I586;
|
|
|
|
/* Support i686 if CMOV is available. */
|
|
if (CPU_FEATURES_CPU_P (cpu_features, CMOV))
|
|
cpu_features->feature[index_arch_I686] |= bit_arch_I686;
|
|
|
|
#if !HAS_CPUID
|
|
no_cpuid:
|
|
#endif
|
|
|
|
cpu_features->basic.kind = kind;
|
|
cpu_features->basic.family = family;
|
|
cpu_features->basic.model = model;
|
|
cpu_features->basic.stepping = stepping;
|
|
|
|
#if HAVE_TUNABLES
|
|
TUNABLE_GET (hwcaps, tunable_val_t *, TUNABLE_CALLBACK (set_hwcaps));
|
|
cpu_features->non_temporal_threshold
|
|
= TUNABLE_GET (x86_non_temporal_threshold, long int, NULL);
|
|
cpu_features->data_cache_size
|
|
= TUNABLE_GET (x86_data_cache_size, long int, NULL);
|
|
cpu_features->shared_cache_size
|
|
= TUNABLE_GET (x86_shared_cache_size, long int, NULL);
|
|
#endif
|
|
|
|
/* Reuse dl_platform, dl_hwcap and dl_hwcap_mask for x86. */
|
|
#if !HAVE_TUNABLES && defined SHARED
|
|
/* The glibc.cpu.hwcap_mask tunable is initialized already, so no need to do
|
|
this. */
|
|
GLRO(dl_hwcap_mask) = HWCAP_IMPORTANT;
|
|
#endif
|
|
|
|
#ifdef __x86_64__
|
|
GLRO(dl_hwcap) = HWCAP_X86_64;
|
|
if (cpu_features->basic.kind == arch_kind_intel)
|
|
{
|
|
const char *platform = NULL;
|
|
|
|
if (CPU_FEATURES_ARCH_P (cpu_features, AVX512F_Usable)
|
|
&& CPU_FEATURES_CPU_P (cpu_features, AVX512CD))
|
|
{
|
|
if (CPU_FEATURES_CPU_P (cpu_features, AVX512ER))
|
|
{
|
|
if (CPU_FEATURES_CPU_P (cpu_features, AVX512PF))
|
|
platform = "xeon_phi";
|
|
}
|
|
else
|
|
{
|
|
if (CPU_FEATURES_CPU_P (cpu_features, AVX512BW)
|
|
&& CPU_FEATURES_CPU_P (cpu_features, AVX512DQ)
|
|
&& CPU_FEATURES_CPU_P (cpu_features, AVX512VL))
|
|
GLRO(dl_hwcap) |= HWCAP_X86_AVX512_1;
|
|
}
|
|
}
|
|
|
|
if (platform == NULL
|
|
&& CPU_FEATURES_ARCH_P (cpu_features, AVX2_Usable)
|
|
&& CPU_FEATURES_ARCH_P (cpu_features, FMA_Usable)
|
|
&& CPU_FEATURES_CPU_P (cpu_features, BMI1)
|
|
&& CPU_FEATURES_CPU_P (cpu_features, BMI2)
|
|
&& CPU_FEATURES_CPU_P (cpu_features, LZCNT)
|
|
&& CPU_FEATURES_CPU_P (cpu_features, MOVBE)
|
|
&& CPU_FEATURES_CPU_P (cpu_features, POPCNT))
|
|
platform = "haswell";
|
|
|
|
if (platform != NULL)
|
|
GLRO(dl_platform) = platform;
|
|
}
|
|
#else
|
|
GLRO(dl_hwcap) = 0;
|
|
if (CPU_FEATURES_CPU_P (cpu_features, SSE2))
|
|
GLRO(dl_hwcap) |= HWCAP_X86_SSE2;
|
|
|
|
if (CPU_FEATURES_ARCH_P (cpu_features, I686))
|
|
GLRO(dl_platform) = "i686";
|
|
else if (CPU_FEATURES_ARCH_P (cpu_features, I586))
|
|
GLRO(dl_platform) = "i586";
|
|
#endif
|
|
|
|
#if CET_ENABLED
|
|
# if HAVE_TUNABLES
|
|
TUNABLE_GET (x86_ibt, tunable_val_t *,
|
|
TUNABLE_CALLBACK (set_x86_ibt));
|
|
TUNABLE_GET (x86_shstk, tunable_val_t *,
|
|
TUNABLE_CALLBACK (set_x86_shstk));
|
|
# endif
|
|
|
|
/* Check CET status. */
|
|
unsigned int cet_status = get_cet_status ();
|
|
|
|
if (cet_status)
|
|
{
|
|
GL(dl_x86_feature_1)[0] = cet_status;
|
|
|
|
# ifndef SHARED
|
|
/* Check if IBT and SHSTK are enabled by kernel. */
|
|
if ((cet_status & GNU_PROPERTY_X86_FEATURE_1_IBT)
|
|
|| (cet_status & GNU_PROPERTY_X86_FEATURE_1_SHSTK))
|
|
{
|
|
/* Disable IBT and/or SHSTK if they are enabled by kernel, but
|
|
disabled by environment variable:
|
|
|
|
GLIBC_TUNABLES=glibc.cpu.hwcaps=-IBT,-SHSTK
|
|
*/
|
|
unsigned int cet_feature = 0;
|
|
if (!HAS_CPU_FEATURE (IBT))
|
|
cet_feature |= GNU_PROPERTY_X86_FEATURE_1_IBT;
|
|
if (!HAS_CPU_FEATURE (SHSTK))
|
|
cet_feature |= GNU_PROPERTY_X86_FEATURE_1_SHSTK;
|
|
|
|
if (cet_feature)
|
|
{
|
|
int res = dl_cet_disable_cet (cet_feature);
|
|
|
|
/* Clear the disabled bits in dl_x86_feature_1. */
|
|
if (res == 0)
|
|
GL(dl_x86_feature_1)[0] &= ~cet_feature;
|
|
}
|
|
|
|
/* Lock CET if IBT or SHSTK is enabled in executable. Don't
|
|
lock CET if SHSTK is enabled permissively. */
|
|
if (((GL(dl_x86_feature_1)[1] >> CET_MAX)
|
|
& ((1 << CET_MAX) - 1))
|
|
!= CET_PERMISSIVE)
|
|
dl_cet_lock_cet ();
|
|
}
|
|
# endif
|
|
}
|
|
#endif
|
|
}
|