mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-28 21:41:08 +00:00
0bf061d3e3
Bug 16516 reports spurious underflows from erf (for all floating-point types), when the result is close to underflowing but does not actually underflow. erf (x) is about (2/sqrt(pi))*x for x close to 0, so there are subnormal arguments for which it does not underflow. The various implementations do (x + efx*x) (for efx = 2/sqrt(pi) - 1), for greater accuracy than if just using a single multiplication by an approximation to 2/sqrt(pi) (effectively, this way there are a few more bits in the approximation to 2/sqrt(pi)). This can introduce underflows when efx*x underflows even though the final result does not, so a scaled calculation with 8*efx is done in these cases - but 8 is not a big enough scale factor to avoid all such underflows. 16 is (any underflows with a scale factor of 16 would only occur when the final result underflows), so this patch changes the code to use that factor. Rather than recomputing all the values of the efx8 variable, it is removed, leaving it to the compiler's constant folding to compute 16*efx. As such scaling can also lose underflows when the final scaling down happens to be exact, appropriate checks are added to ensure underflow exceptions occur when required in such cases. Tested x86_64 and x86; no ulps updates needed. Also spot-checked for powerpc32 and mips64 to verify the changes to the ldbl-128ibm and ldbl-128 implementations. [BZ #16516] * sysdeps/ieee754/dbl-64/s_erf.c (efx8): Remove variable. (__erf): Scale by 16 instead of 8 in potentially underflowing case. Ensure exception if result actually underflows. * sysdeps/ieee754/flt-32/s_erff.c (efx8): Remove variable. (__erff): Scale by 16 instead of 8 in potentially underflowing case. Ensure exception if result actually underflows. * sysdeps/ieee754/ldbl-128/s_erfl.c: Include <float.h>. (efx8): Remove variable. (__erfl): Scale by 16 instead of 8 in potentially underflowing case. Ensure exception if result actually underflows. * sysdeps/ieee754/ldbl-128ibm/s_erfl.c: Include <float.h>. (efx8): Remove variable. (__erfl): Scale by 16 instead of 8 in potentially underflowing case. Ensure exception if result actually underflows. * sysdeps/ieee754/ldbl-96/s_erfl.c: Include <float.h>. (efx8): Remove variable. (__erfl): Scale by 16 instead of 8 in potentially underflowing case. Ensure exception if result actually underflows. * math/auto-libm-test-in: Add more tests of erf. * math/auto-libm-test-out: Regenerated.
234 lines
7.0 KiB
C
234 lines
7.0 KiB
C
/* s_erff.c -- float version of s_erf.c.
|
|
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
|
*/
|
|
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
#if defined(LIBM_SCCS) && !defined(lint)
|
|
static char rcsid[] = "$NetBSD: s_erff.c,v 1.4 1995/05/10 20:47:07 jtc Exp $";
|
|
#endif
|
|
|
|
#include <errno.h>
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
|
|
static const float
|
|
tiny = 1e-30,
|
|
half= 5.0000000000e-01, /* 0x3F000000 */
|
|
one = 1.0000000000e+00, /* 0x3F800000 */
|
|
two = 2.0000000000e+00, /* 0x40000000 */
|
|
/* c = (subfloat)0.84506291151 */
|
|
erx = 8.4506291151e-01, /* 0x3f58560b */
|
|
/*
|
|
* Coefficients for approximation to erf on [0,0.84375]
|
|
*/
|
|
