glibc/sysdeps/aarch64/fpu/log10f_advsimd.c
Joe Ramsay 8b09af572b aarch64: Avoid redundant MOVs in AdvSIMD F32 logs
Since the last operation is destructive, the first argument to the FMA
also has to be the first argument to the special-case in order to
avoid unnecessary MOVs. Reorder arguments and adjust special-case
bounds to facilitate this.

Reviewed-by: Wilco Dijkstra  <Wilco.Dijkstra@arm.com>
2024-09-09 13:03:49 +01:00

95 lines
3.7 KiB
C

/* Single-precision vector (AdvSIMD) log10 function
Copyright (C) 2023-2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "v_math.h"
#include "poly_advsimd_f32.h"
static const struct data
{
uint32x4_t off, offset_lower_bound;
uint16x8_t special_bound;
uint32x4_t mantissa_mask;
float32x4_t poly[8];
float32x4_t inv_ln10, ln2;
} data = {
/* Use order 9 for log10(1+x), i.e. order 8 for log10(1+x)/x, with x in
[-1/3, 1/3] (offset=2/3). Max. relative error: 0x1.068ee468p-25. */
.poly = { V4 (-0x1.bcb79cp-3f), V4 (0x1.2879c8p-3f), V4 (-0x1.bcd472p-4f),
V4 (0x1.6408f8p-4f), V4 (-0x1.246f8p-4f), V4 (0x1.f0e514p-5f),
V4 (-0x1.0fc92cp-4f), V4 (0x1.f5f76ap-5f) },
.ln2 = V4 (0x1.62e43p-1f),
.inv_ln10 = V4 (0x1.bcb7b2p-2f),
/* Lower bound is the smallest positive normal float 0x00800000. For
optimised register use subnormals are detected after offset has been
subtracted, so lower bound is 0x0080000 - offset (which wraps around). */
.offset_lower_bound = V4 (0x00800000 - 0x3f2aaaab),
.special_bound = V8 (0x7f00), /* top16(asuint32(inf) - 0x00800000). */
.off = V4 (0x3f2aaaab), /* 0.666667. */
.mantissa_mask = V4 (0x007fffff),
};
static float32x4_t VPCS_ATTR NOINLINE
special_case (float32x4_t y, uint32x4_t u_off, float32x4_t p, float32x4_t r2,
uint16x4_t cmp, const struct data *d)
{
/* Fall back to scalar code. */
return v_call_f32 (log10f, vreinterpretq_f32_u32 (vaddq_u32 (u_off, d->off)),
vfmaq_f32 (y, p, r2), vmovl_u16 (cmp));
}
/* Fast implementation of AdvSIMD log10f,
uses a similar approach as AdvSIMD logf with the same offset (i.e., 2/3) and
an order 9 polynomial.
Maximum error: 3.305ulps (nearest rounding.)
_ZGVnN4v_log10f(0x1.555c16p+0) got 0x1.ffe2fap-4
want 0x1.ffe2f4p-4. */
float32x4_t VPCS_ATTR NOINLINE V_NAME_F1 (log10) (float32x4_t x)
{
const struct data *d = ptr_barrier (&data);
/* To avoid having to mov x out of the way, keep u after offset has been
applied, and recover x by adding the offset back in the special-case
handler. */
uint32x4_t u_off = vreinterpretq_u32_f32 (x);
/* x = 2^n * (1+r), where 2/3 < 1+r < 4/3. */
u_off = vsubq_u32 (u_off, d->off);
float32x4_t n = vcvtq_f32_s32 (
vshrq_n_s32 (vreinterpretq_s32_u32 (u_off), 23)); /* signextend. */
uint16x4_t special = vcge_u16 (vsubhn_u32 (u_off, d->offset_lower_bound),
vget_low_u16 (d->special_bound));
uint32x4_t u = vaddq_u32 (vandq_u32 (u_off, d->mantissa_mask), d->off);
float32x4_t r = vsubq_f32 (vreinterpretq_f32_u32 (u), v_f32 (1.0f));
/* y = log10(1+r) + n * log10(2). */
float32x4_t r2 = vmulq_f32 (r, r);
float32x4_t poly = v_pw_horner_7_f32 (r, r2, d->poly);
/* y = Log10(2) * n + poly * InvLn(10). */
float32x4_t y = vfmaq_f32 (r, d->ln2, n);
y = vmulq_f32 (y, d->inv_ln10);
if (__glibc_unlikely (v_any_u16h (special)))
return special_case (y, u_off, poly, r2, special, d);
return vfmaq_f32 (y, poly, r2);
}
libmvec_hidden_def (V_NAME_F1 (log10))
HALF_WIDTH_ALIAS_F1 (log10)