glibc/math/s_csinhf.c
Paul E. Murphy f2de695bf6 Unify drift between _Complex function type variants
While trying to convert the _Complex function wrappers
into a single generic implementation, a few minor
variations between identical versions emerged.
2016-08-03 11:07:04 -05:00

165 lines
3.9 KiB
C

/* Complex sine hyperbole function for float.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ float
__csinhf (__complex__ float x)
{
__complex__ float retval;
int negate = signbit (__real__ x);
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
__real__ x = fabsf (__real__ x);
if (__glibc_likely (rcls >= FP_ZERO))
{
/* Real part is finite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2);
float sinix, cosix;
if (__glibc_likely (fabsf (__imag__ x) > FLT_MIN))
{
__sincosf (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0f;
}
if (negate)
cosix = -cosix;
if (fabsf (__real__ x) > t)
{
float exp_t = __ieee754_expf (t);
float rx = fabsf (__real__ x);
if (signbit (__real__ x))
cosix = -cosix;
rx -= t;
sinix *= exp_t / 2.0f;
cosix *= exp_t / 2.0f;
if (rx > t)
{
rx -= t;
sinix *= exp_t;
cosix *= exp_t;
}
if (rx > t)
{
/* Overflow (original real part of x > 3t). */
__real__ retval = FLT_MAX * cosix;
__imag__ retval = FLT_MAX * sinix;
}
else
{
float exp_val = __ieee754_expf (rx);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
}
else
{
__real__ retval = __ieee754_sinhf (__real__ x) * cosix;
__imag__ retval = __ieee754_coshf (__real__ x) * sinix;
}
math_check_force_underflow_complex (retval);
}
else
{
if (rcls == FP_ZERO)
{
/* Real part is 0.0. */
__real__ retval = __copysignf (0.0, negate ? -1.0 : 1.0);
__imag__ retval = __nanf ("") + __nanf ("");
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
else
{
__real__ retval = __nanf ("");
__imag__ retval = __nanf ("");
feraiseexcept (FE_INVALID);
}
}
}
else if (rcls == FP_INFINITE)
{
/* Real part is infinite. */
if (__glibc_likely (icls > FP_ZERO))
{
/* Imaginary part is finite. */
float sinix, cosix;
if (__glibc_likely (fabsf (__imag__ x) > FLT_MIN))
{
__sincosf (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0f;
}
__real__ retval = __copysignf (HUGE_VALF, cosix);
__imag__ retval = __copysignf (HUGE_VALF, sinix);
if (negate)
__real__ retval = -__real__ retval;
}
else if (icls == FP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = negate ? -HUGE_VALF : HUGE_VALF;
__imag__ retval = __imag__ x;
}
else
{
/* The addition raises the invalid exception. */
__real__ retval = HUGE_VALF;
__imag__ retval = __nanf ("") + __nanf ("");
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
}
else
{
__real__ retval = __nanf ("");
__imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nanf ("");
}
return retval;
}
#ifndef __csinhf
weak_alias (__csinhf, csinhf)
#endif