efx = 1.2837916613e-01, /* 0x3e0375d4 */
|
|
pp0 = 1.2837916613e-01, /* 0x3e0375d4 */
|
|
pp1 = -3.2504209876e-01, /* 0xbea66beb */
|
|
pp2 = -2.8481749818e-02, /* 0xbce9528f */
|
|
pp3 = -5.7702702470e-03, /* 0xbbbd1489 */
|
|
pp4 = -2.3763017452e-05, /* 0xb7c756b1 */
|
|
qq1 = 3.9791721106e-01, /* 0x3ecbbbce */
|
|
qq2 = 6.5022252500e-02, /* 0x3d852a63 */
|
|
qq3 = 5.0813062117e-03, /* 0x3ba68116 */
|
|
qq4 = 1.3249473704e-04, /* 0x390aee49 */
|
|
qq5 = -3.9602282413e-06, /* 0xb684e21a */
|
|
/*
|
|
* Coefficients for approximation to erf in [0.84375,1.25]
|
|
*/
|
|
pa0 = -2.3621185683e-03, /* 0xbb1acdc6 */
|
|
pa1 = 4.1485610604e-01, /* 0x3ed46805 */
|
|
pa2 = -3.7220788002e-01, /* 0xbebe9208 */
|
|
pa3 = 3.1834661961e-01, /* 0x3ea2fe54 */
|
|
pa4 = -1.1089469492e-01, /* 0xbde31cc2 */
|
|
pa5 = 3.5478305072e-02, /* 0x3d1151b3 */
|
|
pa6 = -2.1663755178e-03, /* 0xbb0df9c0 */
|
|
qa1 = 1.0642088205e-01, /* 0x3dd9f331 */
|
|
qa2 = 5.4039794207e-01, /* 0x3f0a5785 */
|
|
qa3 = 7.1828655899e-02, /* 0x3d931ae7 */
|
|
qa4 = 1.2617121637e-01, /* 0x3e013307 */
|
|
qa5 = 1.3637083583e-02, /* 0x3c5f6e13 */
|
|
qa6 = 1.1984500103e-02, /* 0x3c445aa3 */
|
|
/*
|
|
* Coefficients for approximation to erfc in [1.25,1/0.35]
|
|
*/
|
|
ra0 = -9.8649440333e-03, /* 0xbc21a093 */
|
|
ra1 = -6.9385856390e-01, /* 0xbf31a0b7 */
|
|
ra2 = -1.0558626175e+01, /* 0xc128f022 */
|
|
ra3 = -6.2375331879e+01, /* 0xc2798057 */
|
|
ra4 = -1.6239666748e+02, /* 0xc322658c */
|
|
ra5 = -1.8460508728e+02, /* 0xc3389ae7 */
|
|
ra6 = -8.1287437439e+01, /* 0xc2a2932b */
|
|
ra7 = -9.8143291473e+00, /* 0xc11d077e */
|
|
sa1 = 1.9651271820e+01, /* 0x419d35ce */
|
|
sa2 = 1.3765776062e+02, /* 0x4309a863 */
|
|
sa3 = 4.3456588745e+02, /* 0x43d9486f */
|
|
sa4 = 6.4538726807e+02, /* 0x442158c9 */
|
|
sa5 = 4.2900814819e+02, /* 0x43d6810b */
|
|
sa6 = 1.0863500214e+02, /* 0x42d9451f */
|
|
sa7 = 6.5702495575e+00, /* 0x40d23f7c */
|
|
sa8 = -6.0424413532e-02, /* 0xbd777f97 */
|
|
/*
|
|
* Coefficients for approximation to erfc in [1/.35,28]
|
|
*/
|
|
rb0 = -9.8649431020e-03, /* 0xbc21a092 */
|
|
rb1 = -7.9928326607e-01, /* 0xbf4c9dd4 */
|
|
rb2 = -1.7757955551e+01, /* 0xc18e104b */
|
|
rb3 = -1.6063638306e+02, /* 0xc320a2ea */
|
|
rb4 = -6.3756646729e+02, /* 0xc41f6441 */
|
|
rb5 = -1.0250950928e+03, /* 0xc480230b */
|
|
rb6 = -4.8351919556e+02, /* 0xc3f1c275 */
|
|
sb1 = 3.0338060379e+01, /* 0x41f2b459 */
|
|
sb2 = 3.2579251099e+02, /* 0x43a2e571 */
|
|
sb3 = 1.5367296143e+03, /* 0x44c01759 */
|
|
sb4 = 3.1998581543e+03, /* 0x4547fdbb */
|
|
sb5 = 2.5530502930e+03, /* 0x451f90ce */
|
|
sb6 = 4.7452853394e+02, /* 0x43ed43a7 */
|
|
sb7 = -2.2440952301e+01; /* 0xc1b38712 */
|
|
|
|
float __erff(float x)
|
|
{
|
|
int32_t hx,ix,i;
|
|
float R,S,P,Q,s,y,z,r;
|
|
GET_FLOAT_WORD(hx,x);
|
|
ix = hx&0x7fffffff;
|
|
if(ix>=0x7f800000) { /* erf(nan)=nan */
|
|
i = ((u_int32_t)hx>>31)<<1;
|
|
return (float)(1-i)+one/x; /* erf(+-inf)=+-1 */
|
|
}
|
|
|
|
if(ix < 0x3f580000) { /* |x|<0.84375 */
|
|
if(ix < 0x31800000) { /* |x|<2**-28 */
|
|
if (ix < 0x04000000)
|
|
{
|
|
/* Avoid spurious underflow. */
|
|
float ret = 0.0625f * (16.0f * x + (16.0f * efx) * x);
|
|
if (fabsf (ret) < FLT_MIN)
|
|
{
|
|
float force_underflow = ret * ret;
|
|
math_force_eval (force_underflow);
|
|
}
|
|
return ret;
|
|
}
|
|
return x + efx*x;
|
|
}
|
|
z = x*x;
|
|
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
|
|
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
|
|
y = r/s;
|
|
return x + x*y;
|
|
}
|
|
if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */
|
|
s = fabsf(x)-one;
|
|
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
|
|
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
|
|
if(hx>=0) return erx + P/Q; else return -erx - P/Q;
|
|
}
|
|
if (ix >= 0x40c00000) { /* inf>|x|>=6 */
|
|
if(hx>=0) return one-tiny; else return tiny-one;
|
|
}
|
|
x = fabsf(x);
|
|
s = one/(x*x);
|
|
if(ix< 0x4036DB6E) { /* |x| < 1/0.35 */
|
|
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
|
|
ra5+s*(ra6+s*ra7))))));
|
|
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
|
|
sa5+s*(sa6+s*(sa7+s*sa8)))))));
|
|
} else { /* |x| >= 1/0.35 */
|
|
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
|
|
rb5+s*rb6)))));
|
|
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
|
|
sb5+s*(sb6+s*sb7))))));
|
|
}
|
|
GET_FLOAT_WORD(ix,x);
|
|
SET_FLOAT_WORD(z,ix&0xfffff000);
|
|
r = __ieee754_expf(-z*z-(float)0.5625)*__ieee754_expf((z-x)*(z+x)+R/S);
|
|
if(hx>=0) return one-r/x; else return r/x-one;
|
|
}
|
|
weak_alias (__erff, erff)
|
|
|
|
float __erfcf(float x)
|
|
{
|
|
int32_t hx,ix;
|
|
float R,S,P,Q,s,y,z,r;
|
|
GET_FLOAT_WORD(hx,x);
|
|
ix = hx&0x7fffffff;
|
|
if(ix>=0x7f800000) { /* erfc(nan)=nan */
|
|
/* erfc(+-inf)=0,2 */
|
|
return (float)(((u_int32_t)hx>>31)<<1)+one/x;
|
|
}
|
|
|
|
if(ix < 0x3f580000) { /* |x|<0.84375 */
|
|
if(ix < 0x23800000) /* |x|<2**-56 */
|
|
return one-x;
|
|
z = x*x;
|
|
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
|
|
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
|
|
y = r/s;
|
|
if(hx < 0x3e800000) { /* x<1/4 */
|
|
return one-(x+x*y);
|
|
} else {
|
|
r = x*y;
|
|
r += (x-half);
|
|
return half - r ;
|
|
}
|
|
}
|
|
if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */
|
|
s = fabsf(x)-one;
|
|
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
|
|
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
|
|
if(hx>=0) {
|
|
z = one-erx; return z - P/Q;
|
|
} else {
|
|
z = erx+P/Q; return one+z;
|
|
}
|
|
}
|
|
if (ix < 0x41e00000) { /* |x|<28 */
|
|
x = fabsf(x);
|
|
s = one/(x*x);
|
|
if(ix< 0x4036DB6D) { /* |x| < 1/.35 ~ 2.857143*/
|
|
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
|
|
ra5+s*(ra6+s*ra7))))));
|
|
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
|
|
sa5+s*(sa6+s*(sa7+s*sa8)))))));
|
|
} else { /* |x| >= 1/.35 ~ 2.857143 */
|
|
if(hx<0&&ix>=0x40c00000) return two-tiny;/* x < -6 */
|
|
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
|
|
rb5+s*rb6)))));
|
|
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
|
|
sb5+s*(sb6+s*sb7))))));
|
|
}
|
|
GET_FLOAT_WORD(ix,x);
|
|
SET_FLOAT_WORD(z,ix&0xffffe000);
|
|
r = __ieee754_expf(-z*z-(float)0.5625)*
|
|
__ieee754_expf((z-x)*(z+x)+R/S);
|
|
if(hx>0) {
|
|
#if FLT_EVAL_METHOD != 0
|
|
volatile
|
|
#endif
|
|
float ret = r/x;
|
|
if (ret == 0)
|
|
__set_errno (ERANGE);
|
|
return ret;
|
|
} else
|
|
return two-r/x;
|
|
} else {
|
|
if(hx>0) {
|
|
__set_errno (ERANGE);
|
|
return tiny*tiny;
|
|
} else
|
|
return two-tiny;
|
|
}
|
|
}
|
|
weak_alias (__erfcf, erfcf)
|